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Abstract 

The Loulo-Gounkoto complex in the Kédougou-Kéniéba Inlier hosts three multi-million ounce 

orogenic gold deposits, situated along the Senegal-Mali Shear Zone. This west Malian gold belt 

represents the largest West African orogenic gold district outside Ghana. The Gounkoto deposit is 

hosted to the south of the Gara and Yalea gold mines in the Kofi Series metasedimentary rocks. The 

ore body is structurally controlled and is characterised by sodic and phyllic alteration, As- and Fe-rich 

ore assemblages, with abundant magnetite, and overall enrichment in Fe-As-Cu-Au-Ag-W-Ni-Co-REE 

+ minor Te-Pb-Se-Cd. Fluid inclusion analysis indicates that the deposit formed at P-T conditions of 

approximately 1.4 kbar and 340 °C and that two end member fluids were involved in mineralisation: 

(1) a moderate temperature (315-340 °C), low salinity (<10 wt. % NaCl equiv.), low density (≤1 gcm-

3), H2O-CO2-NaCl-H2S±N2-CH4 fluid; (2) a high temperature (up to 445 °C), hypersaline (~40 wt. % 

NaCl equiv.), high density (~1.3 gcm-3), H2O-CO2-NaCl±FeCl2 fluid. Partial mixing of these fluids within 

the Jog Zone at Gounkoto enhanced phase separation in the aqueo-carbonic fluid and acted as a 

precipitation mechanism for Au. These findings demonstrate the widespread, if heterogeneously 

distributed, nature of fluid mixing as an ore forming process in the Loulo-Gounkoto complex, 

operating over at least a 30 km strike length of the shear zone. Stable isotope analyses of ore 

components at Gounkoto indicate a dominant metamorphic source for H2O, H2S and CO2, and by 

extension Au. It thus can be reasoned that both the aqueo-carbonic and the hypersaline fluid at 

Gounkoto are of metamorphic origin and that the high levels of salinity in the brine are likely derived 

from evaporite dissolution. 
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1. Introduction 

The Loulo-Gounkoto complex in Western Mali is situated along the Senegal-Mali Shear Zone and 

includes the Gara, Yalea and Gounkoto deposits as well as numerous satellites. With the Loulo Mine 

(Gara and Yalea deposits) to the north, the Gounkoto deposit is the third >3 Moz deposit to be 

discovered in the district since Gara in 1981. Gounkoto has a current reserve of 3.2 Moz @ 4.4 g/t, 

which combined with the Loulo reserve of 4.9 Moz @ 4.6 g/t gives the complex an overall reserve of 

7.8 Moz. The Gounkoto discovery was announced in 2009 following an airborne electromagnetic 

survey of the region. Reconnaissance diamond drill holes intersected 46.6 m at 13.6 g/t, confirming 

Gounkoto as a significant new discovery and mining commenced in 2011. The Loulo-Gounkoto 

complex has produced over 3.5 Moz from open pit and underground resources, and has a current 

(2015) mining lifespan of 9 years at 660 Koz Au pa.  

Lawrence et al., (2013a) detailed two separate end member styles of mineralisation for Au deposits 

at Loulo, encompassing Gara, Yalea, and numerous satellite deposits. Gara-style deposits feature: 1) 

pyrite as the dominant ore mineral; 2) tourmaline alteration and 3) REE-Ni-P-Zn-Se-Mo enrichment. 

Conversely Yalea-style ore bodies feature: 1) arsenopyrite as the dominant ore mineral; 2) 

albitisation and sericite-chlorite alteration assemblages and; 3) no enrichment in REE-Ni-P-Zn-Se-Mo. 

In addition, Lawrence (2013b) found that two distinct hydrothermal fluids were involved in 

mineralization at Loulo: 1) a high temperature, hypersaline aqueous fluid; and 2) a lower 

temperature, low salinity, CO2-N2-H2S rich metamorphic fluid. The Gara deposit is interpreted to 

have formed as a result of partial mixing of these two fluids, whereas the Yalea deposit formed from 

unmixing of an immiscible, metamorphic sourced CO2-rich fluid. 

This paper will present new petrographic, fluid inclusion and stable isotope data from the Gounkoto 

deposit with the aim of comparing mineralisation processes and styles with those at Loulo. We will 

demonstrate that Au precipitation was initiated through a combination of fluid immiscibility in an 

aqueous-carbonic fluid and partial mixing of that same fluid with a hypersaline brine, processes 

described at the Gara and Yalea deposits by Lawrence et al., (2013b). Furthermore, we will examine 

the sources of volatile components in the deposit with a suite of stable isotope analyses conducted 

on ore components. 

2. Regional Geology 
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The geology of the Birimian of West Africa is well documented (Abouchami et al., 1990; Liegois et al., 

1991; Milési et al., 1992; Feybesse and Milesi 1994; Feybesse et al., 2006). This consists of NNE 

trending volcanic belts or arcs separated by broad metasedimentary basins intruded by voluminous 

granitic batholiths, and extends from the Ashanti belt in Ghana in the south east to the Kédougou-

Kéniéba Inlier in the North West (Figure 1A). These arcs and basins were accreted, deformed and 

metamorphosed (greenschist facies) during the Eburnean orogeny ~2.1 Ga (Oberthür et al., 1998; 

Allibone et al., 2002; Feybesse et al., 2006). The Eburnean comprises three distinct phases of 

deformation (Liegois et al., 1991; Ledru et al., 1991; Hirdes and Davis, 1992; Feybesse et al., 2006; 

Dabo and Aifa, 2010; Dabo and Aifa 2011). Initial NW-SE compression (D1) generated a penetrative S1 

cleavage parallel to recumbent F1 fold axes. Subsequent sinistral strike-slip deformation (D2), which 

cross cut and refolded S1 cleavages, lead to the development of crustal scale shears along terrane 

boundaries. The latest phase of deformation is a brittle dextral strike-slip reactivation (D3). D1 

occurred diachronously from SE to NW, between 2170 to 2096 Ma (Feybesse and Milési, 1994), 

when D2 deformation began, continuing until 1980 Ma (Feybesse et al., 2006). Liegois et al., (1991) 

suggest that D3 began ~100Ma after D2. 

The Loulo-Gounkoto complex is the largest West African orogenic gold district outside Ghana, and is 

situated in the Kofi Series of the eastern Birimian Kédougou-Kéniéba Inlier (Figure 1B), which is 

bounded to the west by the Hercynian Mauritanide belt and unconformably overlain by flat lying 

Neoproterozoic sediments to the east. The inlier consists of two N- to NNE-trending greenstone 

belts, known as the Mako Series and Falémé Series, separated by two sedimentary basins; the Dialé-

Daléma Series and the Kofi Series (Hirdes and Davis, 2002; Figure 1B).  Loulo is situated within the 

West Mali gold belt, which stretches 180 km north-south along the Senegal border. Operational 

mines in the region include Gara and Yalea (at the Loulo Mine complex), Gounkoto, Sadiola, Yatela, 

Tabakoto, and Segala. These deposits are structurally controlled by a major crustal-scale lineament 

known as the Senegal-Mali shear zone (SMSZ; Figure 1B and C). 

