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Abstract
The analysis of intake behaviour is a key factor to understand
the health condition of a subject, such as elderly or people af-
fected by diet-related disorders. The technology can be ex-
ploited for this purpose to promptly identify anomalous situa-
tions. To this end, the point cloud, provided by a depth camera
placed on the ceiling in top-down view, is used as input to three
self-organising algorithms. The output are three different mod-
els that represent the monitored person during intake activities.
Starting from these models, the nodes representing the head
and the hands are selected. They are useful to identify most of
the actions performed by the person while having a meal. In
the experimental section, the positions of these nodes are com-
pared with a ground truth and the performance of the proposed
algorithms are evaluated in terms of distance error.

1 Introduction
People who do not follow a correct diet can undergo some very
problematic consequences. One of these is obesity, as stated by
the World Health Organization: in 2014, more than 1.9 billion
adults were overweight and 600 million were obese [1]. Water
assimilation habit is another key factor determining a healthy
lifestyle. A quantity of 1.25 liters for men and 0.75 liters for
women is the minimum daily suggested amount of water to re-
duce the risks of stroke, kidney failure or even breast cancer
[2]. These serious diseases must be taken into account with
more attention if the person is older. Indeed, elderly are more
vulnerable due to some issues correlated to their age, such as
the decreasing thirst sensation. Technology improvements in
the last years have allowed the prevention and detection of pos-
sible wrong dietary habits. In particular, the living room or the
kitchen in a house, where usually the principal meals are had,
can become smart environments, where the feeding habits of
the subject may be monitored. For example, a RGB camera

can provide information regarding to the volumes of food in a
meal and the associate calories [3]. Using a depth stream, the
dependency on RGB can be overcome. For this reason, in this
work we adopt the Kinect sensor alone, to generate the depth
streams processed by different machine learning algorithms. A
data-fusion approach applied to food intake monitoring is pre-
sented in [4] where the information provided by Kinect and
on-body inertial sensors have been analysed for 15 participants
over 5 meals. The system, to which the analysis presented in
this paper apply, is conceived to be as much unobtrusive as pos-
sible. To this aim, the Kinect sensor is installed on the ceiling to
get a top view and only the depth stream is exploited. This way,
at the same time, the visual and physical impact of the system
in the room is strongly reduced and the privacy of the subject
is preserved. Using this configuration, it is not possible to ex-
ploit the skeleton algorithm provided by Microsoft [5] to track
people’s movements, so other solutions, which directly use the
depth stream, are necessary. A tracking systems based on two
particle filters has been proposed by Migniot et al. [6]. The
same idea is used by Bednařı́k et al. in [7], with good results
in terms of performance on a dataset of 10 people. Unfortu-
nately, the system requires a starting pose phase to identify the
anthropometric parameters of the person.

In this work, the use of the depth stream provided by the
Kinect from a top view, in combination with three different
unsupervised self-organizing algorithms, has been studied, for
the first time, to monitor the movements performed by a person
during food intake activities. By experimental comparison, the
best performing algorithm is identified, and deemed suitable
for food intake monitoring in the proposed system configura-
tion.

The paper is organized as follows: Section 2 describes the
pre-processing phase to calculate the PC from the depth frame
and the person’s orientation. In Section 3, these information
is exploited as input to the algorithms used to track the move-
ments performed by the subject. The performance comparison
is presented in Section 4. Finally, Section 5 draws the main
conclusions of the work.
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Figure 1: Raw depth frame provided by the Kinect sensor (a).
Point cloud calculated from the blob of the person (b).

2 Processing of the depth frame

The sensor used in this work is the Kinect V1, placed on the
ceiling at a height of 3 m from the floor. It provides five types
of streams: depth, infrared, colour, skeleton and audio. The
proposed algorithms exploit only the first input.

Figure 1a shows a depth frame where cold colours are used
to identify the closer surfaces to the sensor and the warm ones
for the farther objects. When the colour is blue, it means that
the sensor has not been able to estimate the distance for that
specific pixel. In particular, in the scene a person is present,
sitting by the side of the table. The blob of the person is iden-
tified with the same approach for foreground detection used in
[8]. The arrow labelled as (vb) indicates the body orientation of
the person while (vy) is the standard direction. α is the angle
between the two vectors and it will be used in all the tracking
solutions described in the next section. The direction of the
person is automatically found exploiting geometric character-
istic of the table and the hypothesis that the subject is sitting
parallel to one side of the table.

