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SUMMARY

Epithelia grow and undergo extensive rearrange-
ments to achieve their final size and shape. Imaging
the dynamics of tissue growth and morphogenesis
is now possible with advances in time-lapse micro-
scopy, but a true understanding of their complexities
is limited by automated image analysis tools to
extract quantitative data. To overcome such limita-
tions, we have designed a new open-source image
analysis toolkit called EpiTools. It provides user-
friendly graphical user interfaces for accurately seg-
menting and tracking the contours of cell membrane
signals obtained from 4D confocal imaging. It is
designed for a broad audience, especially biologists
with no computer-science background. Quantitative
data extraction is integrated into a larger bioimaging
platform, Icy, to increase the visibility and usability
of our tools. We demonstrate the usefulness of
EpiTools by analyzing Drosophila wing imaginal
disc growth, revealing previously overlooked proper-
ties of this dynamic tissue, such as the patterns of
cellular rearrangements.

INTRODUCTION

Multicellular tissues grow and develop in a complex and dy-

namic way. Final tissue size and architecture is determined

by the coordination of cell divisions, cell death, cell shape

changes, and cell rearrangements (Lecuit and Le Goff, 2007).

Understanding the dynamic nature of how these processes

are integrated in time and space is crucial to understanding tis-

sue growth and morphogenesis. With recent advances in fluo-

rescent light microscopy (Galland et al., 2015; Krzic et al.,

2012), it has become increasingly possible to capture, at high

temporal and cellular resolution, the dynamic processes of tis-
Developm
sue growth and morphogenesis. This results in very large time-

lapse datasets that are impossible to quantitatively analyze

manually. The development of methods for automated image

analysis, including cell segmentation and cell tracking, as well

as analytical tools to quantitatively describe dynamic cellular

behavior, is therefore the key to harnessing the power of in vivo

imaging.

We have created EpiTools, a new image analysis toolkit for

epithelial tissues. EpiTools is currently optimized for two-dimen-

sional (2D) accurate cell contour segmenting and tracking of

membrane labeled cells in epithelia, acquired originally as 4D

(x, y, z, time) datasets using confocal microscopy. Aimed at

a broad user audience, particularly biologists with little com-

puter-science training, EpiTools has been designed to be easy

to install and use, providing a guided analysis environment, yet

being modular and extendable. We have ensured that the inter-

faces between the image segmentation and feature extraction

modules are based on a simple standard format such that exist-

ing solutions, if preferred, can be readily used. The project Web

site (http://tiny.uzh.ch/dm) delivers extensive support material

and gives direct access to the software repositories, incentiv-

izing modifications and extensions.

We have primarily used the Drosophila wing imaginal disc as

an example tissue to demonstrate the functions of EpiTools.

The Drosophila wing disc epithelium has been widely used as

a model system to study the molecular and mechanical mech-

anisms of epithelial tissue growth (Aegerter-Wilmsen et al.,

2012; Legoff et al., 2013; Mao et al., 2011, 2013; Shraiman,

2005). Until recent developments in ex vivo culturing of wing

discs (Aldaz et al., 2010; Handke et al., 2014; Zartman et al.,

2013), these studies had been limited to fixed tissue samples,

masking the dynamic nature of the developmental process. Us-

ing EpiTools, we have now been able to fully exploit the power

of the ex vivo culture and live imaging, to reveal new properties

of this dynamically growing tissue which were previously over-

looked. We have revealed new insights into how cell areas and

cell shape (polygon) distributions change in different popula-

tions of cells as the epithelium develops, and how cell division

orientations are regulated by cell shape. We have also
ental Cell 36, 103–116, January 11, 2016 ª2016 The Authors 103
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Figure 1. Image Segmentation Challenges

(A) E-cadherin::GFP-expressing wing disc. A

maximum-intensity projection of a 3D wing disc

image taken from a 4D time lapse. The peripodial

membrane cells (magenta) are directly above the

disc proper cells (cyan). The two signals must be

untangled for proper segmentation of disc proper

cell shapes. This requires a selective projection

approach. A second challenge is posed by the

tightly packed nature of the wing disc proper

epithelium. The small size of the cells makes it

difficult to resolve individual membranes. For this

reason, the seeding of the watershedding algorithm

must be optimal. Finally, the E-cadherin::GFP

signal varies largely through the wing disc, which

complicates the watershedding approach. Here,

a region-growing watershedding algorithm better

suited to this task was developed.

(B) The multiplication of time points in data series

results in accumulation of errors (symbolized by

asterisks). For this reason, the original segmenta-

tion must be as accurate as possible, but error

correction steps must also be implemented.
systematically analyzed the spatial and temporal patterns of

cell neighborhood relationships in the wing disc, and revealed

patterns of cell intercalations and fluid-like junctional dynamics

in a tissue previously thought to lack cell rearrangements (Bry-

ant, 1970; Garcia-Bellido et al., 1973; Gibson et al., 2006; Res-

ino et al., 2002).

DESIGN

Although several cell segmentation and tracking software suites

have been developed (Table S1), including Packing Analyser (Ai-

gouy et al., 2010), MorphographX (Barbier de Reuille et al., 2015;

Kierzkowski et al., 2012), EDGE (Gelbart et al., 2012), Edge4D

(Khan et al., 2014), (Blanchard et al., 2009), SeedWaterSeg-

menter (Mashburn et al., 2012), ilastik (Sommer et al., 2011),

and TTT (Cilla et al., 2015), their adoption by the extended

research community has often been slow. In particular, accessi-

bility to biologists with limited computational experience has

been a limiting factor. Moreover, due to the morphological diver-

sity of biological systems, and therefore of acquired images,

establishing a complete analysis pipeline for 3D time lapses pre-

sents many challenges. Several software packages often need

to be combined and further extended by custom-written rou-

tines, which have to be adapted for each new biological ques-

tion. The lack of user-friendly interfaces requires programming

skills in various languages and handling of non-standardized

file formats. Finally, connectivity to larger bioimaging platforms

such as ImageJ or Icy, with which the user may already be

familiar, is generally missing. Designed to overcome these limita-

tions, EpiTools consists of a user-friendly image analysis frame-

work with a graphical user interface (GUI) in MATLAB for pro-
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cessing of the raw images as well as a

collection of software extension modules

(plugins) for feature extraction, analyses,

and visualization in Icy (de Chaumont

et al., 2012). This modularity allows for
processes to be replaced or extended with third-party tech-

niques and tools.