The Kofi Series rocks comprised of immature detrital sedimentary (dominantly quartzo-feldspathic 

wackes) and carbonate rocks (marbles and marls), and breccias, intruded by minor mafic dykes and 

small intermediate to felsic stocks. Some metaquartzwacke horizons have been intensely 

tourmalinized and others albitised (Lawrence et al., 2013a). Several extensive bodies of 

hydrothermal albitite are located close to the Senegal-Mali Shear Zone (Figure 1C). Igneous rocks 

comprising dykes of dolerite to monzodiorite composition and small stocks of quartz-feldspar-phyric 

rhyolite intrude the Kofi Series. In addition two larger plutons of monzogranite composition, the 

Gamaye and Yatea plutons, also intrude the south and east of the Series (Figure 1B and C).  
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3. Previous work on the Loulo-Gounkoto complex 

Lawrence et al. (2013a and b) described in detail the Gara and Yalea deposits, situated to the north 

of Gounkoto (Figure 1C). At Gara, ore is hosted in ankerite-quartz-pyrite veins, developed in a 

fractured and folded quartz wacke unit that has previously been pervasively tourmalinized. 

Accessory ore phases at Gara include chalcopyrite, gersdorffite, pentlandite, arsenopyrite, monazite, 

scheelite and xenotime. Arsenopyrite is scarce in comparison to other orogenic gold deposits 

(Groves et al., 1998). The Yalea deposit is hosted in a 10- to 40-m-wide zone of strongly 

metasomatized (carbonate-albite followed by sericite-chlorite), brittle-ductile deformed rocks. In 

contrast to Gara, the Yalea Main ore body is As-rich. Arsenopyrite and arsenian pyrite are the 

dominant sulphide phases with accessory pyrrhotite, chalcopyrite and tennantite. Alteration 

assemblages lack tourmaline, but sodic, carbonate and phyllic alteration are widespread. Lawrence 

et al. (2013b) reported fluid inclusion assemblages at Gara representing two distinct fluids: 1) A high 

T, high-salinity, aqueous, CO2-poor fluid (~400°C; ~45-55 wt. % NaCl equiv.; XH2O of 0.7-0.8; XCO2 < 

0.3); and 2) a lower T, low-salinity, H2O-CO2 fluid (270-350°C; <10 wt. % NaCl equiv.). High salinity 

fluid inclusions contain NaCl, FeCl2, Fe2O3, Fe3O4 and carbonates as daughter minerals. Partial mixing 

occurred between these two fluids, which resulted in retrograde boiling and changes in the physico-

chemical state of both fluids leading to Au precipitation. This is documented by the co-existence of 

H2O-CO2-NaCl inclusions of variable salinity and volatile compositions (Lawrence et al., 2013b). At 

Yalea Main the hypersaline fluid is notably absent and fluid inclusion assemblages are derived from 

phase separation in the low salinity H2O-CO2 fluid described at Gara. 

4. Geology and structure of the Gounkoto deposit 

The Gounkoto deposit is hosted on two left stepping jogs between a series of NNE trending sinistral 

shear zones, which developed during D2 (Figure 2). Discrete N-S and NNW trending shears intersect 

the ore body along its ~2 km strike. This geometry is divided into five zones: 1) the Fe structure; 2) 

the wrench zone; 3) the pinch zone; 4) the jog zone; 5) the hanging wall ore body. The hanging wall 

comprises easterly-dipping, fine argillaceous sandstones, intercalated with dolostone units. 

Argillaceous sands are also present in the footwall, they dip steeply to the west and are interbedded 

with calcareous sandstone and phyllite. This sequence gives way to a metaquartzwacke unit. All 

units are intruded by numerous quartz monzodiorite dykes. The hanging wall and footwall are 

separated by a shear bounded package of strongly albitised metasedimentary rocks (Figure 2). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5 
 

The southern part of the ore body consists of a hard linked sinistral dilational jog. Here, deformed 

and albitised rocks are bounded on the hanging wall by east dipping mineralised shear zones 

(354/70E) and west dipping shear zones in the footwall (184/84W). This jog represents the 

intersection between the long lived Fe structure, characterised by abundant Fe oxides and brittle D2 

deformation overprinting earlier ductile deformation, and the Wrench Zone. A small subset of NNW 

trending shears (345/82WSW) in the wrench zone provide the linking architecture. North of this 

intersection the ore body narrows in to the Pinch Zone for ~500 m before making another 150-200 

m left hand step-over in the Jog Zone. This step-over hosts the highest-grade mineralisation at 

Gounkoto and is a site of significant dilatancy and deformation. Discrete N-S (008/85 E) trending 

shear zones host three en-echelon ore bodies, which are cross linked by shears at 336/82 ENE.  

The hanging wall ore body is hosted in highly deformed dolostone and quartzite units ~150 m east of 

the main ore zone and extends for ~1 km along strike, dipping east. The body is discontinuous in 

places and is not as clearly structurally controlled as the main zones. 

5. Ore mineralisation 

Ore styles and textures 

Gounkoto features a wide variety of ore textures (Figure 3). These include 1) shear-hosted sulphide 

stringers; 2) hydrothermal breccias; 3) disseminated sulphides; and 4) hydrothermal veining. 

Sulphide stringers comprise bands of fractured and deformed pyrite and associated trace phases 

within chloritic shears (Figure 3A). These overprint chloritised or albitised wall rock, as well as the 

hanging wall dolostone package and are associated with high grades up to 89 g/t Au. Breccia hosted 

mineralisation at Gounkoto typically affects strongly albitised rocks, which makes up the clasts, while 

the matrix consists of dolomite–pyrite–chlorite±magnetite±tourmaline. Breccia styles vary from 

hydrothermal jigsaw breccias (Figure 3B) to tectonised breccias (Figure 3C and D) in which clasts 

have undergone elongation, rounding and size reduction during deformation. Less deformed 

breccias regularly show low grades (<1 g/t Au), whereas more deformed breccias host up to 112 g/t 

Au (more typically ~20-50 g/t Au). Sulphides also occur as disseminations in altered wall rock (Figure 

3E). The volume of disseminated sulphides is variable, but can reach >50 % of the total rock volume; 

this is generally proportional to ore grade. Auriferous veining at Gounkoto consists of quartz-

carbonate-pyrite-chlorite veins. These are typically located several 10s of meters outside the main 

ore zone, however they are also present in some parts of the Jog Zone, where they have commonly 

been boudinaged during ongoing deformation. Auriferous vein sets carry grades up to ~70 g/t Au 

where associated with disseminated ores, but are typically lower grade where observed outside the 
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main lodes (average ~1.7 g/t Au). Late barren veins cross cut all other ore textures at the Gounkoto 

deposit. These are typically undeformed 1-2 cm thick carbonate ± quartz veins with a milky 

appearance (Figure 3B). 

Ore mineralogy 

The paragenesis of the ore and alteration assemblages at Gounkoto is summarised in Figure 4 and 

mineral chemistry is given in Table 1 and Table 2. Pyrite is the dominant ore phase at Gounkoto, 

accounting for ~99 % of the sulphide phases present and ~95 % of ore phases (including magnetite). 

Auriferous pyrite typically shows two morphologies: highly fractured and rounded pyrites are 

interpreted to have formed prior to a phase of intense brittle-ductile deformation (Figure 5A). Grain 

size is variable, but generally <500 μm. Auriferous pyrite is also euhedral to subhedral where present 

in areas of less intense deformation (Figure 5B and C). Both morphologies are commonly surrounded 

by anhedral, vuggy and fine-grained (typically <300 μm) pyrite, containing abundant gangue 

inclusions (Figure 5B and C). This vuggy pyrite is typically associated with low grades (<5 g/t Au). 

Arsenian pyrite is common at Gounkoto, with As content between 0.1 and 1.9 wt. % (mean of 0.9 wt. 

%). In addition pyrite at Gounkoto commonly contains Ni content between 0.2 and 7.8 wt. % (mean 

of 2.7 wt. %), with concentrations generally higher in the hanging wall ore body (mean of 4.4 wt. % 

Ni) than in the main ore body (mean of 0.9 wt. % Ni). 

