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Abstract 

This paper explores the vegetation signals contained in the non-arboreal pollen and spore (NAPS) 

components of pollen assemblages from Tauber traps placed in woodlands subject to rotational 

cutting (coppicing) in lowland England. Sets of three Tauber traps were placed in compartments of 

different ages at multiple locations within each woodland for one year, and pollen assemblages 

recorded along with a vegetation survey using a modified pin-frame method in an area of 10m 

radius around each trap array. Cluster analysis suggests that, as expected, the ground layer 

vegetation broadly reflects the different environmental conditions in the three woods, with the main 

subdivisions within woods apparently driven by changes in ground cover between the early and late 

stages of the coppice cycle. Non-arboreal pollen and spores (NAPS) assemblages group according to 

woodland of origin, with subdivisions which relate to pollen abundance but lack a simple 

relationship with years since cutting. Indices of Association between NAPS records and plant 

presence in the area around each array were calculated using presence-absence data for multiple 

distances of vegetation survey. All values tend towards an asymptote, which is interpreted as 

implying an effective source area for the single taxon presence-absence indicator values of ground 

flora taxa in coppiced woodlands on the order of a 10m radius. Only four taxa, Poaceae, Ranunculus 

acris-type, Cyperaceae and Scilla-type, have an Index of Association (A) greater than 0.5, implying 

that the presence of pollen can be interpreted in terms of the local presence of the relevant plant 

taxon with some confidence. Estimates of Pollen Productivity relative to Poaceae are presented for 

five taxa, Apiaceae, Asteraceae (Cardueae), Cyperaceae, Mercurialis perennis, and Scilla-type. 

Years since cutting does affect the ground vegetation and NAPS assemblage trapped in these woods, 

but that the effect is more clearly seen at an assemblage level in the vegetation than in the pollen 

assemblages. The interpretative significance of NAPS taxa does not seem to be in providing 

information about the local conditions around the sampling point, but in reflecting the ground flora 

of the wider woodland. 
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Highlights: 

• Non-arboreal pollen and spore (NAPS) influx in coppiced woodlands is studied 

• NAPS/plant presence Association Indices calculated for several survey distances 

• Indices imply effective source area for ground flora is approx. 10m radius 

• Estimates of Pollen Productivity are presented for five taxa 

• NAPS record reflects ground flora of wider woodland not of local compartment 
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1. Introduction 

Pollen analysis is the main technique used to reconstruct past vegetation on Holocene timescales, 

from the simplest broad brush identification of whether trees are present in a landscape through to 

increasingly sophisticated reconstructions of vegetation composition (Trondman, et al. 2015), land-

use (e.g. Court-Picon, 2006) and the spatial patterning of vegetation (Hellman, et al. 2009a, 2009b). 

At the landscape scale fluctuations in the ratio of pollen from non-tree plant sources (non-arboreal 

pollen, NAP or non-arboreal pollen and spores, NAPS) to pollen from tree and shrub functional types 

(arboreal pollen, AP) are usually interpreted as indicating changes in the proportion of openness in 

vegetation communities  (e.g. Berglund, et al. 1991, 1996). Given differences within and between 

communities in the amount of pollen produced and its dispersibility, translation of the ratio into land 

cover estimates is not trivial (e.g. Sugita, et al. 1999), but the use of taxon-specific pollen dispersal 

and deposition models has offered an approach for improving reconstructions of landscape 

openness (Gaillard, et al. 2008, Trondman, et al. 2015). 

 

However, woodland communities also contain plants which produce NAP(S) types. The pollen signal 

of these types is usually assumed to be minor compared with the AP component, but can fluctuate 

depending on the canopy density and species and on manipulations of the canopy by disturbance 

factors such as human management. Coppicing, the practice of cutting some trees to the base to 

encourage resprouting, yielding even-aged new shoots which can be harvested repeatedly (and 

sequentially in different compartments), is a widely used traditional woodland management method 

in north-west Europe (Ellenberg, 1988; Rackham, 2003). When coppicing is undertaken in 

conjunction with allowing some trees to grow to maturity (standards), a woodland can produce both 

large timber and underwood for construction, fuel, fencing and other uses. Coppiced woodlands also 

provide a range of non-timber resources such as fungi, berries, nuts, pannage and other livestock 

forage, and habitat to support prey animals for hunting for food or sport. Archaeological evidence 

for the practice of coppicing is extensive and goes back to the Mesolithic period (e.g. Rackham, 

1979; Malmros, 1986; Rasmussen, 1993; Pedersen, et al., 1997; Favre and Jacomet, 1998), and its 
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importance for the production of high-quality charcoal meant it remained an important practice in 

some areas into the industrial era. Like most traditional land management practices it began to fall 

out of use in the nineteenth century, but the restoration or introduction of coppicing became a 

valued conservation management tool in the later twentieth century (e.g. Rackham, 2003), and is 

also practiced in an intensive form as a source of carbon-neutral biofuel for power production. 

Ecologically, the variation in canopy cover and therefore light reaching the ground layer of the 

woodland is a key characteristic of the coppiced woodland (Rackham, 1990), which will lead to 

changes in the flowering and pollen production of the NAPS-producing species as well as the 

coppiced tree species (Waller, et al. 2012). Over a whole landscape, this effect will average out, but 

when pollen sites with relatively small source areas such as ponds, small mires or forest hollows (e.g. 

Sugita, 1994) are considered, fluctuations in the pollen record of NAP(S) taxa may be the result of 

coppicing rather than reflecting changes in the woodland: open land ratio. 

