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Abstract

In this paper a model for predicting fatigue delamination growth in laminated

composites under high cycle fatigue is proposed. The model uses the cohesive zone

approach and a two-scale continuum damage mechanics model. The behavior of

the interface material is considered quasi-brittle at the macro scale while plastic

deformations are allowed at the scale of micro-defects. The validity of the pro-

posed model is investigated through several standard tests using experimental

data from literature. Good agreement between the numerical and experimental

results is observed. The model is also capable of simulating fatigue under variable

amplitude loading. This feature of model is shown through several sample simula-

tions.
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1. Introduction

Many composite structures such as wind turbine blades and aircraft wings expe-

rience cyclic loading in their lifetime. Fatigue is one of the most important forms

of failure that should be taken into account in designing such structures. Fatigue

damage in laminated composites can have several forms such as fiber breakage,5

matrix cracking, fiber-matrix debonding and delamination. Delamination is sepa-

ration of layers and can be initiated by low velocity impact, interlaminar stresses

near the free edge or manufacturing defects. After delamination is initiated, it can

grow under fatigue loading which can lead to a substantial decrease in structural

stiffness specially under compressive loads. The ability to predict the delamination10

growth under fatigue can help in the design process of safe structures.

Several approaches such as methods based on fracture mechanics and cohesive

zone methods have been used to simulate the delamination growth. The cohesive

zone approach has proven to be a powerful tool for modeling delamination with

straightforward numerical implementation. Compared to conventional implemen-15

tations of fracture mechanics methods, this approach has several advantages such

as the ability of modeling initiation and propagation of delamination in a unified

way and no need for remeshing after each step of crack growth. In this method a

cohesive layer is introduced in potential crack plane. It is assumed that a cohesive

process zone exists near the crack tip and in this zone separation of the interface20

is controlled by a non-linear traction-separation law.

Although use of the cohesive zone method in monotonic loading has been widely

explored, less research has been carried out on fatigue loading [1–5] . While most

of proposed models are more suitable for cycle by cycle analysis and hence low cy-
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cle fatigue, some phenomenological models more appropriate to high cycle fatigue25

have been proposed [6, 7]. Several researchers [8, 9] have aimed to find the growth

rate of a damage parameter associated with cohesive law using Paris equation. Al-

though these models use Paris equation constants and do not require new material

parameters, linking the cohesive zone damage growth to crack growth rate is not

straightforward and some assumptions have to be made.30

Most methods used for delamination growth like fracture mechanics and cohesive

zone approaches are phenomenological methods and do not consider microscopic

mechanisms of failure. In these methods well-defined experimentally measured pa-

rameters are used to evaluate the structural integrity. In cohesive zone approach

these parameters are the maximum strength of the interface and critical value of35

energy release rate. The overall effects of microscopic mechanisms are reflected

through these parameters and no analysis of these mechanisms is carried out.

While incorporating the underlying microscopic behavior in failure analysis pro-

vides more insight, it can be computationally challenging.

In this paper the common cohesive zone model has been enriched by incorporat-40

ing microscopic material behavior. As exploring microscopic scale can have many

different levels, this model tries to use a simple approach and remain computa-

tionally manageable.

2. Formulation

In this paper a combination of the cohesive zone model (CZM) and a two-scale45

damage model (TSDM) for high cycle fatigue is used to model delamination growth.

When a laminated composite with an initial delamination is subjected to high

cycle fatigue loads, the area surrounding the crack tip will experience damage.
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In the CZM a damage zone is assumed to exist ahead of crack tip which repre-

sents this damaged area. During high cycle fatigue this damage will grow gradu-50

ally and growth and coalescence of micro-defects will result in complete failure of

this area and advance of the crack. In the CZM the damaged area ahead of crack

tip is called cohesive zone and is represented by elements which have entered into

the softening zone in their constitutive equation. Considering this cohesive zone,

a proper damage evolution model to simulate the damage growth under cyclic55

loading is required to have a complete model for predicting delamination growth

under fatigue loading. In this paper a two-scale damage model has been used for

this purpose. While in low cycle fatigue the damage growth is accompanied with

plastic strains, in high cycle fatigue no considerable plastic strains is observed.