RESULTS

EpiTools Part 1a: An Image Segmentation Method for
Epithelial Time-Lapse Data
Since many epithelial tissues consist of a cell monolayer, with

cells growing, dividing, and moving in the plane of the tissue, a

2D planar projection of cell shapes is often a good approximation

for understanding the dynamic behavior of the tissue. However,

most epithelia are not flat sheets of cells, but can be considerably

curved (Escudero et al., 2007; Osterfield et al., 2013; Sweeton

et al., 1991), and may closely appose other cells or features

outside of the plane of interest, which are inevitably captured dur-

ing the imaging process. An example of such a challenging tissue

is the Drosophila wing disc, which consists of two cellular layers

on a dome-shaped surface: a densemesh of columnar wing disc

proper cells and a looser mesh of squamous peripodial cells on a

different focal plane (Figures 1 and 2A). Large fluctuations in

signal intensities, poor signal-to-noise ratios (to minimize tissue

damage from long-term time-lapse imaging), and cells of varying

sizeswithin the image volumemake this a challenging segmenta-

tion problem. It is, however, critical to identify individual cells

within the mesh so that the spatial and temporal relationships

between neighboring cells can be quantified from the precise

geometry of the membranes.

The following methods outline the image-processing proce-

dures that EpiTools uses to achieve this task. We designed a se-

lective plane projection that follows the curvature of the tissue in

order to overcome the limitations of a simple maximum-intensity



Figure 2. Image Segmentation Method

(A) The Drosophila wing disc is a dome-shaped

epithelial tissue consisting of two cellular layers:

a dense mesh of disc proper cells (cyan) and a

less dense mesh of peripodial membrane cells

(magenta). Top center and right: a section through

the image volume with the highlighted disc proper

layer (cyan) and peripodial layer (magenta). The

peripodial membrane needs to be separated from

the wing disc, as these two layers can interfere with

each other (bottom left: signal from both layers

when maximally projected; bottom center: signal

from just the peripodial layer). The selective plane

projection accurately fits a surface to the disc

proper layer (cyan line), taking into account its

shape while excluding the peripodial layer. The

result is a clean projected image (bottom right).

(B) Automatic seed generation. Cut-out region from

the selective plane projected image is shown after

Gaussian smoothing has been applied (left).

Wing disc projection with seeds generated from

MATLAB watershed regions (center). Magenta ar-

rows highlight some of the areas with multiple

seeds per cell. Wing disc with seeds generated

using our seed point generation algorithm (right).

The number of duplicated seeds is greatly reduced,

as highlighted by the cyan arrows.

(C) Segmentation result of cellular regions overlaid

on wing disc image. Cell boundaries generated

from MATLAB watershed algorithm (left). Cell

boundaries generated from MATLAB watershed

algorithm with manually homogenized cell regions

(middle). Magenta arrows highlight inaccuracies

with the cell boundary segmentation. Our region-

growing algorithm, using the same seed points as

in the center image, generates more accurate cell

boundaries (right).

(D) Seed tracking allows identification of broken

tracks due to segmentation errors, which are easily

rectified and subsequently re-segmented. This

process is depicted in the first three images while

the last image shows the corrected segmentation.

Cyan highlights correct seeds. The first two images

highlight in magenta a broken track between two

frames. The third image shows how the missing

seed point can be added manually in the second

image with a single mouse click. Re-segmentation

then provides the correct boundary segmentation

result.
projection (Figure 2A). It consists of a two-step surface-fitting

procedure and requires that voxels with high intensity mostly

belong to the desired layer (e.g. the disc proper signal in the

wing disc). We use the notion of stiffness to describe the flexi-

bility of the fitting and interpolating method (D’Errico, 2006) to

accommodate outliers lying far apart from estimated surface

location (e.g. signal from peripodial membrane in the wing

disc). In the first step of themethodwe choose an increased stiff-

ness such that the fitted surface settles coarsely on the desired

layer, ignoring points that lie far apart. This surface is used to

exclude from the high-intensity signal points which have, with

respect to the surface, a higher than threshold distance (e.g.

peripodial membrane signal). In the second step a less stiff fitting

is performed on the refined signal to follow the curvature of the

desired layer accurately (Figure 2A, cyan line). Finally, pixel inten-
Developm
sities along the fitted surface are used to form the projected

image. The second 3D surface fit can be exported and used to

correct subsequent geometric analyses, if necessary (Figure S1).

The projected images are aligned (registered) to compensate

possible sample movement during the acquisition. The image

registration step can also be performed through external software

such as the StackReg plugin for ImageJ (Thevenaz et al., 1998)

controlled via EpiTools using the MIJ interface (Sage, 2012).

On the registered images we apply region-growing segmenta-

tion. The aim of this step is to ideally first create a single seed

point per cell from which to grow cellular regions (Figure 2B).

Seed points conceptually represent cell centers and can be cor-

rected with a simple mouse click to add, remove, or fuse cellular

regions. Our seed point generation method was devised to

include growing andmerging of regions to reduce fragmentation:
ental Cell 36, 103–116, January 11, 2016 ª2016 The Authors 105
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Figure 3. EpiTools Overview

EpiTools consists of two complementary parts.

First, an image-processing pipeline (Part 1,

MATLAB) allows the user to preprocess the image

prior to segmentation and to segment the image.