 

There are multiple possible causes of variations in the proportion of NAP(S) in a woodland pollen 

assemblage during a coppice cycle. These increases could result from increased pollen production by 

ground cover plants, through an increase in area covered by those species or greater flowering of 

existing plants in response to increased light levels reaching the ground. Alternatively, the woodland 

NAP(S) influx could remain near-constant, but apparent fluctuations be caused by the effects of 

coppicing on the AP components of the local pollen rain, along with the more open canopy allowing 

greater input of pollen from a wider landscape, including open communities, during the early stages 

of the cycle, which later on is intercepted by the increasingly dense and tall canopy of regrowths. 

The situation is further complicated for pollen types which can originate from multiple plant species.  

For example, a variation in Poaceae proportions could reflect differences in grass abundance, in the 

species mixture present, in the long-distance pollen component from open land beyond the 

woodland, or facultative switching between vegetative and sexual reproduction due to light 

availability or other disturbance pressures such as grazing (Baker, 2012). 
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This paper uses data from a study of pollen influx into Tauber traps in coppiced woodlands (Waller, 

et al. 2012) to investigate the pollen representation of the ground flora components of the 

vegetation. We aim to determine the representation of changes in ground flora through the coppice 

cycle in the pollen record of NAPS types, as a tool for extracting better information about past land 

management practice from the pollen assemblages produced by complex cultural landscapes and to 

improve the detection of coppice management in long-term pollen records from woodland hollows, 

small ponds or mires, or in peat forming beneath wet woodlands. 

 

2. Methods 

 

2.1. Field sites 

Three woodlands in East Anglia, UK (Figure 1) which are currently subject to coppice management 

were selected for investigation (for more information, see Waller, et al. 2012). At Bradfield Woods 

(52°9’N 0°6’W) in Suffolk (Fig 1b), the coppiced stools consist predominantly of Corylus avellana and 

Fraxinus excelsior, with Alnus glutinosa co-dominant over an area of about 40 ha. Primula elatior, 

Filipendula ulmaria and Mercurialis perennis are common in the ground flora where the wood 

overlies boulder clay and Rubus spp., Pteridium aquilinum and Hyacinthoides non-scripta dominate 

in areas overlying sand. The standards are largely Quercus robur and Betula spp., mostly less than 70 

years old. The majority of Bradfield Woods is managed on a 20+ year rotation. At Chalkney Wood 

(51°54’N 0°43’E; Fig 1c) in central Essex, Tilia cordata is the main coppiced species but in some parts 

of the wood it is co-dominant with coppiced Castanea sativa and less commonly with coppiced 

Carpinus betulus, Fraxinus excelsior, Acer campestre or Corylus avellana. Quercus robur is the main 

standard species, though other species, including Tilia cordata, were recorded as ‘maidens’ in 

2007/8. The ground vegetation is dominated by Hyacinthoides non-scripta with Rubus spp. and 

Pteridium aquilinum. The site is cut on an approximately 25 year rotation. At Hayley Wood (52°10’N 

0°49’E) in Cambridgeshire (Fig. 1d), Corylus avellana forms the bulk of the coppiced stools with some 

Fraxinus excelsior (ash) and Acer campestre (sycamore) coppice beneath a thin canopy of Quercus 
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robur (oak) standards (Rackham, 1990).  Prunus spinosa and Crataegus monogyna are common as 

under-storey shrubs. The ground flora is dominated by Primula elatior and Filipendula ulmaria in 

central and northern areas, while Hyacinthoides non-scripta and Mercurialis perennis dominate or 

co-dominate towards the western, southern and eastern boundaries. Coppicing was reintroduced in 

part of the wood for conservation purposes in 1963-4, with relatively small plots (0.41 ha) cut on a 

14 year rotation. 

 

[INSERT FIGURE 1 HERE] 

 

In all three woods, contemporary (annual) pollen deposition at ground level was investigated using 

'Tauber' traps, following the design of Hicks and Hyvärinen (1999). Three traps were placed in a 

cluster (< 1 m apart) near to the centre of 14 compartments in each wood, a minimum of 20 m from 

the compartment edge. The compartments sampled were those coppiced in the previous year and 

compartments 'aged' up to 7 years (when available) and thereafter at age intervals of approximately 

three years. Traps were set up in October 2006 and collected after a full year. 

 

2.2. Vegetation data 

Vegetation data were collected from the compartments in which the traps were set. The ground 

flora was sampled in March-April 2007 using a modified pin-frame method in concentric rings 

around the centre of the trap array. Four concentric rings (at 1, 2, 4 and 10 m from the traps) were 

defined, and each ring was sampled in eight locations aligned 45o to the centre of the traps, with a 

final sampling location in the centre of the ring by the traps, giving a total of 33 locations. Five points 

were sampled at each location (the centre and four cardinal points at 30 cm from the centre) giving 

a total of165 sample points (see Figure 2). Species present at each point were recorded on a first hit 

basis. Any species occurring within 10 m of the centre of the circle but not recorded at any of the 

points were also noted as present in the relevant distance zone and included in the calculation of the 

indices of association. The area of survey was chosen for efficiency and on the assumption that the 
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pollen source area for ground cover plants under a woodland canopy would be short, since minimal 

opportunities for wind entrainment would occur. 

 

[INSERT FIGURE 2 HERE] 

 

Plants were grouped into palynological equivalent (pe) taxa (see Table 1), and percentage cover 

within each ring calculated. 

 

2.3. Pollen data 

This study used pollen assemblages from Tauber traps which were deployed for a single year, 

allowing precise relationships between the stage of the coppice compartment and the pollen 

assemblage deposited within it to be studied. Most surface sample studies (see e.g. Broström, et al. 

2008) use moss samples which average pollen deposition over an unspecified number of years (e.g. 

Räsänen, et al. 2004), or averaged pollen influx from multiple years of Tauber trap deployment (e.g. 