Although there is no sensible plastic strains at macro-scale, at micro-scale (scale60

of defects) plastic strains exists [10]. Therefore use of a two-scale damage model

which can relate the plastic strain and damage in micro-scale to material behavior

in macro-scale seems a reasonable approach [10–12]. In this section the CZM and

TSDM approaches will be discussed.

2.1. Cohesive Zone Model65

The cohesive zone model is one of the most common methods for simulating the

delamination phenomenon. This method is based on finite elements and unlike

common procedure of fracture mechanics like virtual crack closure technique (VCCT),

does not require a remesh after each increment of crack growth. In this method

cohesive elements are placed in the expected path of crack growth e.g. between70

plies in laminated composites.

Cohesive elements are not linear elastic and follow a traction-separation law where
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stress increases linearly from zero to a maximum value (interface strength) and is

reduced back to zero at complete material failure. This relation usually includes a

damage parameter to progressively reduce the stiffness of the element as interfaces75

separate. Several traction-separation laws have been suggested [13–17] among

which the bi-linear law is most common for composites. The bi-linear traction-

separation law is written as follows:


Ti = Kδi if 0 ≤ δi ≤ ∆0

i

Ti = (1 − d)Kδi if ∆0
i ≤ δi ≤ ∆f

i

Ti = 0 if ∆f
i ≤ δi

(1)

with damage parameter d as:

d =
∆f
i (δi − ∆0

i )

δi(∆
f
i − ∆0

i )
(2)

where K is called penalty stiffness, δi and Ti are separation and traction in i di-

rection and ∆0
i and ∆f

i are separations at damage initiation and total decohesion80

in i direction (Figure 1). The area under the traction-separation curve shows the

critical energy release rate Gc.

When the maximum stress in traction-separation law is reached, the damage pro-

cess and softening starts. When the point is unloaded, the separation will go to-

ward zero and no permanent separation is left. The unloading and reloading paths85

coincide (Figure 1) and in subsequent reloading the material will behave linearly

with the new stiffness value until the new maximum stress is reached. A dam-

age variable which has the value of 0 at the beginning of the softening zone and

reaches the value of 1 at the end of this zone can be defined using the ratio be-
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tween rate of dissipated energy and critical energy release rate or between the cur-90

rent and initial maximum stress:

D =
U

Gc

= 1 − T

T 0
(3)

where U is the dissipated energy until δ (Figure 1). This damage parameter has

the following relation with damage parameter d used in traction-separation law

(Equation 1):

D = 1 − δ

∆0
(1 − d) (4)

Figure 1: Dissipated energy at separation δ.

From the perspective of continuum damage mechanics, this damage variable is95

defined as the density of micro-defects in representative volume element (RVE)

where with the assumption of isotropic damage it can be taken equal to the ratio

of damaged area to total area [10]:

D =
δSD
δS

(5)

The stress acting on the remaining area (δS − δSD) is called effective stress σ̃ and
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has the following relation with stress σ :100

σ̃ =
σ

1 −D
(6)

Using this definition and Equation 3, the effective stress in the entire softening

zone will be T 0 :

σ̃ = T 0 =
T

1 −D
(7)

This effective stress will be used as the input to two-scale damage model to cal-

culate the plastic deformation in micro-scale. Distribution of these measures of

stress and the cohesive length are shown in Figure 2.105

Figure 2: Stress and effective stress distributions in the cohesive zone.