The output of Part 1 consists of skeletons of the

cell membranes. Part 2 uses Icy to provide a user-

friendly interface for data visualization and analysis.

An image-understanding module (CellGraph) en-

ables the user to produce a cell graph, which gives

a semantic description of the tissue of interest. The

data exploration and visualization can be directly

visualized as overlays in Icy (CellOverlay) or be

exported as Excel sheets (xls) or graphML (xml) files

(CellExport).
homogeneous regions of a certain size below a rising signal

intensity threshold (cell boundary signal) are identified and allo-

cated to become new cellular regions with a unique identifica-

tion. Cellular regions are grown from these seed points by assim-

ilating neighboring pixels below an increasing intensity

threshold. The region growing is performed in parallel for each

seed point and is guided by the local intensity flow, climbing

up the intensity gradients that separate cells which create

distinct boundaries between cells (Figure 2C). Finally, automatic

temporal seed tracking has been implemented to identify seed-

ing errors expressed as a discontinuity in temporal cell tracks,

which leads to an efficient error correction (Figure 2D). For

example, a missing seed point is identified by a broken track

(Figure 2D, magenta track) often due to segmentation errors.

The error can be easily rectified by adding a new seed (Figure 2D,

seed correction) and re-segmentation can be applied, producing

the final segmented frame (Figure 2D, re-segmentation). The final
106 Developmental Cell 36, 103–116, January 11, 2016 ª2016 The Authors
series of segmented frames can be ex-

ported as skeletons which accurately

represent cell junction (or membrane) sig-

nals, as opposed to using linear approxi-

mations (Cilla et al., 2015). This is impor-

tant because an accurate representation

of the curvature of cell junctions is critical

for understanding the mechanical proper-

ties of the cells (Brodland et al., 2014).

A detailed description of these process-

ing steps can be found in Supplemental

Experimental Procedures. All image-pro-

cessing and analysis techniques were

implemented in MATLAB (Mathworks).

The region-growing and seed-tracking

technique was implemented as compiled

C extensions for MATLAB to reduce pro-

cessing time.

EpiTools Part 1b: Framework
and User Interface,
EpiTools-MATLAB GUI
To optimize the ease of use, we split

EpiTools into two parts (Figure 3). Part 1 is

primarily aMATLAB (andC)-basedanalysis

framework,withabespokeGUI;Part 2con-
sists of EpiTools modules (plugins) for an existing image analysis

platform, Icy (seebelow). Part 1 processes the images through the

modular steps described above to eventually produce skeletons

of the images that can be exported for further analysis in Part 2

(Figures 3 and S1). With the introduction of an EpiTools-MATLAB

GUI, we wanted to expand the panorama of possibilities our end

users have to complete their image analysis. The idea behind

the current implementationwas to separate the analysisworkflow

into single independent steps that can be called repeatedly for

best parameterization aswell as skipped if not needed.Moreover,

we wanted this to be as easy and intuitive as possible, especially

for users with little computer-science background.

The EpiTools-MATLAB GUI presents a series of menus where

the user finds all the main components needed to run the anal-

ysis (see our video tutorials, which provide detailed step-by-

step guides: http://tiny.uzh.ch/dN). Menus are divided according

to function scope, and additional submenus guide the user to

http://tiny.uzh.ch/dN


Figure 4. EpiTools Icy

(A) The visualization and analysis module of

EpiTools produces a cell graph based on the

skeletons. The data structure provides a semantic

understanding of the tissue and easy access

to important values and events such as cell area,

cell geometry, and cell divisions.

(B) The cell editor plugin allows the user to employ

abnormal changes in cell topologies to zoom into

putative segmentation mistakes. If mistakes are

identified, the user can use data from the unseg-

mented images to manually correct improperly

segmented or missing cell borders.

(C–H) The visualization and analysis module of

EpiTools contains plugins that allow the user to

generate and visualize data of interest. We use the

overlay feature of Icy to superimpose the desired

information onto skeletons or the original imaging

time-lapse data. ROI, region of interest; wrt, with

respect to. For a full list of overlays and explana-

tions for each, please visit http://tiny.uzh.ch/dT.
customize the analysis environment. We have also implemented

context menus (right-click), which allow exporting and visual-

izing the connected files. The user can easily invoke them from

the analysis workflow tree on the left side of the main window,

clicking on the corresponding analysis module.

Each analysis module has a sub-window that collects all the

procedures, inputs, and parameters required to execute it. We

provide detailed explanations of every parameter (http://tiny.

uzh.ch/dS) and recommended values to initially try.We designed

a special independent GUI for the Seed Tracking module, high-

lighting the seeds that need corrections and offering various

operations to assist the user in the manual corrections.

Parameter choices affect the output of manymodules and can

have lastingconsequencesonsubsequent analysis steps. There-

fore, we included a set of built-in visualization tools and compar-

isonmodes to help the parameterization. The comparativemode

allows for easy comparison of different parameters to find the
Developmental Cell 36, 103–116
optimal parameter set for a given task. In

addition, EpiTools offers connectivity to

Icy, such that the user can make a more

detailed analysis regarding the difference

between the module executions (see

Icy’s Sequence comparator: http://icy.

bioimageanalysis.org/plugin/Sequence_

comparator).

The EpiTools Part 1 analysis files are

created to achieve reproducible image

analysis. User inputs, outputs, parameter

sets, and all the associated metadata for

each analysis step are stored in a clear

xml file, which can be easily accessed

from third-party applications.