Sugita, et al. 2010). Whilst these methods do reduce the effects of climate-related inter-annual 

variability in plant flowering (e.g. Huusko and Hicks, 2009; Jackson and Kearsley, 1998), they would 

have blurred the signal of the coppice cycle which we seek to study due to variability in the ground 

vegetation throughout a coppice cycle being greater than the climatic influence between 

consecutive years (e.g. Waller, at al. 2012). Three closely grouped traps were deployed at each 

location, which enabled us to both include some replication within our analyses and screen our data 

for possible distortion from non-airborne modes of pollen deposition, e.g. from anthers or pollen-

bearing insects falling into the trap. 

 

All pollen samples were processed following the methodology of Hicks et al. (1996) for Tauber traps, 

including the addition of tablets of exotic pollen to allow the calculation of pollen influx. A minimum 

of 1000 total land pollen (TLP) grains were counted from each trap and influx calculated in grains cm-

2 yr-1. For most analyses in this paper, influx from the traps in each array was summed to give a basic 
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count of 3000 grains which ensured a minimum non-arboreal pollen and spores (NAPS) count of 300, 

and generally gave counts in excess of 500 grains for analysis. The only exception was the calculation 

of Relative Pollen Productivity (RPP) using the raw influx data (see 2.4.2 below). We screened our 

data for anomalous values in individual taxa by removing the data for any trap where the difference 

in influx of a taxon was greater than an order of magnitude different from the values for the same 

taxon in the other two traps, except at low influxes where the calculation of influx depended on 

counts of 1-2 grains, such that counting errors (Maher, 1972, 1981) are larger than differences in the 

estimated influx.  6% of traps were removed from analysis on this basis for Filipendula, fewer than 

5% for Apiaceae, Asteraceae (Cardueae), Cyperaceae, Lonicera periclymneum, Poaceae and 

Ranunculus acris-type, and no outliers were detected for Mercurialis perennis, Rubus and Scilla-type. 

 

2.4. Data analysis 

WINTwins, the windows version of TWINSPAN (Hills and Šmilauer, 2005), was used to investigate the 

underlying structure within the two datasets (pollen and spore assemblages and vegetation survey 

data) separately and provide an initial overview. Two approaches were then taken to exploring how 

well the pollen assemblages represented the vegetation: Indices of Representation (after Davis, 

1984) and estimation of Pollen Productivity relative to Poaceae (hereafter RPPPoaceae). 

 

2.4.1.  Indices of representation 

The index of association approach (e.g. Davis, 1984; Hjelle, 1997; Bunting, 2003; Fontana, 2005; Li, et 

al. 2005; Schofield, et al. 2007) offers a simple method for investigating the vegetation signal 

contained within the pollen signal of taxa present in small amounts in pollen records, especially in 

contexts where the source area is believed to be small. For this study, all ground layer taxa which 

were recorded as present at least once in both the vegetation and pollen assemblages across the 

three study sites were investigated. Indices of association (A: reflects the co-occurrence of plant and 

pollen in a sample), over-representation (O: type present in the pollen assemblage but not the local 
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vegetation) and under-representation (U: plant present without being recorded in the pollen 

sample) were calculated as follows: 

 

A = B0 (P0 + P1 + B0)-1    (equation 1) 

O = P0 (P0 + B0)-1     (equation 2) 

U = P1 (P1 + B0)-1     (equation 3) 

 

where B0 = number of samples where pollen type is present and associated plant taxon is present 

within a defined distance, P0 = number of samples where the pollen type is present in the surface 

sample but the plant taxon is not present in the vegetation within the defined area, P1 = number of 

samples where the pollen type is not present in the surface sample but the plant taxon is present in 

the vegetation within the defined area. 

 

Since the vegetation data had been collected in concentric rings, it was possible to calculate these 

indices using vegetation data with four different spatial resolutions (presence within radii 1m, 2m, 

4m and 10m from the centre of the trap array). We hypothesised that as the area increased and 

more plants were sampled, the trends in the indices could be used like other indications of ‘fit’ 

between pollen and vegetation data (e.g. correlation coefficient, likelihood function score) to 

provide an indication of a pollen source area for the taxon as an indicator species. It is assumed that 

the ‘goodness of fit’ between pollen and vegetation, as measured in any given model of the 

relationship, increases with increasing area of vegetation surveyed until a pollen source area 

distance is reached. It is also assumed that adding more vegetation information from beyond this 

distance either has no effect on the measure of fit or causes it to worsen, giving an asymptote or 

inflection in the plot of fitness measure against distance of vegetation survey used in its calculation, 

therefore the position of the asymptote or inflection indicates a pollen source area for the particular 

combination of trap and plant type. 
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2.4.2.  Relative Pollen Productivity and background pollen influx 

The pollen and spore data available in this study are influx data and therefore the values for each 

taxon are independent. This allows estimates of the parameters of the relationship between pollen 

and spore influx (hereafter ‘influx’) and distance-weighted plant abundance (dwpa) to be made 

separately for each taxon via linear regression analysis. Relative Pollen Productivity can then be 

calculated by taking the ratio of the slope term between the taxon of interest and the reference 

taxon (RPPreference). Each trap in a trap array was treated as a separate estimate of the influx, 

therefore most sample points had multiple ‘y’ values. Data pairs with zero values for both pollen and 

vegetation were removed from the dataset to avoid these samples having an undue influence on the 

model fitting process, and taxa present in both pollen and plant datasets from at least four trap 

arrays were selected for further analysis. 