Magnetite can locally comprise up to 15 % of the ore body at Gounkoto (Figure 5D). Early magnetite 

occurs as <50 μm inclusions in pyrite or in gangue (Figure 5E). The main phase of magnetite 

mineralization occurs as cm scale annealed masses of 100 to 800 μm anhedral crystals. This replaces 

pyrite and is intergrown with dolomite and chlorite (Figure 5F). Replacement coincides with 

brecciation and remobilization of Au. 

Accessory ore phases at Gounkoto include arsenopyrite, pyrrhotite, chalcopyrite, scheelite, apatite, 

monazite, xenotime, gersdorffite, cobaltite and tennantite. Millerite, galena, clausthalite, ullmannite 

and polydymite are also present; however these are restricted to the hanging wall ore body (Table 

1). Arsenopyrite is the most abundant accessory phase, occurring as <100 μm blebby inclusions in 

pyrite and early barren, anhedral grains in the main ore body (Figure 5G) and as <200 μm, rhombic 

crystals associated with disseminated auriferous pyrite in the hanging wall (Figure 5H). Using the 

geothermometer of Sharp et al. (1985) the range of atomic % As in arsenopyrite at Gounkoto (Table 

1) corresponds to formation temperatures of between 315 and 350°C. 

Native gold at Gounkoto is dominantly associated with pyrite and arsenian pyrite. Gold occurs as 

occluded grains within pyrite (Figure 6a), free grains within the gangue (Figure 6b and c); remobilised 
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grains in fractured or brecciated sulphides and along sulphide-gangue grain boundaries (Figure 6C). 

Gold grain size is typically <30 μm, but remobilised grains are coarser (up to 200 μm). Gold fineness 

ranges from 980 to 999 in the main ore body, with average values of 957 in the hanging wall (Table 

2). Gold telluride and gold-related trace phases at Gounkoto include Au-bearing phases Bi-sylvanite 

([Au, Ag, Bi]Te2), petzite (Ag3AuTe2) and calaverite (AuTe2)(Figure 6a) and non-Au-bearing phases 

altaite (PbTe)(Figure 6D), clausthalite (PbSe), native tellurium and bismuth (Table 2). 

6. Alteration 

Alteration at Gounkoto is characterized by a number of distinct hydrothermal assemblages. These 

include: 1) sodic alteration; 2) carbonate alteration; 3) chloritisation; and 4) tourmalinisation (minor) 

(Figure 4). Albitisation and tourmalinisation have been described in detail at the Gara and Yalea 

deposits by Lawrence et al (2013a). 

Albitisation 

Sodic alteration at Gounkoto predates mineralization. Hydrothermal breccias contain clasts of 

intensely albitised sedimentary rocks (Figure 3B, C and D) and auriferous veining in the Jog Zone of 

the deposit cross cuts albitised sediment packages. The albitised mineral assemblage comprises <20 

– 100 µm albite with interstitial carbonate (<20 to 500 µm; consisting of Fe-Mn bearing dolomite) 

and accessory haematite (~10 µm), with trace apatite and monazite. Feldspars are altered to near 

pure albite (typically <0.5 wt. % K2O and <1wt. % CaO). Albitised lithologies at Gounkoto are 

relatively brittle and impermeable compared to unaltered sedimentary rocks and chloritic shear 

zones. In some cases, this competence contrast has apparently worked to enhance the grades in 

shear zones that form adjacent to boudins of albitised rock. In some sections of the ore body 

however, albitised rocks become brecciated, with significant mineralization hosted within the 

cement. 

Tourmalinisation 

Tourmalinisation at Gounkoto is not widespread. Minor tourmalinite units (metaquartzwacke with 

tourmalinized phyllic matrix) are present, but are highly subordinate and weakly mineralized (<0.5 

g/t Au). Syn-mineralisation tourmaline is also present as a minor gangue mineral in hydrothermal-

tectonic breccias and shear hosted mineralized zones. 

Chloritisation 

Ductile chloritic shears are the dominant ore host at Gounkoto (Figure 3A) and comprise well-

foliated, undulose aggregates of fine-grained (<150 μm) chlorite crystals (Figure 5A). These shears 
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host auriferous sulphide phases (+magnetite) and overprint or cross-cut albite alteration. Individual 

shears are 100 μm to ~1 mm across and make up shear zones 10s of meters across. In parts of the 

Jog Zone discrete shears give way to pervasive chloritisation of the wall rock. Chlorite is also present 

as an accessory phase in the selvage of auriferous dolomite-quartz-pyrite veins. Post-ore chlorite at 

Gounkoto has replaced sulphide and oxide ore minerals. Chlorite mineral compositions at Gounkoto 

include brunsvigite, pycnochlorite, ripidolite and daphnite. The chlorite geothermometer of 

Cathelineau (1988), modified by Kranidiotis and Maclean (1987), gave a range of temperatures for 

syn-mineralisation chlorites between 235 and 364 °C (mean of 293 °C; n=38). Replacement stage 

chlorites show slightly broader range between 160 and 333 °C (mean of 301 °C; n=10). 

Carbonate overprinting 

In albitised units cross cut by mineralized chloritic shears and carbonate-pyrite veinlets, carbonate 

content of the rock can increase dramatically (up to 60 volume %). This takes the form of pervasive 

disseminated carbonate (which bleaches the rock; Figure 3D) and/or halos of Fe-rich carbonate 

surround veins and shears, producing deep red coloured alteration halos. This indicates multiple 

phases of carbonate alteration; with pervasive overprint of the albite alteration followed by more 

localized halos. In some lower grade parts of the deposit very coarse (up to 4 mm) euhedral 

dolomite crystals are disseminated throughout variably albitised host rock.  

7. Fluid Inclusions 

Petrography and timing of fluid inclusions 

The four primary types of fluid inclusion reported by Lawrence et al., (2013b) are recognised in this 

study. These are: Type-I) CO2 ± N2 ± CH4 inclusions (Figure 7a); type-II) H2O-NaCl inclusions (Figure 

7b); type-III) H2O-CO2-NaCl ± N2 ± CH4 inclusions (Figure 7c) and; type-IV) hypersaline, multiphase 

H2O-CO2-NaCl-FeCl2 ± CH4 ± N2 inclusions (Figure 7d). Type-I inclusions are dominant at Gounkoto 

and account for 69 % of the inclusions measured, while type-II account for 7% and type-III for 22 %. 

Type-IV are rare, with 4 inclusions analysed (2 %). 

Type-I CO2-rich inclusions are mono- (LCO2) (dominant) or bi-phase (LCO2 + VCO2) at 20°C. They are 

<5 to 30 μm, rounded to oblate, with rare negative crystal shapes and occur in randomly orientated 

clusters, often with type-III and rarely type-II inclusions. Type-II aqueous inclusions range in size from 

<2 μm to ~15 μm, are bi-phase at 20°C (LH2O + VH2O), show rounded or rare negative crystal shapes 

and occur as isolated inclusions or in small clusters with or without inclusion types-I and -III. Type-III 

immiscible H2O-CO2 inclusions show a broad range of modal proportions between 20 and 85 vol. % 

CO2. At 20°C, these inclusions are two- (LH2O + LCO2) and, less commonly, three-phase (LH2O + LCO2 
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+ VCO2). They are oblate to well-rounded, 5-20 μm in diameter and occur as individual inclusions or 

in discrete clusters with type-I and rarely type-II inclusions. Type-IV multiphase solid aqueous-rich 

inclusions are present in only one sample at Gounkoto. Type-IV inclusions contain mono- or bi-phase 

(at 20 °C) CO2 and one to three visible daughter minerals. Inclusions are <5 to 10 μm, rounded and 

occur with inclusions of type-I and -III. 

Microthermometry 

Microthermometric data from Gounkoto is summarised in Table 3 and calculated bulk 

composition and density data is given in Table 4. 