2.2. Two-Scale Damage Model

Mechanical properties are presented as homogenized variables over an RVE in

continuum mechanics. For example damage parameter as was presented in Equa-
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tion 5 represents all the defects present in the RVE. In this paper two scales are

used to model high cycle fatigue [10–12]: 1) the macro-scale which is the classi-110

cal scale of continuum mechanics and 2)the micro-scale that is the scale of the

defects present in the RVE which their effect on the elastic macroscopic behav-

ior is not sensible except for failure. While in ductile failure, low cycle fatigue and

creep, considerable plastic deformation occurs at the macro-scale, in quasi-brittle

failure and high cycle fatigue no plastic deformation can be observed. However,115

at the micro-scale, plastic strain is present in such processes [10]. In these cases,

plasticity occurs at the micro-scale while macro-scale behaves elastically. This be-

havior has been taken into account by Lemaitre et al. [10–12] by considering all

the micro-defects as a weak inclusion and the macro-scale as a stronger surround-

ing matrix (Figure 3). The inclusion is called weak since it has lower yield stress120

than the surrounding matrix and undergoes plastic deformation while the matrix

remains elastic. While the yield stress of the surrounding matrix is equal to the

yield stress of the material at the macro-scale, the yield stress of the inclusion is

taken lower and equal to the fatigue endurance limit of the material. Consider-

ing all the defects in a material point as a weak inclusion acts as a homogeniza-125

tion process in the two-scale model. In the current paper this two-scale model has

been adopted to use plastic strains in the micro-scale to calculate the fatigue dam-

age growth in an interface material like epoxy which by use of energy release rate

and bi-linear traction-separation law is treated as a quasi-brittle material at the

macro-scale.130

When loads are applied, the inclusion will undergo plastic deformation and tends

to experience large strains but the elastic matrix will constraint this deforma-

tion. The solution to the problem of deformed inclusion restricted by an elastic
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surrounding matrix was first proposed by Eshelby [18].

Figure 3: A weak inclusion embedded in an elastic RVE.

In the micro-scale, elastic-plastic behavior with linear kinematic hardening is as-

sumed. In this scale the material is weakened by introducing plastic behavior with

a yield stress σµy equal to fatigue endurance limit σ∞f . The yield criterion is writ-

ten as follows:

fµ = (σ̃µ −Xµ)eq − σ∞f (8)

where σ̃µ and Xµ are effective stress and back stress tensors in the micro-scale

and ()eq shows von Mises norm. The superscript µ is used for quantities at the

micro-scale throughout this paper. For simplification only kinematic linear hard-

ening is considered:

Ẋµ
ij =

2

3
Cy ε̇

µp
ij (1 −Ds) (9)

where ε̇µpij is the rate of the plastic strain tensor, Ds is static damage at macro-

scale described in more detail in section 2.3 and Cy is the plastic modulus in micro-

scale and is assumed to be the same as the measured value in the macro-scale.

The flow rule has the following form:

ε̇µpij =
3

2

S̃µij −Xµ
ij

(σ̃µ −Xµ)eq

λ̇

1 −Ds

(10)
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where S̃µij is the deviatoric stress tensor and λ̇ is the plastic multiplier. The accu-

mulated plastic strain rate is defined as the following norm of the plastic strain

tensor rate:

ṗµ =

√
2

3
ε̇µpij ε̇

µp
ij (11)

The plastic multiplier λ̇ = ṗµ(1 −Ds) can be obtained using the consistency condi-135

tion fµ = 0 and ḟµ = 0.

In the cohesive zone approach the opening of the crack is opposed by cohesive

stresses. Here it is assumed that these stresses are applied by very thin resin layer

between two interfaces or laminas. The reaction of these cohesive stresses will

be applied by the interface to the resin with the same magnitude and in the op-

posite direction. Having these forces applied on the resin, an approximation for

stress state in the resin has been found. The normal stress component in direc-

tion normal to mode I direction is ignored in the cohesive models because of its

small contribution to energy release rate and damage. Other stress components

associated with plane strain loading conditions may appear in the macro-scale.