 

Vegetation data for the selected taxa were distance-weighted using the taxon-specific Sutton 

distance-weighting term (Sutton, 1953; Sugita, 1993) for neutral atmospheric conditions (but see 

Jackson and Lyford, 1999): 

 

γγγ zb
ii

iezbzg −−= 1)(      (equation 4) 

 

Where z = distance to mid-point of ring, γ = 0.125 (Prentice, 1985) and bi is defined as: 

 

�� � 75.2
�	


�
      (equation 5) 

 

Where vsi is the sedimentation velocity (fall speed) of taxon i and u is the windspeed (3 m s-1 was 

used throughout this paper). Fall speed estimates for the taxa analysed in this paper are summarised 

in Table 2. Where necessary, fall speeds were estimated using Stoke’s Law along with measurements 

of the a and b axes of the taxon (Gregory, 1973) taken from the images in Moore et al. (1991).  The 

sampling trap was treated as a single point with radius zero, since traps were not positioned within 
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canopy openings of any kind.  Cumulative distance-weighted plant abundance from the trap was 

then calculated for each ring. 

 

A one tailed null hypothesis of no positive linear relationship between dwpa and influx was tested 

using the Pearson correlation coefficient and, where the probability of the null hypothesis was < 

0.05, regression analysis was carried out to estimate the slope term (taxon pollen productivity: 

PPtaxon) and intercept (background pollen influx of the taxon). This analysis was carried out for the 

cumulative dwpa at each ring. 

 

Poaceae was chosen as the reference taxon for the ground flora taxa, since it occurs widely in the 

dataset and showed statistically significant linear correlation between cumulative dwpa and influx at 

all distances used in their respective analyses. Pollen Productivity relative to Poaceae – hereafter 

RPPPoaceae - was calculated by taking the ratio of the slope terms, and the standard errors on the 

slopes combined using propagation of errors. As the area of vegetation included in the analysis 

increases, it is expected that the background influx will decrease and the estimate of RPP stabilise. 

The correlation coefficient should be highest (the correlation is expected to be strongest) at the 

distance best approximating the taxon-specific source area. These analyses were carried out using 

SPSS v.19. 

 

 

3. Results 

 

Thirty four palynological equivalent taxa were recorded in the vegetation across the three woodland 

sites (Table 1), and their representation is considered in this paper. Figure 3 summarises the data 

from both plant surveys and pollen traps in scatter plots. Figure 3a shows the variation in ground 

cover for each compartment at the three sites plotted against sampled compartment cutting date. 

Ground cover tends to be highest in the first few years after cutting, but does not show the pattern 
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of decline to a lower steady state over time that might be expected. Bradfield Woods show the 

nearest to that pattern, with an abrupt drop between the 2000 and 1997 compartments, and a 

single anomalously high value in the 1983 compartment. The ground cover at Chalkney does not 

show a clear pattern over time, but is divided into two groups with values around 60% and values 

below 40% respectively. Hayley Wood generally has the lowest proportion of ground cover, which 

generally declines with years since cutting with the exception of the 2001 compartment. Figure 3b 

shows the number of palynological equivalent taxa recorded in each compartment against years 

since cutting. Values are generally higher in compartments cut since 2000 and lower in older 

regrowth areas, as expected. The most recent site in each case has very high diversity in Hayley 

Wood and low diversity in the other two sites, coupled with low ground cover at Bradfield Woods. 

Hayley Wood has a shorter rotation cycle (c. 14 years) than the other two sites (>25 years) which 

may support rapid recovery, and the waterlogged nature of the soil at Bradfield Woods may extend 

the impact of coppicing on ground flora into the following year since damage from compaction, 

trampling and coverage with discarded material may have a greater effect at this site. 

 

[INSERT TABLE 1 HERE] 

[INSERT FIGURE 3 HERE] 

 

Figures 3c-e show summary data for the pollen and spore representation of the same set of taxa. 

There tends to be a higher proportion of NAPS taxa (Figure 3c) overall in younger compartments, 

especially in the most recently cut sites at Bradfield Woods, which might be attributable to reduced 

tree pollen production in those compartments for taxa other than Corylus (Waller, et al. 2012), the 

increase in local pollen-producing surface cover and/or effects of light availability on flowering or 

increased influx of NAPS from the largely open, agricultural landscape beyond the woodland due to 

the reduction of canopy cover. Figure 3d presents the total influx of NAPS types and shows a weaker 

response to time since cutting in variation than seen in the proportion plot, suggesting that such 

effect as there is largely due to a reduction of tree pollen influx rather than an increase in NAPS 
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influx. The TLP pollen sum was around 1000 for each trap, and results of each trap array were 

summed for this analysis, giving NAPS counts ranging from around 300 grains to over 2000 grains.  

Count size is not correlated with number of woodland pe taxa recorded in each assemblage 

(r=0.087, d.f. = 36, p>0.10 (one-tailed)), suggesting that all counts were large enough to record the 

majority of taxa present in the sample, even where the assemblages were dominated by AP types. 

The diversity of pe types in the pollen assemblages (Figure 3e: range 10-20, mean 16) is both higher 

and more uniform than for the vegetation data (range 1-23, mean 7). This probably reflects the 

greater spatial sampling area represented by the pollen assemblages, considering both the local 

pollen component from within the source area and the background pollen component, when 

compared with the vegetation survey area.  Figure 3f shows a clear correlation between % ground 

cover in the vegetation and % NAPS (r=0.459, d.f. = 36, p < 0.01), but this probably results from the 

response of both signals to the environmental changes through the coppice cycle in factors such as 

light competition intensity and canopy openness rather than the pollen signal directly responding to 

local ground cover. 