Figure 1b shows the PC calculated from the depth blob us-
ing the depth camera’s intrinsic parameters. The PC, calculated
for each frame provided by the sensor, is the input data to the
three algorithms described in the next section.

3 Self-organizing algorithms for intake
monitoring

A self-organizing neural network is composed of D nodes.
Each node ni (i = {1, 2, .., D}) has associated a reference vec-
tor (wi) belonging to the input space. Nodes are connected by
edges establishing the topology of the network. In this work,
the goal is to track the human upper body (head and arms) with
different algorithms to obtain the position of three joints: head
(Jhd), left hand (Jhl) and right hand (Jhr). In order to do that,
the input space is the 3D manifold formed by the coordinates
of the points in the PC. The topology establishes a neighbour-
hood relation between nodes, where N(ni) is equal to all the
neurons connected to ni by an edge.

3.1 Self organizing map

The first algorithm tested to track the movements of the per-
son is the Self Organizing Map (SOM). It is an unsupervised
machine learning algorithm proposed by Kohonen [9]. The
main characteristic of SOM is that both the number of nodes
and their connectivity are pre-established and fixed throughout
learning. Figure 2a shows the adapted model to the person’s
PC. A single node (Jhd) represents the head while two left and
right linear SOMs model the arms, with (Jhl) and (Jhr) set as
the end nodes. Jhd must be disconnected from the other nodes,
otherwise it can be attracted by them and shifted to the chest’s
PC. Comparing Figure 1b and Figure 2a some points in the PC
have been deleted. In particular, the chest must be discarded
from the PC as input to the SOM because the model does not
take into account this part of the body. Points in the chest are
those inside a bounding box, placed in the centre of the chest,
whose dimensions are proportional to the fitted model. With-
out this pre-processing phase, the body of the person can attract
some nodes and consequently, the model would not be able to
track the subject’s movements.

Prior to use use the SOM algorithm, the model must be
rotated from the standard direction (vy), to the specific one ex-
hibited by the person (vb). Because of this, in the first useful
frame, the 3D initial model is centred in the PC, in particular,
Jhd is set to the highest point in the manifold of Figure 1b.
All the other nodes in the initial model are then rotated using
Equation (1) to the final position (wrot

i ).
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Now, it is possible to use the SOM to adapt the rotated model
to the PC. This rotation stage is only carried out for the first
frame of a sequence. For latter frames, the last trained model is
used as initial configuration. In detail, the algorithm randomly
selects one 3D point in the manifold per time, until all the el-
ements are evaluated. At each single step (p), the SOM finds
the closest node in the model to the specific input point (ξ),
using the Euclidean distance (competition phase) as evaluation
metric. This specific node (wBMU ) is called best matching unit
(BMU). Equation (2) is used to update the position of the BMU.
The node is attracted by ξ, and the displacement, weighted by
the εp factor, is proportional to the distance between them.

∆wBMU = εp(ξ − wBMU ) (2)

The weight factor of the BMU is defined as:

εp = εi

(
εf

εi

)p/pmax

(3)

where εi and εf are respectively the initial and final values for
the learning rate, while pmax is the total number of points in
the PC as input to the SOM. εp is used to reduce the displace-
ment of wBMU to ξ in order to have a network that, during the
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Figure 2: Results after the training of SOM (a), SOM Ex (b) and GNG (c) algorithms.

training phase considers the whole manifold and not only the
last input point.

In addition, also the neighbouring neurons of the BMU are
moved. Equation (4) shows the update rule for N(wBMU ),
where the main relevant difference respect to Equation (2) is
that the weight factor is εp

N , with usually εp
N < εp.

∆wi = εp
N (ξ − wi), ∀ni ∈ N(nBMU ) (4)

Sometimes, when one of the hands, for instance the left one,
is very close to the face of the person, Jhl can be attracted
too close to the head’s PC. As consequence, this joint remains
associated to the head even after the arm moves away. Equation
(5) forces Jhl to stay close to its neighbours (N(Jhl)), and it is
enabled only when the distance between these nodes exceeds
a specific value. A similar process is performed with the right
hand Jhr.