Plane strain condition in the macro-scale would not necessarily lead to the same

condition in the micro-scale and nonzero out-of-plane strain component may also

appear in this scale. Because of the small thickness of the resin, it is assumed that

the stresses do not vary along the thickness. The Eshelby-Krnoer localization law

is used for the scale transition. Total and plastic strains at the macro-scale are

related to strains at the micro-sclae through the following equation:

εµij = εij + β(εµpij − εpij) (12)

the term εpij is set to zero since there exists no plastic strain at the macro-scale
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and the total strain at the macro scale εij is calculated from stresses at this scale

using elastic compliance tensor. For a spherical inclusion β is given by Eshelby’s

analysis as:

β =
2

15

4 − 5ν

1 − ν
(13)

where ν is Poisson’s ratio.

2.3. Fatigue Damage Evolution

Damage created by the application of cyclic loading can be divided into two parts:

initial damage caused by amplitude of applied load and the damage accumulated140

by repetition of this amplitude. These two damage components are respectively

shown by Ds and Df in the following equation:

D = Ds +Df (14)

The Ds component can be calculated from Equation 3 after finding the status of

the cohesive zone through quasi-static analysis of the specimen subjected to a load

equal to the amplitude. The Df component will be found through damage evolu-145

tion equation that will be introduced in this section.

While cycle by cycle analysis is appropriate for low cycle fatigue, it is computa-

tionally prohibitive for high cycle fatigue which involves a number of cycles of the

order 105 or more. A strategy that is used as a remedy is the cycle jump method

which compromises precision in exchange for a reduction in computation time. In150

this approximation it is assumed that the damage growth or crack growth rate re-

mains constant over a number of cycles. If the damage growth rate at cycle N is
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dD
dN

, damage after ∆N cycles after this point will be:

DN+∆N =
dD

dN

∣∣∣∣
N

∆N +DN (15)

Since current work is oriented toward high cycle fatigue analysis, use of such a

strategy is justifiable. Having this tradeoff between precision and computation155

cost in mind, instead of using a damage growth model for each point in the co-

hesive zone, a damage parameter for entire cohesive zone is proposed, since the

former involves more complexity and will lose its superiority in precision by use of

the cycle jump method. In this method it will be assumed that the whole cohesive

zone will fail at the same rate (because they all experience same effective stress160

according to Equation 7 ) and since cohesive zone is small in high cycle fatigue,

this will not require a big ∆N . A single value for Ds will be used for the whole

cohesive zone which is the average of Ds values at different integration points in

this zone. After the whole cohesive zone fails, the crack advances to the extent of

this zone and the analysis is repeated for the newly formed cohesive zone .165

Integrating the TSDM set of equations using Ds damage value, the accumulated

plastic strain ∆pµ (Equation 11) over once loading cycle can be calculated. Using

this value we propose the following equation for damage evolution of the cohesive

zone:

dDf

dN
= α(∆pµlc)

β (16)

where ∆pµ is the accumulated plastic strain in one loading cycle and lc is the170

length of the cohesive zone. Material parameters α and β are found through curve

fitting. Dependence of the damage growth on the length of the cohesive zone be-
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side permanent deformation in micro-scale can be justified by non-local damage

theory. While this theory has been used to avoid local softening and mesh depen-

dency in implementation of continuum damage mechanics, it is more than just a175

numerical remedy and has a sound physical interpretation. While according to the

principal of local action which is vastly used in continuum mechanics, damage at

each point only depends on the strain state of that point, the non-smooth distri-

bution of strain in the micro-structure makes the use of non-local damage models

more justifiable. In these models, the effects of strain in neighboring points are180

also included in the damage evolution. Likewise in the model proposed here, there

is a dependency between the damage growth rate and the extent of the plastic

zone around each point.

3. Results and Discussion

The cohesive element formulation has been implemented through a user element185

subroutine (UEL) in ABAQUS® [19]. The model containing standard plane strain

elements and these cohesive elements, is solved prior to applying the fatigue load.

From this analysis the damage induced by the cyclic load amplitude i.e. DS in

Equation 14 and the length of cohesive zone associated with this load is found.