 

 

3.1. Cluster analysis 

       3.1.1 Ground flora vegetation 

Clear differences in the plant lists between the three woods reflect differences in the canopy taxa 

and environmental setting. TWINSPAN analysis of the vegetation abundance data around each trap 

site (Figure 4a) clearly separated most samples by woodland, grouping all Bradfield Woods and 

Hayley Wood samples in the 0xx division and most of the older Chalkney Woods samples in the 1xx 

division. This first division (0xx versus 1xx) largely seems driven by vegetation (palynological 

equivalent) diversity, grouping low-diversity samples with strong representation of Scilla-type in 

cluster 1xx. This cluster is further divided according to ground cover and the few other species 

recorded, but the division seems to reflect geography within the wood rather than years since 

cutting; cluster 100 collects locations in the northern part of Chalkney Wood, where Ranunculus 
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acris-type is present and ground cover around 50%, whilst 101 locations are more southerly, lack this 

taxon and have lower ground cover, around 30%. The 1998 compartment sample is separated off in 

11, reflecting lower ground cover here (5%) than elsewhere in Chalkney Wood. 

 

[INSERT FIGURE 4 HERE] 

 

Cluster 00X contains most Bradfield Woods samples, characterised by a greater biodiversity than the 

Chalkney Wood samples and a ground flora generally dominated by Cyperaceae, Mercurialis 

perennis, Poaceae and Ranunculus acris-type; Group 001 has a higher abundance of grasses than 

group 000 and also has generally greater ground cover (74% versus 58%), and contains four of the 

five most recently cut compartments along with one of the oldest, that cut in 1985. 

 

Cluster 01x contains Hayley Wood samples grouped with a small number of samples from the other 

woods. Group 010 has comparatively high ground cover, around 70%, and groups four Chalkney 

Wood compartments with one Hayley Wood compartment, that cut in 2001, which is also the 

closest to the secondary woodland of The Triangle. The four Chalkney compartments have high 

abundance of Scilla-type, like the other Chalkney compartments, along with a greater diversity of 

other taxa; they are four of the five most recently cut, therefore expected to have the best light 

conditions to support ground flora diversity, and are also all close to the edges of the wood where 

light penetration is likely to be greater. Group 011 samples have much lower ground cover, 

averaging 22%, but have similar high floral diversity to the other compartments grouped in 0xx. 

Group 011 collects all other Hayley Wood samples along with two Bradfield Woods samples, that cut 

in 1988 and that last cut in 2007. In both cases these compartments have low ground cover 

compared with the other Bradfield Woods compartments, although the causes are likely to be 

different. 0110 and 0111 (indicated by underlining on figure 4a) roughly divide more recently cut 

compartments in Hayley Woods from older ones. 
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Cluster analysis suggests that, as expected, the ground layer vegetation broadly reflects the different 

environmental conditions in the three woods, with the main subdivisions within woods apparently 

driven by changes in ground cover between early and late stages of the coppice cycle. 

 

                   3.1.2 Pollen assemblages 

TWINSPAN analysis (Figure 4b) was carried out using the proportion of woodland NAPS types 

(hereafter wNAP) relative to the total land pollen and spores sum, since this is the form of data most 

commonly encountered in the palaeoecological literature. The first division splits moderate 

abundance samples (average wNAP proportions of 30%, 35% and 40%) from one high abundance 

sample (Bradfield Woods 2006: 76%) and a group of lower abundance samples (means of 25%, 20% 

and 15% respectively). Figure 4b shows that the analysis first divided all Hayley Wood samples apart 

from the compartment cut in 1998 from the other two woods, with the exception of the 2005 

compartment from Chalkney Wood, which was grouped with the 2007 and 2006 Hayley Woods 

compartments (group 011: this group has higher NAP proportion (mean = 40%) and lower average 

pe diversity (15) than the other Hayley groups). The three subdivisions of Hayley Wood assemblages 

are broadly on an age basis, although the 2003 assemblage groups with those from 1996-98. Three 

Bradfield assemblages (those from compartments cut in 2005, 2000 and 1997) are grouped with the 

bulk of the Chalkney Wood samples in 110, with an average wNAP abundance of 20%. The 1991 and 

1978 Chalkney assemblages are separated in group 111 (with the lowest mean proportion of wNAP, 

15%) and one Chalkney sample (1983) and one Hayley sample (1998) are grouped with the bulk of 

the Bradfield Woods samples in cluster 101 (abundance around 25%). The assemblage from the 

2006 compartment at Bradfield Woods has a very high wNAP abundance, which sets it apart from all 

other samples. 

 

Cluster analysis suggests that the wNAPS pollen assemblages can be grouped according to woodland 

of origin, with subdivisions which relate to pollen abundance and possibly in Hayley Wood also years 

since cutting (although grouped samples show some geographic grouping, with group 00 containing 
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mostly samples from compartments on the south west of the ride, and the other groups collecting 

samples from the north-east). 

 

 

3.2. Indices of Association 

Plants were recorded present, but no pollen found in the trap assemblages, for the palynological 

equivalents Arum, Dactylorhiza-type and Sedum. Both plants and pollen were recorded, but never 

both in the same compartment, for Epilobium-type, Geum, Hypericum perforatum-type, Scutellaria-

type, Stachys-type, Veronica and Viola-undiff. Indices of representation were calculated for the 

remaining 23 ground flora pollen types at multiple distances. Indices based on vegetation presence 

at a distance of 10m radius around the traps are presented in Table 3. Only four taxa, Poaceae, 

Ranunculus acris-type, Cyperaceae and Scilla-type, have an Index of Association (A) greater than 0.5, 

implying that the presence of pollen can be interpreted in terms of the local presence of the relevant 

plant taxon with some confidence. 