Type-I inclusions have a range in CO2 melting temperatures (TmCO2) from -60.9 to -57.7 °C 

(mean of -58.7 °C) (Figure 8A). Depression of the CO2 eutectic implies the presence of variable 

concentrations of N2 and/or CH4. Laser Raman analysis has confirmed the presence of 1.8 to 21.5 

molar % N2 and 0.6 to 1.1 molar % CH4. The homogenisation temperature (ThCO2) of type-I inclusions 

ranges from -5.6 to 30.6 °C (mean of 20.3 °C) (Figure 8B). Inclusions predominantly homogenised 

into the liquid phase, with 3.2 % of inclusions homogenising to vapour and 4.7 % showing critical 

behaviour. Calculated fluid density ranges from 0.414 to 0.933 g∙cm-3 (mean of 0.732 g∙cm-3) (Figure 

8C). 

Type-II inclusions at Gounkoto exhibit final ice melting temperatures (Tmice) from -4.9 to -0.2 

°C (mean of -2.7 °C), with salinities between 0.35 and 7.7 wt. % NaCl equivalent (mean of 4.3 wt. %). 

Final homogenisation temperatures (ThH2O) vary considerably, from as low as 146 °C (possibly 

leaked) up to 365 °C (mean of 233 °C). The majority of ThH2O values are above 200 °C (n=8). 

Calculated fluid density ranges from 0.66 to 0.97 g∙cm-3 (mean of 0.848 g∙cm-3)(Figure 8D). 

TmCO2 in type-III inclusions ranges from -62.3 °C to -58.1 °C (mean of -58.6 °C), and ThCO2 

ranges from -14.4 to 29.7 °C (mean of 18.2 °C; homogenisation to liquid)(Figure 8A and B). Clathrate 

melting temperatures (Tmcl) from -12.9 to 9.7 °C (mean of 5.9 °C) indicate salinities between 0.6 and 

26.3 wt. % NaCl equivalent (mean of 6.4 wt. %) (Figure 8F). The majority of type-III inclusions have a 

Tmcl range between 4.4 and 9.7 °C (0.6 to 9.95 wt. % NaCl). However, type-III inclusions in one 

sample exhibit Tmcl from -12.9 to 7.9 °C (4.15 to 26.3 wt. % NaCl equivalent). Total homogenisation 

temperature (Th tot) was only measured for 25 (~70 %) of type-III inclusions analysed (Figure 8E); the 

rest either decrepitated (Td) or showed no identifiable change. Td values range from 200 to 300 °C 

(mean of 257 °C) and are treated as minimum estimates of homogenisation temperatures. Th tot 

values range from 240 to 370 °C (mean of 322 °C). Bulk densities (ρtot) for the variable salinity 
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population range from 0.863 to 1.056g∙cm-3 (mean of 0.955g∙cm-3), while the majority range from 

0.694 to 1.044g∙cm-3. 

Type-IV inclusions are extremely rare at Gounkoto (n=4) and microthermometric data are 

thus incomplete. TmCO2 and ThCO2 of the gaseous phase ranged from -60 to -57.3 and 1.7 to 15.7 °C, 

respectively. Reliable salinity data is scarce; one TsNaCl temperature at 343 °C indicates a salinity of 

41.2 wt. % NaCl equivalent. Salinity estimates calculated from volumetric proportions give values of 

36.8 and 38.6 wt. % NaCl equivalent; all salinity data are within the range for type-IV inclusions 

reported by Lawrence et al. (2013b; 36.9 to 44.5 wt. % NaCl equivalents). Two homogenisation 

temperatures were observed at 445 and 460 °C. Calculated ρtot is between 1.13 and 1.27g∙cm-3. 

8. Stable isotopes 

Stable isotope data from Gounkoto are summarised in Table 5. Auriferous pyrite at Gounkoto shows 

a δ34S range from 5.8 to 12.8 ‰ (n=18; mean of 8.6 ± 2 ‰). Au-bearing arsenopyrite yielded a single 

δ34S value of 8.8 ‰ (Figure 9A). No diagenetic sulphides have been observed in the wall rocks at 

Gounkoto, therefore in order to compare against δ34S values of auriferous pyrite, diagenetic pyrite 

samples were collected from barren dolostone units in the Kofi Series at Baqata, Kolya, Gara and 

Yalea (Figure 1b); these show a range of values from 6.4 to 25.1 ‰ (n=4; includes data from 

Lawrence et al., 2013b). Quartz from auriferous veining yielded δ18O values between 12.9 and 17.4 

‰ (n=6; mean of 16 ± 1.5 ‰). δ18O values from dolomite in Au-bearing veins ranges from 14.7 to 

20.5 ‰ (n=8; mean of 17.3 ± 2.2 ‰) (Figure 9B). Dolomite from barren carbonate veins has similar 

values at 18.2 ‰ (n=2). Two δ18O values were also obtained from hematite and one from magnetite 

in the Gounkoto ore body, these were -1.4 (n=2) and 4.2 ‰, respectively. Calculated δ18Ofluid values 

range from 7.3 to 15.3 ‰, calculated from quartz, dolomite and magnetite using the equations of 

Matsuhisa et al. (1979), Zheng et al. (1999) and Zheng and Simon (1991). Auriferous vein carbonates 

have δ13C values between -13.6 and -6.3 ‰ (n=8; mean of -9.1 ± 2.2 ‰). Carbonate minerals from 

late barren veining and wall rock dolostones gave values between -3.1 and -0.5 ‰ (n=3; mean of -2 

‰) (Figure 9C). The two equilibrium temperatures were calculated from quartz-dolomite mineral 

pairs at 344 and 346 °C using the equations of Zheng et al. (1999).  

9. Discussion 

Fluid immiscibility at Gounkoto 

Lawrence et al., (2013b) interpreted the fluid inclusion assemblages at the Yalea deposit to 

represent immiscible fluids formed through unmixing of a common parent fluid. Similar inclusion 

assemblages are observed at Gounkoto and show broadly similar behaviour. Type-I, -II and -III 
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inclusions at Gounkoto indicate that some level of fluid immiscibility was reached during 

entrapment. Ramboz et al., (1982) report criteria for identifying fluid immiscibility. These state that 

pairs of liquid- and vapour-rich inclusions must: 1) demonstrate simultaneous trapping; 2) 

homogenize in a comparable temperature range via opposite modes of homogenisation; and 3) 

decrepitate in a comparable temperature range if they are similar in size and shape. 

Type-I and type-II inclusions at Gounkoto occur in the same assemblages, thus satisfying (1). Type-III 

inclusions show behaviour which supports criteria 2 in that those inclusions with >50 vol. % CO2 tend 

to homogenise into the CO2 phase and vice versa within the same temperature range. The third 

criterion is difficult to assess, as only limited decrepitation data were recorded (n=5). Nevertheless, 

compositional similarities between inclusion types imply a common origin. Type-II and –III inclusions 

exhibit similar salinities (Figure 8F). TmCO2 and ThCO2 are comparable in type-I and -III inclusions 

indicating similar compositions and densities (Figure 8A and B). Lastly, type-III inclusions exhibit 

higher Th than type-II, a phenomenon commonly associated with fluid immiscibility (Roedder, 1984). 

The variable phase proportions (XCO2 from 0.06 to 0.55) in type-III inclusions suggest that they 

represent heterogeneous trapping of the two end member fluids (Diamond, 1990; Yao et al., 2001; 

Lawrence et al., 2013b). 