The plastic strain in each cycle is calculated by integrating the TSDM set of equa-190

tions using Elastic predictor-plastic corrector scheme. This value and the cohesive

zone length will be used to calculate the fatigue damage accumulation (Equation

16).

To investigate the performance of the present model under mode I and II, delami-

nation growth in a double cantilever beam (DCB) and a 4-point end notch flexure195

(4ENF) specimens are simulated and results are compared with experimental re-
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sults reported by Asp et. al [20]. The experiments were performed on HTA/6376C

carbon/epoxy with [012//(±5/04)s] layup where // refers to plane where initial

crack is introduced. The specimen has width b = 20 mm, length l = 150 mm,

thickness 2h = 3.1 mm and crack length a0 = 35 mm. The specimen geometry is200

shown in Figure 4. Material properties for this specimen are taken from [20, 21]

(see Table 1). Values of Cy = E3

100
and σ∞f = σy

3
are chosen for the plastic modulus

and the fatigue endurance limit of the resin material.

Figure 4: Double cantilever beam specimen dimensions.

Table 1: Material Properties for HTA/6376C carbon/epoxy [20, 21].

Property Value Property Value

E11(GPa) 120 GIc (kJ/m2) 0.260

E22 = E33(GPa) 10.5 GIIc (kJ/m2) 1.002

G12 = G13(GPa) 5.25 K (N/mm3) 106

G23(GPa) 3.48 T 0
I (MPa) 30

ν12 = ν13 0.3 T 0
II = T 0

III (MPa) 30

ν23 0.51

The loading pattern for mode I (DCB) and mode II (4ENF) specimens are shown

in Figure 5. Since the intention is to compare the results with previous works

which have used Paris equation, the strain energy release rate has been computed

for each loading. The Paris equation can be written in terms of energy release rate
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as following:

da

dN
= C

(
∆G

Gc

)m
(17)

where a is crack length, N is number of load cycles, ∆G is the cyclic change in

energy release rate, Gc is critical energy release rate and C and m are material205

parameters. For the material under study, C and m for mode I are obtained re-

spectively 0.0031 mm/cycle, and 5.4 from results provided in [20].

Figure 5: Loading patterns for (a) DCB and (b) 4ENF specimens

The crack growth rate (da/dN) vs. GI/GIc is plotted in Figure 6-a for results ob-

tained from the present model and from the experiments [20]. The Paris curve

fitted to experimental data has also been plotted. Numerical and experimental re-210

sults are in good agreement for fitting parameters of α=3.48 × 1015 1
cycle(mm)β

and

β=8.51.

Paris equation (Equation 17) constants for mode II for experimental results pre-

sented in [20], are C = 0.15 mm/cycle and m = 4.5 .Using these constants,

Paris equation is plotted in Figure 6-b. Choosing fitting parameters value of α =215

2.4 × 106 1
cycle(mm2)β

and β = 5.86 a very good agreement between numerical and

experimental results is observed.
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Figure 6: Crack growth rate vs. energy release rate ratio for (a) mode I and (b) mode II from
numerical results of present model and experimental results of [20].

The fatigue crack advance is due to accumulation of damage in the cohesive zone

at the tip of the crack. This damage accumulation consists of nucleation, growth

and coalescence of micro-defects such as micro-cracks, micro-crazes and micro-220

voids. These micro-defects are small compared to the scale of representative vol-

ume element (RVE) used in definition of damage variable in damage mechan-

ics, therefore they are treated as a smaller, separated scale. The growth of these

micro-defects is accompanied by plastic deformation and in the current work this

plastic deformation is used to calculate rate of damage evolution. The stress-strain225

relation for a complete cycle at the micro and macro scale with load ratio R=0 is

shown in Figure 7-a. The stress at the macro-scale follows a linear path ABC′A

from beginning to the end of a cycle. Simultaneously the micro-scale stress expe-

riences nonlinear behavior with kinematic strain hardening along ABCDA path.

The change in accumulated plastic strain at micro-scale during a cycle is shown in230

Figure 7-b.