 

[INSERT TABLE 3 HERE] 

 

          3.2.1 Variations in indices of association with increased vegetation survey radius 

Since indices could be calculated using vegetation presence in different radii around the traps, plots 

of changes in index with increasing distance were made. The plots can be grouped into four clusters 

showing similar patterns with two exceptions (examples shown in Figure 5; all taxa presented in 

supplementary material 1). Group 1 contains Cyperaceae, Poaceae, Ranunculus acris-type and Scilla-

type. For these taxa, A increases with increasing distance, the rate of increase slows beyond 2m 

radius, and A is the largest index of representation beyond 4m. The second group shows increasing A 

with increasing distance, generally levelling off beyond 2m, but the index of over-representation (O) 

is the highest index. For some taxa, A reaches values around 0.5 and close to the O value by 10m 

(group 2a: Mercurialis perennis and Rubus-type), but for most O is always the largest index by some 
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way (group 2b: Apiaceae, Asteraceae (Cardueae), Asteraceae (Lactuceae), Brassicaceae, 

Caryophyllaceae, Dryopteris dilatata-type, Filipendula, Lysimachia vulgaris-type, Plantago 

major/media, Rumex sanguineus-type and Urtica dioica). The third group has a similar pattern but 

the index of under-representation (U) has the highest values beyond 2m (Lonicera periclymneum, 

Paris quadrifolia-type, Primula veris-type and Prunella vulgaris-type). Two taxa did not fall into one 

of the three clusters; the indices for Allium-type had the same values at every distance, and for 

Potentilla-type A decreased and U increased with increasing distance. 

 

[INSERT FIGURE 5 HERE] 

 

The tendency of all values towards an asymptote, with only slight changes between values 

calculated using vegetation present within 4m of the trap array and that present within 10m of the 

trap array, is interpreted as implying an effective source area for the taxon presence-absence 

indicator values of ground flora taxa in coppiced woodlands on the order of 10m radius. Ground 

flora and vegetation data were recorded in March-April, in order to ensure that spring ephemeral 

species believed particularly significant in coppice woodlands would be recorded, which may lead to 

under-recording of the abundance of summer-green taxa and over-recording of the abundance of 

spring ephemeral taxa compared to studies carried out later in the year. This may have contributed 

to the high over-represented indices (where pollen is present but not plants), although since the 

Index analysis uses presence-absence data we consider this to be less significant than under-canopy 

effects of reduced flowering and limited air movement for pollen transport. 

 

3.3. Abundant taxon RPP values 

Those taxa present in at least three compartments in both the vegetation and pollen data sets were 

considered for estimation of RPP. Scatter plots comparing pollen influx and accumulated distance 

weighted plant abundance to 10m were created for Apiaceae, Asteraceae (Cardueae), Cyperaceae, 
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Filipendula, Lonicera periclymneum, Mercurialis perennis, Poaceae, Ranunculus acris-type, Rubus-

type. and Scilla-type, and obvious outliers removed where these were small in number. 

 

Some taxa showed scatters which suggested a complex taphonomy (see Figure 6). The basic 

assumption underlying the approach used to estimate RPP in this paper is that there is a common 

mode of pollen transport linking all samples with their surrounding vegetation, therefore a singular 

relationship between pollen and vegetation to be modelled. Where there appeared to be two or 

more distinct relationships in the plot of pollen influx against dwpa, as in Figure 6, this has been 

interpreted as implying that different modes dominate at different locations, each producing an 

approximately linear relationship. The relationship with high levels of influx and low local dwpa is 

interpreted as being dominated by highly stochastic transport modes such as insects (insects visiting 

flowers and then visiting the traps, perhaps attracted by the availability of open water, depositing 

pollen into the traps either during a visit or as a result of becoming incorporated into the pollen 

assemblage) or gravitic deposition (pieces of anther or clumps of ripened pollen falling directly into 

the trap rather than being released as individual grains into the air and transported through the 

trunk and canopy space). These non-aerial modes are also probable causes of some of the samples 

identified as outliers for having exceptionally high influx and removed from analysis for other taxa. 

Complex scatters of this type were noted for Filipendula, Lonicera, Ranunculus and Rubus, all taxa 

with insect-attracting flowers, and these were not considered further. 

 

[INSERT FIGURE 6 HERE] 

 

Correlation coefficients for pollen against vegetation at different sampling radii for the remaining six 

taxa are shown in Figure 7, and suggest some improvement in the relationship with distance for 

Apiaceae and Cyperaceae, with otherwise little change. RPPPoaceae calculated using regression of 

pollen influx against distance-weighted plant abundance to 10m is summarised in table 4.  Most 

estimates of Relative Pollen Productivity presented in the literature are derived from percentage 
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pollen data by applying ERV analysis (Parsons and Prentice, 1981; Prentice and Parsons, 1983), which 

uses an iterative approach to identify values of RPP and background pollen influx for all taxa at once.  

We applied this method to the dataset reported here, but the algorithm failed to find a solution; this 

is interpreted as showing that there are too few samples where most or all of the taxa are present in 

both pollen and vegetation to enable the algorithm to be effectively applied.  

 

No published values for Mercurialis perennis or Scilla-type are available in the literature. Hjelle 

(1998) used a different field method to estimate RPPPoaceae of herb taxa in Norwegian hay meadows, 

and obtained an estimate of 0.27 for Apiaceae type, about six times lower than the estimate 

reported here, and an estimate of 0.06 for Asteraceae (Cardueae) (Cirsium-type), twice the value 

reported here. The taxonomic mixture of plants making up the palynological equivalent types were 

different, including Aegopodium podagraria, Anthriscus sylvestris, Carum carvi, Pimpinella saxifrage 

and Sanicula europaea, as well as Angelica sylvestris and Conopodium majus, the species present in 

our woodland sites, for Apiaceae, and Cirsium palustre only for Asteraceae (Cardueae) where we 

also recorded Arctium minus, Cirsium arvense, C. vulgare and Sonchus sp. Possible explanations for 

the differences include the different vegetation survey methods (see e.g. Bunting and Hjelle, 2010), 

the different time of year of recording vegetation (since Poaceae ground cover in woodlands may be 

lower in March-April than in June-July, depending on the phenology of the species), and the 

different species mixtures and flowering conditions for the reference taxon, Poaceae, in hay 

meadows and in woodlands. Hjelle (1998) does not report a taxonomic list of plants in the 

palynological equivalent type Poaceae for comparison. Multiple estimates of RPPPoaceae (Cyperaceae) 

have been reported in the literature (see e.g. Broström, et al. 2004, Mazier, et al. 2012), and a range 

of values are included in table 4. The closest value to this study comes from Hjelle (1998), whose 

species mixture is listed as including Carex spp. Eriophorum angustifolium, E. vaginatum and 