As with many Birimian deposits, Gounkoto features a higher proportion of CO2-rich inclusions 

compared to aqueous and aqueous-carbonic inclusions (Schwartz et al., 1992; Hammond and 

Shimazaki, 1994; Klemd and Hirdes, 1997; Klemd et al., 1997; Willie and Klemd, 2004; Lawrence et 

al., 2013b); though this is not always the case (Treloar et al., 2014). This is not an observation 

normally associated with fluid immiscibility, but could be explained by: 1) water loss along migrating 

grain boundaries (Hollister, 1990) or through diffusion (Bakker, 2009); 2) phase separation at the 

crystal boundary due to the different wetting properties of H2O and CO2 (Holness, 1993; Johnson and 

Hollister, 1995); 3) consumption of H2O via thermal degradation of ethane (Gaboury, 2013). Water 

leakage can be dismissed, as the ρCO2 in type-I and –III inclusions is comparable; water leakage 

would lower the density of the remaining CO2 (Yao and Robb, 2000). Crystal boundary phase 

separation cannot be ruled out and may have enhanced the immiscibility of the fluid during 

entrapment, resulting in the pure end member phases described in type-I and -II inclusions. Gaboury 

(2013) reported carbonaceous shale sourced C2H6 in fluid inclusions from the Mana District in 

Burkina Faso and observed that the thermal degradation of C2H6 under hydrothermal conditions 

would consume H2O and enrich the fluid in CO2, which could generate CO2-rich assemblages such as 

at Gounkoto.  

P-T conditions of fluid trapping  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

12 
 

The P-T trapping conditions at Gounkoto were calculated using intersecting isochores of type-I and 

type-II fluid inclusions (constructed using the software package FLUIDS) (Bakker, 2003)(Figure 10), in 

combination with arsenopyrite (315 to 350 °C) and quartz-dolomite isotope equilibria temperatures 

(344 °C and 346 °C). P-T conditions are estimated at 1.1 to 1.7 kbar (depth of 4.1 to 6.2 km) and 315 

to 356 °C; the mean isochores for type-I and -II inclusions intersect at 1.4 kbar and 340 °C. 

Fluid mixing at Gounkoto 

Lawrence et al. (2013b) reported partial mixing between a hypersaline fluid and a dilute aqueous-

carbonic fluid at the Gara deposit. Type-IV inclusions co-occurring with type-III inclusions with 

uncharacteristically variable salinities suggest a similar process at Gounkoto, with the brine 

enhancing the salinity of type-III inclusions (Figure 11). This mixing occurred in discrete parts of the 

Gounkoto deposit. Type IV inclusions are only observed in the Jog Zone, implying a structural control 

on fluid interaction. It is conceivable that fluids could remain segregated due to pooling in between 

failure events. This may imply that the hypersaline fluid is being introduced along brittle structures, 

which failed periodically and introduced pulses of the fluid into the system.  

Causes of fluid immiscibility and effect of fluid mixing 

Phase separation via effervescence occurs in H2O-CO2-NaCl fluids when the immiscibility field 

expands to higher temperatures in response to lower pressures due to a reduction in the solubility 

of CO2 and other volatiles (Brown and Lamb, 1989). This can be demonstrated at Gounkoto through 

1): the wide range in ρCO2 of type-I inclusions suggesting pressure fluctuations such as those 

associated with fault valve systems (Sibson, 1989; Cox et al., 2005); and 2) lower Th values in type-II 

inclusions (~232 °C) compared to type-III (~322 °C), suggesting the removal of CO2 from solution 

which reduces the pressure, and therefore homogenisation temperature, of the remaining aqueous 

phase (Robert and Kelly, 1987). An increase in salinity of the aqueous-carbonic fluid would further 

decrease the solubility of CO2 (Zhang and Frantz, 1992; Diamond, 2001). Thus, mixing with the 

hypersaline fluid would have enhanced phase separation in the aqueous-carbonic fluid (Anderson et 

al., 1992). 

Gold precipitation at Gounkoto 

In an aqueous-carbonic fluid at around 1.4 Kbar and 340 °C, Au is most likely to be transported as 

thiosulphide complexes (Au(HS)o or Au(HS)2
-) (Ridley et al., 1996; Williams-Jones et al., 2009). It is 

unclear if the hypersaline fluid is auriferous; it should be noted that large Au deposits such as Yalea 

have formed in its absence (Lawrence et al., 2013b). This implies that the hypersaline fluid at 

Gounkoto may be primarily important as a trap and not a significant Au carrier. This is further 
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supported by the instability of Au-Chloride complexes at low fO2 and near neutral pH conditions 

(Williams-Jones and Migdisov, 2014). Fluid inclusion assemblages, ore textures and paragenetic 

relationships at Gounkoto indicate that Au precipitation was most likely caused by a combination of: 

(1) phase separation; (2) wall rock sulphidation; and (3) reduction of the ore fluid (Ridley et al., 

1996). These processes would destabilise Au thiosulphide complexes, leading to Au precipitation. 

Wall rock sulphidation at Gounkoto was likely dominant in areas of the deposit featuring 

disseminated sulphides. Whereas brecciated and the subordinate veined ore textures are likely more 

closely linked to phase separation, where brittle failure would have resulted in rapid fluid pressure 

fluctuations. Further, interaction with reduced organic carbon in the hanging wall dolostone is 

supported by relatively light δ13C values exhibited by carbonate minerals in auriferous veining (-13.6 

to -9 ‰), a similar phenomenon was observed by Lawrence et al., (2013b) at the Yalea deposit.  

Volatile and metal sources at Gounkoto 

The low salinity (<5 wt. % NaCl equiv.), moderate temperature CO2-rich, H2O-CO2-NaCl fluid at 

Gounkoto closely resembles the ‘model fluid’ for orogenic gold deposits (c.f. Ridley and Diamond, 

2000; Garofalo et al., 2014). Many regard these fluids to be derived from prograde metamorphic 

devolatilisation reactions (McCuaig and Kerrich, 1998; Tomkins 2010; Phillips and Powell, 2010; 

Yardley and Cleverly, 2013). Stable isotope analysis of O, C and S from ore and vein phases at 

Gounkoto supports this interpretation. Calculated δ18Ofluid values at Gounkoto plot dominantly in the 

metamorphic water field of Ohmoto and Goldhaber (1997). Positive δ34S values in auriferous pyrite 

(5.8 to 12.8 ‰) sit within the range for Kofi Series diagenetic pyrite (6.4 to 25.1 ‰), suggesting 

derivation from desulphidation of diagenetic pyrite (Pitcairn et al., 2006; Phillips and Powell, 2010). 

Similarly, δ13C data (-13.6 to -6.3 ‰) suggest that carbon in auriferous veins is derived from a mixed 

sourced, comprising: 1) dissolution of carbonate minerals within the Kofi Series (-2 ‰) and; 2) 

oxidation of graphite derived from organic material hosted in dolostone units (Palaeoproterozoic 

δ13Corg ≈ -24±6 ‰) (Schidlowski, 1983).  The hypersaline fluid inclusions observed at Gara, Yalea 

North (Lawrence et al., 2013b) and Gounkoto are uncommon in the wider Birimian. Lawrence et al., 

(2013b) discussed the possibility of evaporite dissolution in their generation, but ultimately 

interpreted the fluids to be of magmatic origin. This was based upon the apparent higher 

temperature and the metaliferous composition of the brines (FeCl2-rich). However, the lack of a 

magmatic signature in the stable isotope dataset at Gounkoto forces us to reconsider this position.  

The presence of heavy δ34S values (19.7 and 25.1 ‰) in Kofi Series diagenetic pyritemay support the 

former presence of evaporite units in the Kofi. Pyrite formed through the reduction of evaporitic 

sulphate minerals (e,g. anhydrite) has been shown to inherit diagnostically high δ34S values  (c.f. 
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Monteiro et al., 2008).  This suggests that the dissolution of evaporite units within the Kofi Series 

may indeed a viable source for these brines. Nevertheless, the high homogenization temperatures 

recorded for the brine (up to 445 °C) cannot be ignored and therefore a magmatic source cannot be 

wholly ruled out. We consider that the apparently subordinate nature of the hypersaline fluid could 

result in the dilution of any magmatic isotopic signature to the point of being undetectable.  