EpiTools Part 2: Network Analysis
and Data Structure, EpiTools Icy
The skeleton images produced by

EpiTools Part 1 represent a common inter-
mediary step (Aigouy et al., 2010; Mashburn et al., 2012), as yet

unsuitable for manual analysis. It is therefore necessary to create

a computational description of how the individual frames relate to

each other and automatically capture changes. To this end, we

developed EpiTools Part 2, a package that transforms the skel-

eton files into a computational graphic data structure (Figures 3

and 4A). This network-like data structure contains the neighbor-

hood relationships betweencells in the tissue in the formof nodes

and edges. We use the term spatiotemporal graph to refer to this

particular type of graph because we include both spatial (within

the same frame) and temporal (between different frames) neigh-

borhoods. Similar approaches can be found in the literature (Gel-

bart et al., 2012; Gunduz et al., 2004; Liu et al., 2010), and have

been taken as inspiration for this approach.

We chose the bioimaging platform Icy (de Chaumont

et al., 2012) as the framework for our package to provide rich

visual feedback to the user. This software delivers remarkable
, January 11, 2016 ª2016 The Authors 107
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Figure 5. Drosophila Wing Disc: Polygon Distribution and Cell Area Dynamics

If not stated otherwise, error bars indicate SEM in all figures.

(A) Representative example of the wing pouch section of a wing disc (E-cadherin::GFP). Overlaid white cells represent the segmentation border.

(B) Same frame as (A), segmented and processed with EpiTools. The polygon class of each cell is indicated by a color code.

(C) The frequency of the polygon classes corresponding to cells with n number of neighbors remains constant over time.

(D) On average, the area of cells correlates well with their polygon class. However, there is a large degree of variance. Boxplot whiskers indicate 1.53 interquartile

range (IQR), hinges IQR, and inner lines the median.

(E and E0) Among non-dividing cells the frequency of certain polygon classes increases over time (E). This effect is no longer visible when dividing cells (E0), and
thus daughter cells are included in the analysis.

(F) Area comparison between cell classes over time. First, cells that can be observed for at least 1 hr (10 frames) are selected from three samples (3,086 cells) and

classified according to four classes: daughters (observed offspring in the movie, n = 686), dividing (observed dividing in the movie, n = 303), eliminated (n = 88),

(legend continued on next page)
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user-friendliness and offers many image analysis tools for bio-

logical samples. In addition, the Icy platform facilitates sharing,

in the form of plugins (i.e. software modules that extend the

original capabilities) and analysis protocols. The main project

Web site serves as a central hub to inform about available

plugins and to allow user exchange. For more information about

Icy, we recommend visiting the project homepage (http://icy.

bioimageanalysis.org).

The EpiTools package for Icy consists of multiple plugins

that address the subsequent steps of the analysis: CellGraph

(Figure 4A), which generates the spatiotemporal graph starting

from input skeleton files; CellEditor (Figure 4B), which enables

the user to interactively modify the skeleton images manually in

case of any remaining segmentation mistakes; CellOverlay (Fig-

ures 4C–4H, and S2), which interprets the data and outputs re-

sults in the formof graphical overlays (i.e. additional image layers)

and tabular files; and CellExporter, which allows the user to

export the complete numerical data in various formats, such as

Excel and GraphML. Every plugin has a separate GUI and can

be conveniently accessed through the EpiTools toolbar (see

video tutorials at http://tiny.uzh.ch/dO). To facilitate data query,

we have developed many commonly required analysis features

(in the form of overlays, Figures 4C–4H), including, for example,

cell areas, cell elongation ratios, cell intercalations, edge inten-

sities, andmore interactive features, such as how cell orientation

changes with respect to a defined point of interest that can be

interactively changed by the user (Figure 4F). For a full list of the

overlays available (Figure S2), please visit http://tiny.uzh.ch/dT.

The spatiotemporal graph structure created by the CellGraph

plugin is built in three main steps. First, the cell geometries are

extracted from the supplied skeletons. Second, the geometry

objects are inserted into a graph representing the spatial neigh-

borhood based on intersection. Finally, temporal linkage is

added by matching the spatial graphs representing each frame.

To achieve this, we employ graph-matching algorithms and

apply heuristics to analyze the unmatched cells. The latter might

correspond to divisions or eliminations, or suggest a segmenta-

tion mistake.

We emphasized the visual elaboration of our graph structure

because we found that visual analysis is very helpful in formu-

lating hypotheses before exporting the data for statistical

analysis. The overlays created by the CellOverlay plugin use

the layer feature of Icy’s image viewer and adapt automatically

to the position in space and time. For example, Figure 3 (bottom

half) shows an overlay that highlights all cell geometries with

a gradient color scheme according to the apical cell area. The

user is thus given a natural interpretation of how the area sizes

are distributed in the tissue.

To quantitatively analyze the data, the user can generate

an Excel sheet from every overlay focusing on the visualized

quantities, or access more general export options through the

CellExport plugin. Among many, we highlight the XML-based
and stable (remainder, n = 2,009). Second, to compare area sizes across classes

(frame after division) is aligned to 0 hr, dividing cell’s ending frame (frame of divisio

For stable cells we used 7 hr of continuous observation beginning from the start

(G) EpiTools correctly detects the expected +1 shift in the frequency of polygon

(H) Both dividing cells and non-dividing cells accumulate neighbors over time. Ho

confidence level.

Developm
graph format called GraphML (Brandes et al., 2002), which

stores the neighborhood relationships of the cells. The format

can be easily read by many scripting languages such as R or

Python. An example analysis file can be downloaded from the

project homepage (http://tiny.uzh.ch/dP).

The surface estimated by the selective plane projection

(EpiTools Part 1a) can be rendered as 3D Mesh ROI (Figure S1B)

with the CellSurface plugin (http://icy.bioimageanalysis.org/

plugin/3D_Mesh_ROI). Moreover, cells can be colored accord-

ing to their estimated surface normal with the Projection overlay

(Figure S1B0). For detailed information and utility, we refer the

reader to http://tiny.uzh.ch/s3.

We implemented the Icy plugins in Java using two main li-

braries: the Java topology suite (http://www.sourceforge.net/

projects/jts-topo-suite/) to manage the geometries of cells and

the jgraphT library (http://www.jgrapht.org) to store the graph

structure. Icy’s shared plugin memory (swimming pool) is used

to allow communication across the plugins. Please see Supple-

mental Information for more details.