Many composite structures such as wind turbine blades and aircraft wings experi-

ence variable amplitude loading during their lifetime. The cohesive zone modeling
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Figure 7: (a) stress-Strain variation in micro and macro scales (b) accumulated plastic strain in
micro-scale.

is a good tool to handle variable amplitude loading histories since it doesn’t re-

quire remeshing after each step of crack growth. To test the performance of the235

model under variable amplitude loading, three different loads levels P1, P2 and P3

have been chosen. Each of these loads have been applied for respectively N1, N2

and N3 cycles and the crack growth has been calculated. For values of load and

cycles shown in Table 2 the obtained crack growth length is 1.43 mm and has dif-

ference of 5.68 % with value calculated using Paris equation. From the 13 loads240

shown in Figure 6 with markers, all possible combinations of 3 different values are

chosen and for simplicity the loads are applied in order of biggest to smallest. All

the 286 possible choices of 3 loads , and their error are shown in Figure 8. It can

be seen from this figure the maximum error is about 22 %.

Table 2: Load values and number of cycles for variable amplitude loading.

N1 P1 N2 P2 N3 P3

3103 776 N 1551 890.26 N 663 997.03 N

A loading history containing different loading amplitudes randomly chosen from245

13 loads shown by markers in Figure 6 is produced. This loading history is shown

in Figure 9-a. The damage growth for this loading history has been obtained us-
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Figure 8: Errors in calculated crack growth for different combinations of three load values.

ing the present model and is illustrated in Figure 9-b.

Figure 9: (a) A loading history with random varying amplitudes (b) Damage growth vs. number
of load cycles .

In actual applications usually there is no pure mode I or mode II loading and a

mixture of these loading modes may be present. A mixed-mode loading scenario250

is specified by its mode ratio which is defined as the following ratio at the edge of
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the cohesive zone which is the most highly damaged point of this zone:

B =
δII
λ

(18)

where δII is the separation in mode II and λ =
√
δ2
I + δ2

II is the mixed-mode

equivalent separation. In Figure 10 parameters α and β are plotted for different

mode ratios, where B = 0 and B = 1 correspond to pure mode I and mode II255

respectively. The parameters for mixed-mode ratio of 0.42 are calculated by simu-

lation of fatigue crack growth in a mixed-mode specimen and fitting the results to

the experimental data from [20]. The non-monotonic change in β with respect to

mode-ratio is also recognized by Blanco et al. [22] for Paris equation constants. In

Figure 10 a second order polynomial is fitted to the data. Values for other mode260

ratios can be found using this interpolation. Having access to experimental data

for more mixed-mode ratios can lead to more accurate interpolation.

Figure 10: Variation of model parameters with mode ratio.

4. Conclusion

A new approach for fatigue delamination growth prediction in laminated compos-

ites was proposed. The cohesive zone model along with a two-scale damage model265
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was used to link the material behavior at macro and micro scales. The damage in

the softened zone surrounding the crack tip was divided in two parts: a part re-

sponsible for the damage induced by the amplitude of cyclic loading and a part

representing the damage caused by the repetition of this amplitude. The growth

of the later component per cycle was related to the accumulated plastic strain in270

micro-scale during the cycle and the length of the cohesive zone. The proposed

model tries to avoid high computational cost of high cycle fatigue simulation by

using a strategy based on cycle jump method. The model was successfully used

to simulate the experiments presented in literature for pure mode I and mode II

delamination under constant amplitude cyclic loading. The model parameters for275

mode I, mode II and mixed mode loading were obtained; dependence of the dam-

age model parameters on loading mode can be eliminated by further understand-

ing of the fatigue damage mechanism. While the accuracy of some of the model

assumptions can be improved with more experimental data available, the proposed

approach can be considered as a framework for multi-scale fatigue damage analy-280

sis. It was shown that the model is able to handle the variable amplitude loading

with a relatively good accuracy. A numerical example was used to show the abil-

ity of the model with variable amplitude loading. However further experimental

data is needed to validate this aspect of the model.
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