Conclusions 

The Gounkoto deposit formed at P-T conditions of approximately 1.4 kbar and 340 °C and features 

mineralogical and fluid chemical characteristics in common with both Gara- and Yalea-style 

mineralisation as described by Lawrence et al., (2013a and b). These include sodic and B-

metasomatism, As-rich ore assemblages and Ni-Co substitution in pyrite. The ore body also features 

some distinct characteristics, including the presence of significant quantities of magnetite, sellenide 

trace minerals and telluride ore phases. 

The end member fluids identified by Lawrence et al., (2013b) at Gara and Yalea are also identified at 

Gounkoto: (1) a moderate temperature (315-340 °C), low salinity (<10 wt. % NaCl equiv.), low 

density (≤1 gcm-3), H2O-CO2-NaCl-H2S±N2-CH4 fluid; (2) a high temperature (up to 445 °), hypersaline 

(~40 wt. % NaCl equiv.), high density (~1.3 gcm-3), H2O-CO2-NaCl±FeCl2 fluid. Partial mixing of these 

fluids within the Jog Zone at Gounkoto enhanced phase separation in the aqueous-carbonic fluid and 

acted as a precipitation mechanism for Au. These findings demonstrate the widespread, if 

heterogeneously distributed, nature of fluid mixing as an ore forming process in the Loulo-Gounkoto 

complex, operating over at least a 30 km strike length of the shear zone. 

Stable isotope analyses of ore components at Gounkoto indicate a dominant metamorphic source 

for H2O, H2S and CO2, and by extension Au. It thus can be reasoned that both the aqueo-carbonic 

and the hypersaline fluid at Gounkoto are of metamorphic origin and that the high levels of salinity 

in the brine are likely derived from evaporite dissolution.  
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Appendix – Analytical methods 

a. Energy-dispersive X-ray spectroscopy 

Mineral compositions were determined using an Oxford Instruments X-ACT Energy Dispersive 

System detector mounted on a Zeiss EVO 50 Scanning Electron Microscope at Kingston University 

London. The EDS employed an accelerating voltage of 20 kV, a beam current of 1.5 na, and a 

detector process time of 4. The detection limit for all elements was ~ 0.2 wt %. 

b. Microthermometry  

Samples of auriferous quartz veins (grades of 0.13 to 27.6 g/t Au) were prepared as doubly-polished 

~150 μm wafers. All inclusions analysed were in quartz (n=172). Microthermometry was carried out 

at Kingston University using a Linkam THMSG600 temperature controlled stage with a Nikon 

Optiphot microscope. The stage was calibrated using Linkam synthetic fluid inclusion standards of 

pure CO2 and H2O. Reproducibility was ±0.2 °C below 30 °C and ±2 °C up to 400 °C. 

c. Laser Raman Spectroscopy 

Raman analysis was carried out using a Renishaw InVia Raman spectrometer attached to a Leica DM 

2500 M microscope. A 500 mW Ar-ion laser (514 nm) was used, with a spot size of ~5 µm. The 

Raman was calibrated using a CH4-CO2 standard. Data reduction was carried out using the WiRE 4 

software package, with a running time between 30-60 seconds. Molar fractions were calculated 

using peak area measurements of the Raman spectra and the formula of (Burke, 2001).  

d. Calculations for fluid PVTx properties 

Calculations of P-V-T-X properties of fluid inclusions, based on the microthermometric data, were 

made using the software package FLUIDS (Bakker, 2003). The following equations of state were 

used: Duan et al., (1992; 1996) for carbonic fluid inclusions; Zhang and Frantz (1987) and Archer 

(1992) for H2O-NaCl fluid inclusions; and Bowers and Helgeson (1983a, b) and Bakker (1999) for 

inclusions in the H2O-CO2-NaCl system. Salinity was calculated using the equations of Lecumberri-

Sanchez et al. (2012), and from estimates of the degree of fill of the inclusions. 

e. Stable isotope analysis 

Silicate separates were analyzed using a laser fluorination procedure following Sharp (1990). 

Reproducibility, based on repeat analyses of lab and international standards was better than ±0.3‰ 

(1σ). Carbonate and sulphide samples were analyzed by standard techniques (Craig, 1957; Robinson 

and Kusakabe, 1975), with reproducibility of ±0.15‰ for δ13C, ±0.7‰ for δ18O, and ±0.3‰ for δ34S 

(1σ). Oxygen, carbon, and sulphur isotopes are reported in standard notation as per mil (‰) 
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deviations from the Vienna Standard Mean Ocean Water (VSMOW), Vienna PeeDee Belemnite (V-

PDB), and Vienna Cañon Diablo Troilite (V-CDT) standards, respectively. 

Figure Captions 

Figure 1. Geological maps showing (a) the Birimian terranes in West Africa; (b) the geology of the 

Kédougou-Kéniéba Inlier with key plutons and mines indicated; (c) the geology of the Senegal-Mali 

Shear Zone around the Loulo-Gounkoto Complex (modified from Lawrence et al., 2013a). 

Figure 2. Geological and structural map of the Gounkoto gold deposit. 

Figure 3. Photographs of diamond drill core showing: (a) Sulphide stringers associated with chloritic 

shearing in the jog zone (b) jigsaw style hydrothermal breccia with albitised clasts and carbonate-

pyrite cement cross cut by late veining; (c) brecciated albitised sedimentary rock with Fe-rich rims in 

breccia clasts and ankerite-chlorite-pyrite cement ; (d) brecciated and deformed albitised 

sedimentary rock with chlorite-carbonate-pyrite veining; and (e) disseminated pyrite ore with 

interstitial ankerite replacing the host rock. 

Figure 4. Summary paragenetic diagram for the Gounkoto deposit. 

Figure 5. Reflected light photomicrographs of: (a) deformed pyrite grains hosted in chloritic shears; 

(b) euhedral auriferous pyrite surrounded by skeletal pyrite in the hanging wall ore body; (c) 

euhedral inclusion free pyrite surrounded by inclusion-rich anhedral pyrite in low grade ore in the 

Jog Zone; (d) semi-massive magnetite intergrown with ankerite; (e) haematite corona texture, 

replacing early magnetite grain in the Wrench Zone; (f) annealed magnetite replacing pyrite. BSE 

images of (g) blebby arsenopyrite inclusions within pyrite grain; and (h) euhedral arsenopyrite grains 

in dolostone host rock, note some grains are annealed to pyrite 

Figure 6. BSE images of: (a) grains of occluded calaverite and native Au in pyrite; (b) free Au grains 

hosted in chlorite-ankerite assemblage; (c) free and fracture filling Au associated with pyrite; (d) 

fractured subhedral pyrite hosting remobilised Au and telluride minerals surrounded by barren 

skeletal pyrite. 

Figure 7. Photomicrographs of: (a) type-I bi-phase CO2 rich inclusions in an isolated cluster, 

exhibiting negative crystal shapes; (b) bi-phase low salinity H2O-NaCl inclusions in early isolated 

cluster; (c) triple-phase (LH2O, LCO2 and VCO2) type-III H2O-CO2-NaCl at 6.6 °C; and (d) type 4 H2O-

NaCl-CO2-nS inclusion, exhibiting a liquid H2O phase, liquid CO2 phase and at least 3 solid phases at 

room temperature. 