For specific help on how to install and use our plugins, please

visit our project Web site where we provide tutorials for every

component (http://tiny.uzh.ch/dQ). The source code is provided

with open-source license at the public Git repository https://

bitbucket.org/davideheller/epitools/ and is provided here as a

zip file (Data S1).

Analysis of Different Epithelia using EpiTools
To test the versatility of EpiTools, we processed different epithelia

in Drosophila with varying cell areas and cellular heterogeneities

(Figure S3). The Drosophila wing imaginal disc (Figures 5A and

S3A) was our main tissue of focus (see sections below), but

EpiTools was also able to segment, with high precision, mem-

brane signals from time-lapse images of Drosophila eye imaginal

discs (Figure S3B), histoblast nests (Figure S3C), and embryos

(Figure S3D). We show here mainly the results of single frames

for ease of representation. Although there are still some segmen-

tation errors visible in Figures S3B–S3D, these were deliberately

obtainedwithout anymanual corrections, showing the high accu-

racy of the automated segmentation process, provided that cor-

rect parameters are used (see Experimental Procedures, Table 1,

and our guides to parameters on our Web site http://tiny.uzh.

ch/dS). In the eye imaginal disc, we were able to track the rear-

rangements of cells as they exit the morphogenetic furrow (Fig-

ure S4, 0 min) through their formation into arcs (60 min), to their

eventual recruitment into ommatidial preclusters (240 min).

Drosophila Wing Disc Analysis I: Proof of Principle and
Insights into Epithelial Geometry and Cell Division
Dynamics
Epithelia assume cell-packing geometries characterized by

different cell areas and neighbor-number distributions. Cells

can be classified by their number of neighbors into sets of
we transform the temporal axis with respect to the class: daughter’s origin time

n) is aligned to 7 hr and equally so for eliminated cells (frame before elimination).

of the movie.

classes among dividing cells versus non-dividing cells.

wever, the increase is twice as fast for dividing cells. Envelope indicates 0.95
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Table 1. Parameters Used for Segmenting Images

Web Site Name XML Code Wing Eye Histoblast Embryo

Projection

Smoothing Radius SmoothingRadius 1 1 1 1

Surface Smoothness 1 SurfSmoothness1 30 30 30 30

Cutoff distance ProjectionDepthThreshold 1.2 1.2 1.2 1.2

Surface Smoothness 2 SurfSmoothness2 20 20 20 20

CLAHE

Enhancement limit enhancement_limit 0.02 0.02 # 0.02

Enhancement width enhancement_width 30 30 # 30

Segmentation

Gaussian Blur Kernel sigma1 2 1 1 1

Minimum cell area mincellsize 25 15 25 25

Minimal membrane intensity threshold 25 20 25 25

Boundary Low Intensity

Ratio

MergeCriteria 0.15 0.45 0.35 0.35

Gaussian Blur Kernel sigma3 0.5 2 2 2

Largest Cell Area LargeCellSizeThres 3,000 4,300 3,000 3,000

Minimal mean intensity IBoundMax 30 20 30 30
polygons. Interestingly this geometric order tends to remain

apparently unperturbed by the changes introduced by cell divi-

sions (Farhadifar et al., 2007; Gibson et al., 2006). We used

EpiTools to study the geometric order of the Drosophila wing

disc, dynamically, on growing discs. Of note, previous quantifi-

cations were mainly done on fixed samples, whereas in this

study we examine live discs. In this way we can directly assay

the interplay between epithelial dynamics and cell division. The

quantitative data generated with EpiTools agrees well with previ-

ous reports and expectations, but also provides insights into the

interplay between cell divisions and epithelial geometry.

First, we examined the frequency of n-sided cells inwing discs.

We obtained polygon frequencies in good agreement with previ-

ous reports (Gibson et al., 2006; Figure 5C). A comparison of the

polygon distribution 6 hr apart confirms that the frequencies

remain constant (Figure 5C). Previous reports have indicated

that in the wing disc, cell area correlates with polygon count,

thus obeying Lewis’s law (Farhadifar et al., 2007; Lewis, 1928).

Our data confirm this, but show a large degree of variation (Fig-

ure 5D). Next, we looked at whether differences in cell geometry

also correlated with different cell fates (such as dividing cells and

dying cells). Since we are now able to track cells and have

a semantic interpretation of the time lapse, we can select specific

cell classes based on their behavior: dividing cells, new

(daughter) cells, stable cells, and eliminated cells. The apical

area of daughter cells is half that of dividing cells (Figure 5F).

This indicates that, assuming cell height remains constant,

wing disc cells double in volume prior to division. Our data also

indicate that stable cells are larger than daughter cells (Figure 5F)

and are likely a population of cells that is either in SorG1. Further-

more,we identified cells that are eliminated during the recordings

(Figures 5F and S5). Interestingly, these cells can be identified as

the smallest class of cells (Figure 5F). Further analyses of these

cells revealed that theywere eliminated by a process reminiscent

of live cell delaminations. To better study this phenomenon, we

employed the edge-tracking feature of EpiTools. By tracking
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the edges of the delaminated cells, we quantified the intensity

of the E-cadherin signal over time and confirmed that E-cadherin

signal intensity did not diminish prior to elimination (Figures S5A00

and S5D). The stability of E-cadherin is a hallmark of live cell

delamination, where E-cadherin is not reduced on cell junctions,

and can be used to differentiate this type of cell elimination from

apoptosis, whereby E-cadherin is lost from junctions prior to

cell elimination (Marinari et al., 2012). We then confirmed that

delaminating cells seemed to, on average, lose edges prior to

delamination (Figure S5E), a second characteristic of live cell

delaminations (Marinari et al., 2012).