Jhl = N(Jhl) + γ
Jhl −N(Jhl)
‖Jhl −N(Jhl)‖2

(5)

Table 1 shows the final configuration parameters. Exhaustive
tests have been implemented to identify the correct values for
each one of them, with the aim to have a fast adaptation of the
model to the PC.

Net. size εi εf εp
N γ

17 0.002 0.001 0.5εp 0.005

Table 1: Selected parameters for the SOM algorithm.

3.2 Extended SOM

An alternative to the SOM, called Extended SOM (SOM Ex),
used as tracking solution, has been recently proposed [10]. In
the original SOM, the nodes have been used as the only fun-
damental components of the network. This feature can lead to
an unstable model if the input to the SOM is a 3D space such
as the PC. The most important innovation of the SOM Ex is
the introduction of new fundamental elements (segments and

planes) in the structure of the network. A segment is a pair of
nodes connected by an edge while a plane is a group of three
nodes placed in the vertices of a triangle. The equations used to
train the model are very similar to Equations (2,3,4) but before
using them, it is necessary to calculate the projection point of
the input (ξ) to these new elements. The competition phase will
find the BMU between all the nodes and the projection points.

The evaluated network is characterized by 50 nodes, for
a total of 47 planes, 9 of them are used to models the head.
The trained model is visible in Figure 2b. The head cluster is
separated from the torso, in this way the model is more simi-
lar to the distribution of the PC. The correct number of nodes
has been tuned after a series of different tests with the aim to
have an accurate tracking of the movements. Segments have
not been used because they are not stable enough to represent
in the correct way the different positions of the arm. A direct
comparison with the previous SOM network highlights a factor
3 increase in the number of nodes. The chains, previously used
in the SOM to model the arms, are now merged into a single
group. Finally, the pre-processing phase to delete chest’s PC is
no longer necessary, because now it is considered in the model.
The first time the SOM Ex is used, the network must be cor-
rectly centred/rotated exploiting the same operations used for
the SOM model, as described in Equation (1). For the next
PCs, the model trained in the last frame is used as input to
the SOM Ex. In Table 2 the characteristic parameters used for
the SOM Ex are visible. The PC is under-sampled by a factor
equal to 10, it allows reducing the computational time. εi and
εf have the same meaning as the SOM parameters. They are
two order of magnitude higher than the corresponding values
used for the previous algorithm. This is justified by the greater
number of nodes that now have less probability to become a
BMU.

Net. size PCStep εi εf εp
N

50 10 0.5 0.4 0.1εp

Table 2: Selected parameters for the SOM Ex algorithm.



3.3 Growing Neural Gas Network

The Growing Neural Gas Network (GNG) was proposed by
Fritzke [11] based on the work of Martinetz et al. [12] with the
neural gas network (NG). The most important differences with
the previous two algorithms are:

– The pre-defined model is not required, only the start po-
sition of the first two nodes must be randomly chosen in
the input space. In view of this fact, in the initial phase
of the algorithm, it is not necessary to rotate the model
according to the subject’s position;

– A local error is associated to each node: when a new
node must be added to the network, it is used to find the
best position that reduces the global error;

– The number of nodes is not constant (limited by an upper
bound), they can be added or deleted during the learning
phase;

– Connections can be added/removed between nodes. In
particular, for each step of the algorithm, the two closest
nodes to ξ are identified (BMUs), and a connection is
created if it is not yet present. An edge is deleted if its
age exceeds a threshold. These features are an advantage
with respect to the SOM, because now the network is
more adaptable to the topology of the PC;

– The learning coefficients are constant, while in the SOM
they decrease when the time grows.

The PC is pre-processed before using the algorithm. This
is necessary to simplify the final part of the system, when the
hand nodes must be identified. In particular, the head’s points,
selected by Equation (6), are deleted.