Figure 8. Histograms showing: (a) Melting temperature of CO2  values for type-I and -III inclusions; 

(b) CO2 homogenisation values of type-I and -III inclusions; (c) calculated ρCO2 for type –I and –III 

inclusions; (d) calculated ρBulk for type-III inclusions; (e) total homogenisation temperatures and 

decrepitation temperatures for type-III inclusions; and (f) salinity of type-II, -III and –IV inclusions. 

Figure 9. Histograms showing: (a) δ34S data from auriferous and diagenetic sulphides; (b) δ18O data 

from auriferous silicate, carbonate and oxide phases; and (c) δ13C data from auriferous carbonate 

vein minerals, barren vein carbonate minerals and carbonate from host dolostones sequences. 

Diagenetic pyrite values at 8 and 10 ‰ are from Lawrence et al. (2013b). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

22 
 

Figure 10. Pressure-temperature-depth plot showing maximum, minimum and mean density 

isochores for type-I inclusions (solid line) and type-II inclusions (dashed lines) at Gounkoto. Vertical 

dotted and dashed lines represent the temperature range of arsenopyrite geothermometry and 

paired oxygen isotope equilibria. The shaded area represents the most likely P-T trapping conditions 

at the Gounkoto deposit, based on intercepts of arsenopyrite and δ18O geothermometers.  

Figure 11. Plot of salinity versus total homogenisation temperature of type-III and -IV inclusions at 

Gounkoto showing a weak positive trend, which suggests mixing of the end member brine and 

aqueous-carbonic fluids. 
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Tables 

Table 1. Representative EDS analyses of sulphide phases in the main ore body and hanging wall ore 
body at Gounkoto. 

 

Wt. %  

  Mineral S Fe Cu As Ni Co Sb Pb Se Total At. % As 

Main ore body 

           Arsenopyrite 22.0 35.9 - 41.5 - - - - - 99.5 - 

Arsenopyrite 21.7 35.3 - 42.9 - - - - - 99.9 30.5 

Arsenopyrite 21.2 35.5 - 42.6 - - - - - 99.3 30.5 

Arsenopyrite 22.0 35.9 - 41.5 - - - - - 99.5 29.4 

Arsenopyrite 21.5 36.0 - 41.3 - - - - - 98.8 29.5 

Arsenopyrite 21.6 35.5 - 42.3 - - - - - 99.5 30.1 

Arsenopyrite 22.2 36.2 - 41.7 - - - - - 100.2 29.3 

As-Co-Pyrite 51.4 43.3 - 1.2 - 3.2 - - - 99.0 - 

As-Pyrite 52.0 46.7 - 1.9 - - - - - 100.6 - 

As-Pyrite 54.1 46.7 - 0.1 - - - - - 100.9 - 

As-Pyrite 52.8 46.5 - 0.9 - - - - - 100.2 - 

As-Pyrite 52.6 46.6 - 0.5 - - - - - 99.8 - 

Chalcopyrite 34.6 30.7 34.7 0.0 - - - - - 99.9 - 

Co-Arsenopyrite 21.4 32.3 - 41.9 - 4.0 - - - 99.7 - 

Cobaltite 20.7 3.5 - 43.3 - 33.4 - - - 100.8 - 

Gersdorffite 20.0 11.0 - 43.1 24.4 - - - - 98.6 - 

Ni-Pyrite 50.5 45.1 _ 2.8 1.2 
 

- - - 99.6 - 

Ni-Pyrite 50.7 43.9 _ 3.3 1.1 
 

- - - 98.8 - 

Ni-Pyrite 51.0 45.1 _ 3.6 1.3 
 

- - - 101.1 - 

Ni-Pyrite 52.8 45.5 2.7 _ 0.4 
 

- - - 101.3 - 

Ni-Pyrite 52.6 45.2 _ _ 1.0 
 

- - - 98.8 - 

Ni-Pyrite 53.2 43.6 0.8 _ 1.3 
 

- - - 98.9 - 

Pyrite 53.3 47.0 - - - - - - - 100.3 - 

Pyrrhotite 38.7 60.9 - - - - - - - 99.6 - 

Tennantite 29.2 7.3 43.5 19.5 - - - - - 99.6 - 

Hanging wall ore 

body            

Arsenopyrite 21.4 35.4 - 42.1 - - - - - 98.9 30.1 

Arsenopyrite 21.8 35.7 - 41.8 - - - - - 99.3 29.7 

Chalcopyrite 35.3 30.9 33.9 - - - - - - 100.0 - 

Clausthalite 3.3 - - - - - - 76.3 20.2 99.9 - 

Cobaltite 21.2 5.0 - 42.6 7.3 24.7 - - - 100.8 - 

Galena 11.3 - - - - - - 87.0 2.7 100.9 - 

Millerite 35.2 1.3 - - 63.6 - - - - 100.0 - 

Ni-Pyrite 53.0 44.4 - - 2.8 - - - - 100.2 - 

Ni-Pyrite 53.9 41.7 - - 5.0 - - - - 100.6 - 

Ni-Pyrite 53.1 40.3 - - 7.8 - - - - 101.3 - 

Ni-Pyrite 53.6 43.3 - - 4.4 - - - - 101.3 - 

Ni-Pyrite 53.9 41.7 - - 4.9 - - - - 100.6 - 

Ni-Pyrite 53.4 43.9 - - 3.3 - - - - 100.5 - 

Pentlandite 33.3 28.6 - 1.3 35.7 1.4 - - - 100.3 - 

polydymite 41.7 11.8 - - 46.1 - - - - 99.6 - 

Pyrite 53.3 47.2 - - - - - - - 100.5 - 

Pyrrhotite 39.1 61.1 - - - - - - - 100.2 - 

Ullmannite 14.7 - - - 28.0 - 57.3 - - 100.0 - 
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Table 2. Representative EDS analyses of native Au and related trace phases in the main ore body and 
the hanging wall ore body at Gounkoto. 

Mineral Phase Te Au Ag Pb Se Cd Total 

Main ore body 

       Altaite 39.52 0.00 0.00 60.05 0.00 0.00 99.57 

Au 0.00 99.68 1.05 0.00 0.00 0.00 100.74 

Au in Gangue 0.00 99.70 0.53 0.00 0.00 0.00 100.23 

Au in Gangue 0.00 100.10 0.00 0.00 0.00 0.00 100.10 

Au in Gangue 0.00 98.18 1.78 0.00 0.00 0.00 99.96 

Au Occluded 0.00 98.56 0.53 0.00 0.00 0.11 99.20 

Au remobilised 0.00 98.02 1.11 0.00 0.00 0.00 99.13 

Au remobilised 0.00 98.47 0.96 0.00 0.00 0.00 99.43 

Clausthalite 0.00 0.00 0.00 72.24 27.87 0.00 100.12 

Tellurium 100.03 0.00 0.00 0.00 0.00 0.00 100.03 

Hanging wall ore body 

       Au 0.00 95.86 4.22 0.00 0.00 0.00 100.08 

 

 

 

Table 3. Summary of microthermometric data from fluid inclusions at Gounkoto 

Type Tm(CO2) Tm(Cl) Tm(ice) Th(CO2)(L) Th(CO2)(V) Th(CO2)(C) Ts Th(V) Th(L) Td 

Type-I 

          
Min -60.9 - - -5.6 25.4 26.0 - - - - 

Max -57.7 - - 30.6 26.3 27.3 - - - - 

Mean -58.7 - - 19.8 25.9 26.6 - - - - 

N 63.0 - - 56.0 2.0 3.0 - - - - 

Type-II 

          
Min - - -4.9 - - - - - 146.0 0.7 

Max - - -0.2 - - - - - 364.8 0.9 

Mean - - -2.7 - - - - - 232.5 0.8 

N - - 12.0 - - - - - 12.0 11.0 

Type-III 

          
Min -62.3 -12.9 - -14.4 - - - 270.5 240.0 200.0 

Max -58.1 9.7 - 29.7 - - - 369.5 340.3 300.0 

Mean -58.6 5.9 - 18.2 - - - 328.1 298.4 256.5 

N 35.0 36.0 - 36.0 - - - 20.0 5.0 5.0 

Type-IV 

          
1 -58.1 - - 1.7 - - - - - - 

2 -59.0 -11.2 - 15.7 - - - - - - 

3 -60.0 -9.5 - 7.0 - - - - 445.0 - 

4 -57.3 - - 

 

- - 342.8 - 460.0 - 
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Table 4. Summary of calculated bulk composition and density data, including compositions derived 
from laser raman analyses at Gounkoto. χ refers to molar proportions. 