Next, we looked at how the polygon count of cell classes

evolves over time. Interestingly, among the cells that were not

observed to divide during our imaging window (Figure 5E) the

frequency of n-sided neighbors does not remain constant. Spe-

cifically, the frequency of pentagons decreases while that of

heptagons increases (Figure 5E). However, if one considers the

population as a whole, this effect disappears (Figure 5E0). This
supports the idea that the allocation of neighbors after cell divi-

sion contributes to keeping the fraction of n-sided cells constant

(Gibson et al., 2006).

We found that mitotic cells have on average one extra side

compared with stable cells (Figure 5G), as expected (Gibson

et al., 2006, 2014). This can be observed several hours prior to

division, confirming that dividing cells have been accumulating

neighbors over time (Figure 5H) (Gibson et al., 2014). All cells

tend to have an increase in number of neighbors over time, but

this effect is stronger for dividing cells than for stable cells

(Figure 5H).

Another well-studied phenomenon that we analyzed with

EpiTools is the link between cell geometry and cell division orien-

tation. Consistent with previous studies in the wing disc (Gibson

et al., 2011; Mao et al., 2011) we found that cells that are signifi-

cantly elongated, with an elongation ratio (major/minor axis)

greater than 1.3, tend to divide to bisect their long axis, i.e. the

new junction is near perpendicular to the long axis of the cell
uthors
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Figure 6. Control of Cell Division Orientation

in the Drosophila Wing Disc

If not stated otherwise, error bars indicate SEM in

all figures.

(A and A0) Overview of the orientation angle of the

division axis relative to the long axis of the cells.

Note that contrary to expectations, some cells

divide parallel to the long axis (red equals fully

perpendicular, green fully parallel).

(B and B0) Representative montages of a perpen-

dicular division and a parallel division, respectively.

(C and D) The orientation of the division angle

relative to the long axis of the cell depends partly on

the aspect ratio of the dividing cells. Cells with a

small aspect ratio show more variance, but there is

a trend toward more perpendicular divisions as the

aspect ratio increases. (C) Every black dot corre-

sponds to one division statistic; green line is a

simple linear model fit; blue line is an adaptive local

polynomial regression; envelope indicates 0.95

confidence level. (D) Boxplot whiskers indicate

1.53 IQR, hinges IQR, and inner lines the median.
(Figures 6A0, 6C, and 6D). However, some cells do not obey this

rule and divide to form the new junction parallel to the long axis

of the dividing cell (Figures 6B0, 6C, and 6D). Although most of

these cases are for cells that are not significantly elongated (elon-

gation ratio less than 1.3), whereby ellipse fittings could be intro-

ducing errors in the estimation of the long axis, occasionally even

significantly elongated cells can divide to bisect their short axis

(Figure 6B0). Without an automated segmentation and unbiased

high-throughput analysis method, it would have been difficult to

identify such outliers, which may uncover additional, previously

overlooked factors that regulate cell division orientation.

Drosophila Wing Disc Analysis II: Epithelial Junction
Dynamics
Apart from quantifying cell geometries, the network abstraction

created by the CellGraph plugin of EpiTools also allowed us to
Developmental Cell 36, 103–116
analyze the evolution of cellular neighbor-

hood relationships during tissue develop-

ment and detect any neighbor-exchange

events, such as intercalations (also known

as T1 transitions; Bertet et al., 2004; Far-

hadifar et al., 2007). Historically, it has

been assumed that very few T1 transitions

occur in the proliferating wing imaginal

disc, as cells from the same lineage

(clones) remain as intact clusters and do

not disperse, suggesting that cells adhere

tightly to their neighbors (Bryant, 1970;

Garcia-Bellido et al., 1973; Resino et al.,

2002). Previous attempts at manually

tracking a few cells in the proliferating

wing disc have also failed to detect signif-

icant cell rearrangements (Gibson et al.,

2006).With our automated and systematic

high-throughput analysis methods, we

were able to detect a significant number

of T1 transitions (Figure 7C), averaging at
13 transitions per 1,000 cells per hour over a 10-hr imaging win-

dow (an average total of 129 transitions in 1,000 cells over 10 hr)

(Figure 7B). There were no significant changes in the frequency

of T1 transitions over the 10-hr imaging window, suggesting

that these transitions are not an artifact of the ex vivo culture.

Upon analysis of the spatial distribution of these transitions

across the epithelia, we could not detect any clear patterns of

transition clustering or directionality (Figure 7A). We did find

that for the four cells involved in a T1 transition, the pair that

would gain an edge (winners) frequently started the transition

as hexagons or pentagons, and would finish the transition as

heptagons or hexagons, whereas the pair that would lose an

edge (losers) would generally start as heptagons or hexagons

and finish as hexagons or pentagons (Figures 7E and 7F). In

other words, the cells that have a larger number of sides would

‘‘lose’’ an edge to the cells that have a lower number of sides
, January 11, 2016 ª2016 The Authors 111
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Figure 7. T1 Transitions in the Drosophila Wing Disc

If not stated otherwise, error bars indicate SEM in all figures. All boxplot whiskers indicate 1.53 IQR, hinges IQR, and inner lines the median.

(A) All T1 transitions detected over a 10-hr period traced back to the first time point. Linked magenta cells will intercalate in between cyan cells.

(B) Transition frequency remains constant during the duration of the imaging session.

(C) Representative montage of a T1 intercalation.

(D) T1 transitions follow different dynamics. Here we classified them into fast (D), slow (D0), and transient (D00). See Figure S6 for classification rules.

(E) Cells that will lose an edge during a transition are of a higher polygon class, on average 2 hr before the transition, than those that will gain an edge. Blue and red

lines indicate the mean.

(legend continued on next page)
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during a transition process. Consistent with Lewis’ law (Lewis,

1928) the cells that gain an edge also increase their apical area

after the transition, whereas cells that lose an edge are smaller

after the transition (Figure 7G).