‖PChd(t)− Jhd(t− 1)‖ < thhd (6)

PChd(t) represents the points of the head in the current frame,
Jhd is the head joint calculated from the mean of all the ele-
ments in PChd. thhd is a distance threshold used to find the
head points at frame t, based on the position of Jhd in the pre-
vious frame. For the first PC, Jhd is equal to the highest point
in the input space. Comparing the PC in Figure 1b and Figure
2c, the deleted points that belong to PChd can be easily iden-
tify. Table 3 summarizes the parameters used for the GNG.
In detail, Net. size is the maximum number of nodes in the
network. The value 100 represents a good trade-off between
resolution of the network and computational time. εw and εn

are the learning parameters used to weight the displacement of
the winner nodes. a max is the maximum age allowed for a
connection before deleting it, while λ is the rate whereby the
new nodes are added in the network. In this case, a new node
is placed in the model every 10 inputs. β is the coefficient used
to reduce the local error for each node to avoid an overflow in
the variables. Finally, α is exploited to reduce the errors of the
two closest points to a new node so, the next element will be
not placed in the same area. The network output from the GNG
is shown in Figure 2c.

Net. size εw εn a max λ α β

100 0.1 0.01 15 10 0.5 0.0005

Table 3: Selected parameters for the GNG algorithm.

The original GNG has been modified to fulfil some con-
straints of the application. In Figure 3a a top projection of the
GNG model after the training is shown. The square represents
the specific input, while the triangles placed in the hands are
the two BMUs to ξ.
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Figure 3: Trained network adapted to the PC (a), corresponding
blob in the depth frame (b).

The original GNG [11] forces the creation of new connec-
tions between nodes. As a consequence, the topology of the
body may not be preserved because there is an empty space be-
tween the hands. The information of the manifold must be ex-
ploited to find if the topology preservation is verified, as stated
by Flórez et al. in [13]. In this case, two alternatives are possi-
ble:

– Check in the PC if the density of the points between the
BMUs is enough to allow a new connection;

– Exploit the depth frame to assess if the connection is in-
side the blob (Figure 3b).

Comparing the two solutions, the second one is less costly
in terms of number of operations to perform. Indeed in the first
case, all the elements in the PC must be evaluated to identify
the points in the region between the BMUs. In the other case, it
is sufficient to control that the line between the BMUs in Fig-
ure 3b is inside the blob. As visible in the figure, this is not true
and the connection is avoided. When the training phase is com-
pleted, it is possible to find the nodes that model the hands. Un-
fortunately, during the training phase of the model with differ-
ent PCs, the position/number of connections of a specific point
inside the network can change. For example, a node close to
the hand position, in the next networks can move near the chest
area, or even be deleted by the GNG. Hence, an appropriate
post-processing algorithm has been implemented to recognize
the hand joints from all the nodes in the networks.

As visible, in Figure 4a, the network output from the GNG
has been rotated in the standard direction, reversing Equation
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Figure 4: Algorithm used to find the hand nodes inside the
network. Identification of the shoulder (a) and hand joints (b).

(1). Consequently, the network will be parallel to the y-axis,
irrespective of how the person is oriented relative to the cam-
era. The triangle highlights the joint Jhd calculated with Equa-
tion (6). The shoulder joints are selected respectively as the
left/right node to Jhd with the lowest y coordinate from all the
nodes in the network. These two joints (Jsl/Jsr) are repre-
sented in Figure 4a by two squares. Assuming that the hand
joints are the furthest points from the corresponding shoulder
joints, the well-know Dijkstra’s algorithm [14] can be exploited
to find the appropriate nodes (Figure 4b).

4 Experimentation

All the algorithms previously described have been tested with
a database of food intake activities [15]. The movements are
performed by 35 different people, aged between 22− 38 years
and height in 1.62− 1.97m, for a total amount of 48 tests. For
each test, the volunteer enters in the scene and sits close to one
side of the table. On the table are present a dish, some cutlery
and a glass. No restrictions are imposed and the users are free
to perform the intake movements in the way preferred. To pro-
mote the comparison between our results and those achieved
by other research groups, all the networks coordinates for each
one of the three algorithms and the ground truth are publicly
available. For each frame, when a trained model is available, it
is possible to evaluate the position of the three most important
joints: Jhd, Jhl and Jhr. These values are useful to identify
most of the actions performed by the person during a meal. For
example, the distances |Jhd − Jhl| or |Jhd − Jhr| are used to
find when one hand is very close to the face. Alternatively,
when some objects are present on the table, it is possible to
monitor the interaction between them and the person. In order
to find the algorithm that has the best accuracy, it is necessary
to compare them with a ground truth. In particular, using a
frame rate of 15 fps, for each useful PC, the position of JGT