     

Molecular % 

 

χ 

 

Wt. % NaCl equiv. ρCO2 (gcm-3) ρTotal (gcm-3) 

 

CO2 N2 CH4 

 

H2O NaCl CO2 

Type-I 

           
Min - 0.22 - 

 

78.48 0.00 0.00 

 

- - 1.00 

Max - 0.93 - 

 

99.38 21.52 1.07 

 

- - 1.00 

Mean - 0.69 - 

 

91.97 7.53 0.50 

 

- - 1.00 

N - 60 - 

 

5 5 5 

 

- - 60 

Type-II 

           
Min 0.35 - 0.66 

 

- - - 

 

0.97 0.00 - 

Max 7.73 - 0.97 

 

- - - 

 

1.00 0.03 - 

Mean 4.38 - 0.87 

 

- - - 

 

0.99 0.01 - 

N 12 - 12 

 

- - - 

 

12 12 - 

Type-III 

           
Min 0.63 0.68 0.69 

 

- - - 

 

0.40 0.00 0.00 

Max 26.28 0.97 1.06 

 

- - - 

 

0.87 0.14 0.57 

Mean 6.44 0.77 0.92 

 

- - - 

 

0.68 0.03 0.20 

N 36 36 35 

 

- - - 

 

24 24 35 

Type-IV 

           
1 39.77 0.88 1.21 

 

- - - 

 

0.40 0.37 0.26 

2 - 0.80 

  

- - - 

 

- - - 

3 36.46 0.85 1.28 

 

- - - 

 

0.36 0.56 0.07 

4 41.74 - 1.32 

 

- - - 

 

0.38 0.53 0.09 
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Table 5. Table summarising stable isotope data from the Gounkoto deposit and the surrounding area 
(for diagenetic pyrite). * - data points from Lawrence et al. (2013b). Abbreviations: Apy, - 
arsenopyrite, Ank – ankerite, Dol – dolomite, Hm – haematite, Mag – magnetite, Py – pyrite, Qtz – 
quartz. 

 

δ13CPDB (‰) 

 

δ18OSMOW (‰) 

 

δ34SCDT (‰) 

 

δ18OH2O (‰) 

Sample Dol Ank 

 

Qtz Dol Ank Mag Hm 

 

Py Apy 

 

Qtz Dol Ank Mag Hm 

Ore body 

JLS01 - - 
 

- - - - - 
 

8.2 8.8 
 

- - - - - 

JLS02 - - 
 

- - - - - 
 

7.0 - 
 

- - - - - 

JLS03 - - 
 

- - - - - 
 

8.4 - 
 

- - - - - 

JLS05 - - 
 

- - - - - 
 

9.5 - 
 

- - - - - 

JLS06 -11.2 - 
 

- 19.1 - - - 
 

10.0 - 
 

- 14.0 - - - 

JLS09 - - 
 

- - - 4.2 - 
 

- - 
 

- - - 12.4 - 

JLS10 - - 
 

- - - - - 
 

6.4 - 
 

- - - - - 

JLS10B - - 
 

- - - - - 
 

7.8 - 
 

- - - - - 

JLS12 
 

-13.6 
 

12.9 16.3 - - - 
 

12.5 - 
 

7.3 11.2 - - - 

JLS13 - - 
 

- - - - -1.3 
 

- - 
 

- - - - 8.7 

JLS15 - - 
 

- - - - -1.5 
 

- - 
 

- - - - 8.5 

JLS19 - - 
 

- - - - - 
 

7.0 - 
 

- - - - - 

JLS20 - - 
 

- - - - - 
 

9.7 - 
 

- - - - - 

JLS21 - - 
 

- - - - - 
 

12.8 - 
 

- - - - - 

JLS22 - - 
 

17.1 - - - - 
 

5.9 - 
 

11.5 - - - - 

JLS23 - - 
 

- - - - - 
 

8.0 - 
 

- - - - - 

JLS25 -6.3 - 
 

17.4 17.7 - - - 
 

- - 
 

11.8 12.6 - - - 

JLS26 -9.4 - 
 

16.8 20.5 - - - 
 

- - 
 

11.2 15.3 - - - 

JLS27 - - 
 

- 
 

- - - 
 

9.6 - 
 

- - - - - 

JLS28 -6.7 - 
 

16.1 15.2 - - - 
 

- - 
 

10.5 10.0 - - - 

JLS31 - - 
 

- - - - - 
 

10.3 - 
 

- - - - - 

JLS33 -8.9 - 
 

- 14.9 - - - 
 

9.7 - 
 

- 9.8 - - - 

JLS34 -9.0 - 
 

- 19.8 - - - 
 

5.8 - 
 

- 14.6 - - - 

JLS34B - - 
 

- - - - - 
 

6.8 - 
 

- - - - - 

JLS35 - -8.0 
 

15.7 14.7 - - - 
 

- - 
 

10.1 9.6 - - - 

Diagenetic pyrite 

JLSB09 - - 
 

- - - - - 
 

19.7 - 
 

- - - - - 

JLSB07 - - 
 

- - - - - 
 

25.1 - 
 

- - - - - 

07YD52* - - 
 

- - - - - 
 

9.0 - 
 

- - - - - 

07YD89* - - 
 

- - - - - 
 

6.4 - 
 

- - - - - 

Barren carbonate veining 

JLS18 -2.4 - 
 

- 18.2 - - - 
 

- - 
 

- - - - - 

JLS29 -0.5 - 
 

- 18.2 - - - 
 

- - 
 

- - - - - 

Host dolostone 

JLS32 -3.1 - 
 

- 19.3 - - - 
 

- - 
 

- - - - - 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

27 
 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
 

 
Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 

 
Fig. 11 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

36 
 

 

Graphical abstract 
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Highlights 

 

 The Gounkoto ore body is characterised by sodic and phyllic alteration, As- and Fe-rich ore 
assemblages, with abundant magnetite, and overall enrichment in Fe-As-Cu-Au-Ag-W-Ni-Co-
REE + minor Te-Pb-Se-Cd. 

 Fluid inclusion assemblages indicate the presence of two hydrothermal fluids: (1) a 
moderate temperature (315-340 °C), low salinity (<10 wt. % NaCl equiv.), low density (≤1 
gcm-3), H2O-CO2-NaCl-H2S±N2-CH4 fluid; (2) a high temperature (up to 445 °C), hypersaline 
(~40 wt. % NaCl equiv.), high density (~1.3 gcm-3), H2O-CO2-NaCl±FeCl2 fluid. 

 These two fluids mixed during ore formation, leading to enhanced phase separation and Au 
precipitation. 

 Fluid inclusion analysis indicate that the Gounkoto was formed at P-T conditions of 
approximately 1.4 kbar and 340 °C. 

 Stable isotope analysis (O, C amd S) suggests that ore forming components were derived 
from devolatilisation of sedimentary rocks during metamorphism. 