Trichophorum cespitosum, whereas our estimate is derived from a number of Carex species (see 

table 4). Ground flora vegetation data were recorded in March-April, in order to ensure that spring 

ephemeral species believed particularly significant in coppice woodlands would be recorded.  This 
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may lead to under-recording of the abundance of summer-green taxa and over-recording of the 

abundance of spring ephemeral taxa compared to studies carried out later in the year which might in 

turn lead to an over-estimate of RPPPoaceae for Scilla-type and under-estimate for Mercurialis perennis 

and other taxa. 

 

[INSERT FIGURE 7 HERE] 

[INSERT TABLE 4 HERE] 

 

The total annual pollen influx from these six taxa for the traps studied has a mean of 4530  grains  

cm-2. The intercept on the regression model indicates the pollen influx when no plants are present 

within the 10m radius survey area, and therefore estimates the influx from the background 

vegetation, beyond the studied area. These estimates are given in table 4, and sum to 2240 grains 

cm-2, c. 49% of the mean total influx for these taxa. Using the proportion-based ERV-analysis, 40-60% 

of the total pollen typically comes from beyond the Relevant Source Area of Pollen (RSAP) (e.g. 

Sugita 1994), therefore the assumption of a relatively short source area seems reasonable. However, 

the range of total influx values from individual traps varies very widely, from 80 grains cm-2 to 56700 

grains cm-2. 

 

 

4. Discussion 

 

The assumption made in designing this study was that the vegetation and the NAPS pollen signal 

within the coppiced compartments would show systematic variation with years since cutting on a 

scale of a few metres. A general decrease in % ground cover and number of pe taxa recorded in the 

vegetation data was seen with increasing years since cutting in all three woods, as expected. 

TWINSPAN cluster analysis of the vegetation data show that the three woods have distinctly 

different ground floras, as would be expected given different geographical location, dominant 
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species in the canopy as both standards and coppiced stools, and differences in the physical 

environment. Cluster analysis suggests that the ground layer vegetation broadly reflects the 

different environmental conditions in the three woods, with the main subdivisions within woods 

apparently driven by changes in ground cover between early and late stages of the coppice cycle 

along with some geographic variation in the physical environment within the woods. 

 

The proportion of NAPS pollen types is higher in more recently coppiced compartments, which could 

reflect the increased ground cover recorded in the vegetation surveys, but could also reflect 

flowering responses to the increased light availability created by coppicing, decreases in pollen 

production by newly coppiced AP species, increased influx of pollen sourced from beyond the woods 

due to the opening up of the canopy, or all of these factors. The plot showing the total influx of NAPS 

types (Figure 3d) shows a weaker response to time since cutting than seen in the proportion plot, 

which might imply that such effect as there is, can largely be attributed to a reduction of tree pollen 

influx rather than an increase in NAPS influx. However, the effect is broadly similar across all three 

woods, and since Waller et al. (2012) showed that pollen production of Corylus actually increased in 

the first few years after coppicing, differences between the woods would be expected if this was the 

sole process, therefore further investigation is needed to confidently identify the dominant cause of 

this pattern. Cluster analysis suggests that the woodland NAPS pollen assemblages can be grouped 

according to woodland of origin, with subdivisions which relate to pollen abundance and possibly in 

Hayley Wood also years since cutting. NAPS proportions are all below 50% of the total, apart from 

three recently cut compartments at Bradfield Woods, and show a broad pattern of decreasing with 

increasing years since cutting, but there is no clear relationship between ground cover and %NAPS in 

any one of the woods. 

 

These general patterns suggest that years since cutting does affect the ground vegetation and NAPS 

assemblage trapped in these woods, but that the effect is more clearly seen at an assemblage level 

in the vegetation than in the pollen assemblages. 
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4.1. Signals from individual palynological equivalent taxa 

Two approaches were used to investigate the signal contained in the record of individual pollen and 

spore types, indices of association (after Davis, 1984) and fitting a linear pollen dispersal and 

deposition model to estimate RPP. Although multiple palynological equivalent plant types are clearly 

recorded in only one wood (Table 1), the pollen record of none of these types is confined to that 

wood’s pollen assemblages; the pollen and spore types are found more widely. Overall, there was 

much less variation in the number of NAPS types recorded in pollen assemblages than in vegetation 

samples (Figure 3). Indices were calculated for all 23 taxa present as both plants and pollen in at 

least one of the 36 compartments in the dataset. Only 4 of those taxa, Poaceae, Ranunculus acris-

type, Cyperaceae and Scilla-type, have A greater than 0.5, a value which implies that the presence of 

pollen can be interpreted in terms of the local presence of the relevant plant taxon with moderate 

confidence – in general, the value of A was low, suggesting that the association between 

pollen/spore presence and local plant presence is weak. Four out of the ten more abundant taxa 

considered suitable for analysis using a linear model of pollen dispersal and deposition had data 

scatters suggesting complex taphonomy, all are taxa with insect-attracting flowers, and these were 

not considered further.  Table 4 presents first estimates of RPPPoaceae for Mercurialis perennis and 

Scilla-type, and first estimates from woodland for Apiaceae, Asteraceae (Cardueae) and Cyperaceae.  