hd ,
JGT

hl and JGT
hr has been manually assigned. When an area of

interest is not visible, for example due to an occlusion, the joint
is not labelled. The tracking process with each of the 3 mod-
els has been applied to the 48 sequences in the dataset, and the

error in Equation (7), i.e. the distance between the joint and
the ground truth, has been calculated for each frame in which
the network is available. For each joint, the mean (µ) and the
standard deviation (σ) have been evaluated.

erralg
pos = |Jalg

pos − JGT
pos | pos = {hd, hl, hr}

alg = {SOM,SOM Ex,GNG}
(7)

Figure 5 shows a portion of the complete error sequence for
each one of the three joints. For Jhd, the curves do not differ
considerably; this is due to the position of the head that, for the
entire duration of the test, does not change significantly. For
the left hand, the error for the SOM algorithm is bigger than the
other two, with a peak in the first part due to the initial adapt-
ing phase of the algorithm. A similar peak is present for the
right hand and in this case, the differences between SOM Ex
e GNG are not so noticeable. Table 4 presents some statis-
tic for the three joints. In all the situations, the GNG algo-
rithm has a lower error than the SOM-SOM Ex. It can be jus-
tified with the higher number of nodes in the GNG, and with
its better adaptation capabilities. In the SOM Ex results, the
right hand has a significant worse accuracy than the left hand
because in four tests the algorithm does not fit the model to
the PC in the proper manner and, as consequence, Jhl is far
from the right hand. This problem is less noticeable for the left
hand. The statistical proof that there is a considerable differ-
ence in the error values is given using the ANOVA test (Anal-
ysis of Variance). In particular, the test has been applied to
each joint, comparing the following pairs (errGNG

pos , errSOM
pos ),

(errGNG
pos , errSOM Ex

pos ) and (errSOM
pos , errSOM Ex

pos ). Only for
(errGNG

hd , errSOM
hd ) it is not possible to assert a significant dif-

ference.

5 Conclusion
In this work, three different unsupervised machine learning al-
gorithms have been used to track person’s movements during
the food intake actions. After the training session, using in
input the PC obtained from the depth frame, the network pro-
vided by the SOM and SOM Ex can be directly used to track
the hand movements. This is due to the predefined networks
for these two algorithms, where the nodes that model this body
parts do not change during all the tests. This is not true for the
GNG where a post-processing algorithm is necessary to iden-
tify the hand joints. The algorithms have been implemented in
C++ language and tested on a PC with Intel i5 8GB RAM. The
average processing time for the SOM is below 30ms per frame
while for SOM Ex and GNG, it is close to 60 ms. The GNG
outperforms the other two algorithms in terms of accuracy of
the tracking. Future works include enriching the dataset and
the use of these networks to train supervised machine learning
algorithms for the automatic recognition of intake activities.

Acknowledgements
This work was supported by a STSM Grant from COST Action
IC1303 AAPELE - Architectures, Algorithms and Platforms
for Enhanced Living Environments.



200 250 300 350 400 450
0

50

100

150
Head

frame N.

e
rr

o
r 

[m
m

]

 

 

SOM

SOM_Ex

GNG

(a)

200 250 300 350 400 450
0

50

100

150
Left hand

frame N.

e
rr

o
r 

[m
m

]

 

 

SOM

SOM_Ex

GNG

(b)

200 250 300 350 400 450
0

50

100

150
Right hand

frame N.

e
rr

o
r 

[m
m

]

 

 

SOM
SOM_Ex
GNG

(c)

Figure 5: Error trend for the head (a), left hand (b) and right hand (c) joints.

Joint \Alg. SOM SOM Ex GNG

µ [mm] σ [mm] µ [mm] σ [mm] µ [mm] σ [mm]

Head 33.3 12.4 38.4 28 32.2 13

Left hand 64.8 43.7 42.3 49 37 38.1

Right hand 66.35 35.13 78.2 148.8 36.9 49.2

Table 4: Mean and standard deviation for distance errors.
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