To gain a more quantitative understanding of the dynamics of

these T1 transitions, we tracked the dynamic fluctuations of the

length of each junction over 10 hr. As most junctions did not

change their length significantly, we focused our analysis on

the junctions that would shrink to a length of zero and then be

substituted by a new growing junction (which we plot as negative

values in Figure 7D). These are effectively T1 transitions. As a

result of this analysis we noticed distinct ‘‘classes’’ of junctional

dynamics. In an attempt to systematically classify these, we de-

signed an algorithm to classify the transitions into three classes:

fast, slow, and transient (Figures 7D, 7D00, and S6). In fast transi-

tions (18% of total transitions), cells very efficiently exchange

neighbors and the new neighborhood relationship remains sta-

ble. In slow transitions (37% of total transitions), the new neigh-

borhood relationship eventually stabilizes, but takes longer to

reach this stable state, while transient transitions (45% of total

transitions) constantly fluctuate between the old and new neigh-

borhood configurations. These definitions depend on the imag-

ing window, but provide a method to quantify and classify the

transition dynamics. In principle, if imaging windows were not

limited, junctions would fluctuate between these dynamic states

and show a continuum of behavior along this dynamic spectrum.

On average, the longest junctions do not show any transitions

(Figure 7H), but the junctions that undergo fast and decisive tran-

sitions are longer than the slow and transient transitions. Thus,

it is not simply that longer junctions take longer to shrink to

zero and grow again in the orthogonal direction, suggesting

that the fast T1 transitions may have a separate mechanism of

regulation. After the neighborhood exchange, the new junctions

formed as a result of the fast and slow transitions grow to a

longer length and remain stable for a much longer period of

time than the transient transitions that fluctuate back and forth

around the four-way vertex (Figure 7I). Whether these different

classes of T1 transitions are fundamentally different in their

regulation and function remains an interesting question for future

research.

DISCUSSION

Advances in time-lapse imaging methods have resulted in very

large datasets that are becoming impossible to analyze without

robust quantitative tools. To address this pressing issue, we

have created a new image analysis toolkit for epithelial tissues

called EpiTools, which is aimed at biologists with little com-

puter-science background, although the source code is also

available should the user wish to extend or modify it for their

own needs.
(F) Cells that gain an edge during a transition are of a higher polygon class, on aver

indicate the mean.

(G) Transitions are associatedwith a change in cell area. On average, the area of ce

that gained an edge.

(H) Cells that do not undergo transitions have longer junctions than transitioning c

transiently transitioning cells.

(I) Rapidly transitioning junctions reach a greater length and are more stable than

Developm
The main strength of EpiTools is its modularity. Splitting

EpiTools into two parts gives our users more flexibility. The

modular format of EpiTools Part 1 is designed for segmenting

time-lapse images and outputting digitalized skeletons of cell

outlines for further quantification, whereby users can use

EpiTools Part 2 for, or their favorite existing software. Similarly,

if users have already segmented their images with other soft-

ware, they can use EpiTools Part 2 for further morphometric

quantifications. The integration of EpiTools Part 2 into a larger

bioimaging platform, Icy, that many users are already familiar

with, makes it more accessible and user-friendly. Importantly,

EpiTools allows for the easy manipulation of segmentation pa-

rameters, so that users can adapt the pipeline to the geometric

idiosyncrasies of their biological system of choice. We believe

these improved flexibility and user-friendly features will ensure

thatmore users will adopt EpiTools for their image segmentation,

tracking, and quantification, which is in increasing demand with

the current rise of time-lapse microscopy.

There have been other image segmentation and analysis

software available, each with its own strengths and weak-

nesses. We have tried to summarize the different features of

each in Table S1. This will hopefully allow users to decide

which one best suits them. Indeed there is no software that

fits all criteria. Our decision to develop a new set of tools rather

than to rely on previously published techniques was due to

multiple reasons. Closed source code base (Packing Analyzer),

and/or requirements for specific hardware (MorphoGraphX),

excluded some solutions. Furthermore, the apical localization

of the junctional marker E-cadherin and the limited tissue pene-

tration also denied the use of volumetric-based methods such

as EDGE or EDGE4D. SeedWaterSegmenter offered good seg-

mentation performance but was problematic for projection and

curation of long time series. A major drawback of all discovered

solutions (Table S1) was also the lack of native interfaces to

known imaging platforms such as FIJI (ImageJ) or Icy. We

valued the latter because we think that exploratory analysis

must be assisted by known, reliable, and easy interfaces.

Powerful visualization features and easy image interaction

result in much more intuitive data exploration for the scientist.

In line with this argument we also concentrated our efforts on

generalizing the EpiTools toolbox enough to allow widespread

adoption. The image-processing part (MATLAB) does not

require specific data dimensionality or format (e.g. 3D, 2D,

time) through use of the bioformats library, ensuring that the

user can start from multiple entry points. Parameter choice,

which is usually not retained between iterations and leads to

difficult decision processes, is aided by an easy GUI. Here

we allow the user to review and choose among several runs

of the same function. Finally, we simplified the setup proce-

dure. Indeed we noticed that advanced installation procedures,

while obvious to the creators, are a major deterrent for
age 2 hr after the transition, relative to cells that lost an edge. Blue and red lines

lls that lose an edge decreases after the transition while it increases for the cells

ells. Furthermore, rapidly transitioning cells have longer junctions than slowly or

slowly or transiently transitioning junctions.
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widespread adoption (e.g. in TTT, itk/vtk custom compilation,

and EDGE3D). Thus, the setup procedure was simplified to

allow a simple drag-and-drop procedure without compilation

of additional libraries.

With the current version of EpiTools, we have primarily

analyzed the epithelial growth dynamics of the Drosophila wing

imaginal disc, and reproduced data in agreement with previous

work, such as the polygonal packing patterns of the epithelia in

different cell populations (Gibson et al., 2006, 2014). We also

noticed that although most cells divide to bisect the long axis

of the dividing mother cell, as previously reported in the wing

disc (Gibson et al., 2011; Mao et al., 2011) and other systems

(Hertwig, 1893; Morin and Bellaı̈che, 2011; Ragkousi and

Gibson, 2014), there was also a significant population of cells

that did not obey this rule. Understanding the nature of such di-

visions, and attempting to distinguish whether it is cell geometry

(shape) (Minc et al., 2011; Wyatt et al., 2015), the sensing of ten-

sion anisotropy of the cell (Campinho et al., 2013; Fink et al.,

2011; Mao et al., 2013), or the effect of neighboring cell topol-

ogies (Gibson et al., 2011), will be easier to pursue with the dy-

namic quantitative tools now available in EpiTools and its combi-

nation with force-inference methods such as CellFIT (Brodland

et al., 2014).

We also analyzed the dynamic patterns of cell rearrange-

ments (T1 transitions) and junctional fluctuations in the wing

disc, and revealed that the junctions are more mobile and the

tissue more fluid-like than previously thought. As there appears

to be no clear spatial patterns and orientations to these T1 tran-

sitions, it is unclear whether they have a functional significance

or whether they are just passive consequences of tissue ho-

meostasis. The fact that it is consistently the cells that have a

larger number of sides that ‘‘lose’’ an edge to the cells that

have a smaller number of sides does suggest that T1 transitions

may have a role in maintaining the conserved polygonal packing

geometry observed in many epithelia (Gibson et al., 2006) and,

perhaps, buffer heterogeneities induced by cell divisions (Fig-

ures 5E and 5E0). Without regulated T1 transitions, cells would

either always adhere tightly to their original neighbors or interca-

late too freely, neither of which would allow the necessary me-

chanical tensions and cell geometries to emerge in the tissue to

pattern cell divisions and tissue growth (Legoff et al., 2013; Mao

et al., 2013).

Purely based on tissue dynamics, it is of course unclear how

these T1 transitions are regulated. If this process were driven

purely by a ‘‘passive’’ force equilibration process, one would

expect the longest junctions to be the most stable, which is

true to a certain extent (Figure 7). However, the fastest (and

most stable/irreversible) T1 transitions actually occur in junctions

that are normally longer than the slow/transient T1 transitions,

suggesting that there may be a more active mechanism at play

in regulating these T1 transitions. Extensive studies of T1 transi-

tions in the Drosophila embryo have shown that a cell-autono-

mous accumulation of non-muscle Myosin II at the shrinking

junctions during the first phase of the transition is required for

the increase in cortical tension and shortening of that junction

(Bertet et al., 2004; Rauzi et al., 2008; Zallen and Wieschaus,

2004). However, extrinsic forces can also induce cell rearrange-

ments (Aigouy et al., 2010; Sugimura and Ishihara, 2013). Future

studies of cortical tension and Myosin II dynamics may therefore
114 Developmental Cell 36, 103–116, January 11, 2016 ª2016 The A
be needed to assess the regulatory mechanism and possible

function of T1 transitions in the wing imaginal disc.

Limitations
We have designed EpiTools so that it supports most imaging file

formats, but there are a few limitations. EpiTools Part 1 accepts

8- or 16-bit bioformat compatible images with two additional re-

quirements: (1) information regarding one time point cannot be

distributed across multiple files; (2) the used file extension has

to be included in the user-settings file (for more information

see Supplemental Experimental Procedures). The preferred

format is single TIFF file for every time point. For EpiTools

Part 2, skeleton files should be 8-bit binary images. Again, the

preferred format is TIFF.

The major limitation of EpiTools is that in its present form

our toolbox is not suited for volumetric 3D analysis. We accept

that biological datasets are too heterogeneous to allow for a

unique solution for data processing and analysis, hence different

software is required (Table S1). As the data quality from volu-

metric 3D imaging improves, we aim to add full 3D volumetric

analysis to our toolkit. The modular and open-source nature of

EpiTools makes it an ideal platform to develop new features.

In summary, we have generated a series of accessible tools

aimed at harnessing recent advances in optical microscopy to

produce a quantitative description of epithelial tissue morpho-

genesis. We anticipate that these tools will greatly facilitate the

study of tissue dynamics in development and disease.

EXPERIMENTAL PROCEDURES

License Information

To encourage the sharing of resources, EpiTools is published under an

open-source (GPLv3) license, which can be downloaded from http://tiny.

uzh.ch/mM.

Live Imaging

Wing discs were cultivated ex vivo and imaged as described by Zartman et al.

(2013). However, the discs were not encapsulated in an alginate gel, as we

have found that this step can be omitted without negatively affecting the imag-

ing. A total of 3 E-cadherin:GFP-expressing wing discs (Huang et al., 2009)

were imaged over 10 hr each, from around 100 hr after egg laying.

Segmentation Parameters

The parameters used for segmenting the wing disc time lapses and other

images shown in Figure S3 are shown in Table 1.

Measurement of the Division Orientation

We define the division orientation as the angle between the longest axis of a

mother cell before division and the new junction between the two daughter

cells after division. To reliably measure the angle, we decided to average mul-

tiple temporal combinations such that individual frame differences would not

affect our result. The longest elongation axis of a mother cell was retrieved us-

ing five time points from 72 min to 42 min before the division when the two

daughter cells are first visible (the acquisition interval was 6 min). The reason

to exclude the time points in the immediate vicinity of the division (i.e.

36 min to 6 min before) was to avoid including the apical rounding phase of

mitosis whereby the increasingly circular cell shapemakes the longest elonga-

tion estimation unreliable. The new junction was also measured in five time

points after the division. Specifically for each frame the segment between

the two centroids of the daughter cells was computed, and the angle of the

new junction was computed as being perpendicular to this segment. The final

average value for the division orientation is the mean of the 25 possible

combinations.
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