As is usually the case with RPP estimates, the use of Poaceae as a reference taxon presents 

challenges. Poaceae is a pollen type made up of many different plants, which vary according to 

habitat, and many of the species show facultative switching between vegetative and floral 

reproductive mechanisms so can show high variation in pollen production in response to local 

conditions (e.g. Baker, 2012). The values obtained for Cyperaceae and Asteraceae (Cardueae) are 

broadly comparable to those obtained by Hjelle (1998) from a study in hay meadow communities, 

and whilst the value for Apiaceae shows a different rank position (higher than Poaceae rather than 

below it and Cyperaceae) compared with Hjelle’s (1998) study, the value is still within a reasonable 

range, and may reflect the greater height relative to the rest of the ground flora canopy and 
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therefore greater pollen transport of Apiaceae in a woodland ground flora community rather than a 

grassland or the different species mixes. 

 

This discussion highlights the early state of research into pollen productivity, a very important 

parameter for pollen dispersal and deposition modelling. Carefully designed studies in multiple 

habitats subject to different management regimes (e.g. Baker, 2012; Abraham & Kozakova, 2012) 

and supporting different species mixtures are needed to investigate the environmental variations in 

pollen production of widely occurring taxa such as Poaceae, in order to compare findings from 

studies of the same palynological equivalent taxa in e.g. grazed pastures (Broström, et al. 2004; 

Mazier, et al. 2008), hay meadows (e.g. Hjelle, 1998) and woodlands (this study); such a study in 

northwest Europe is being carried out by the Crackles Project (see Bunting, et al. 2013; forthcoming). 

A useful future approach will be to combine direct assessment of flowering with pollen surface 

sample type studies to gain a better understanding of the micro and meso-scale components 

affecting pollen production within species and landscapes (e.g. Waller, et al. 2012; Bunting, et al. in 

prep). 

 

4.2. Source area estimates for NAPS taxa in woodlands 

The assumption underlying the design of the vegetation survey was that the pollen source area of 

the ground flora taxa is on the order of a few metres. This is partly based on analogy with other 

studies of ground-level vegetation communities (e.g. Bunting and Hjelle, 2010) and partly on 

extrapolation from the short (50-100m) RSAP (Sugita, 1994) typically reported for tree pollen in 

closed canopy woodland communities (e.g. Calcote, 1995; Bunting 2005; Sugita, et al. 2010) and also 

found in this project (Bunting, et al in prep). The RSAP is a source area defined on the basis of a 

particular assemblage of pollen types using the ERV approach, which was not appropriate for this 

data set, so the analyses presented here are based on relationships for individual pe taxa, an 

approach applied to datasets before the development of effective computational methods for 

carrying out ERV analysis (e.g. Bradshaw, 1981; Jackson, 1990). Studies suggest that the RSAP is 
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determined by the spatial sensing properties of the rarer taxa with the longest individual source 

areas (Bunting, et al. 2004; Hellman, 2009a), therefore we considered that the published RSAPs were 

a reasonable estimate of the maximum individual source area we might find, and used them to 

determine the vegetation survey methods. 

 

The pollen source area concept depends on the division of pollen sources into two components 

based on their position relative to the sampling point, and therefore is usually expressed as a radial 

distance around the sample point. Pollen sources within the pollen source area contribute ‘local’ 

pollen to the assemblage, and those located beyond that distance contribute ‘background’ pollen. A 

widely used approach to defining this radius is to consider the ‘fit’ between pollen signal and 

vegetation measured at different distances according to a specified model of the pollen-vegetation 

relationship, and define the distance at which the fit does not improve on the addition of more 

vegetation data as the pollen source area (e.g. RSAP; Sugita, 1994). On this basis, the correlation 

coefficient fit measure used for the RPP estimation (Figure 7) implies that the pollen source area is 

between 4m and 10m, since adding data from the outer set of pin-frame points to the cumulating 

dwpa produces either the same coefficient or a slight decrease in correlation. 

 

For the Index approach, various measures of ‘fit’ could be defined, such as the distance with the 

highest ‘A’ value, or the point at which all three indices first reach constant values. Highest values of 

A are obtained at the longest survey distance, 10m, and groups 2a and 3 show a clear rise in values 

of A between 4m and 10m, suggesting that the source area may be further out from the trap. The 

plots of all the indices for groups 2a and 2b show smaller changes between 4m and 10m than 

between closer samples, but are not constant – these results suggest a pollen source area slightly 

beyond 10m. As discussed in the text the indices suggest generally quite poor interpretative links 

between pollen and vegetation at the species level. 
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‘Background’ pollen is clearly an important component of the NAPS pollen assemblage, as shown by 

the high (and relatively uniform) diversity of pollen types recorded in all three woods (Figure 3). 

Although a number of palynological equivalent plant types occurred only in one of the three woods 

studied, this was not seen in the pollen assemblages. This may partly be explained by the presence 

of ground flora elements in the studied woods other than those recorded in the samples used, and 

partly by background pollen transported from beyond the studied wood which reflects the presence 

of pe plants in the wider landscape. 

 

4.3. Limitations 

This study has several clear limitations. Tauber traps were only deployed for a single year, and 

although using three traps at each location allowed some outliers to be identified and removed the 

results will still have been affected by the particular characteristics of the flowering season sampled. 

A greater vegetation survey distance, and finer spacing of the modified pin-frame points, would 

allow clearer identification of possible source areas and probably improve the fit of the various 

models used here, but within the context of the wider project the effort invested in surveying 

around individual sampling points had to be balanced against the desire to ensure an adequate 

number of different sampling points were included in the analysis. Vegetation survey was carried out 

in the spring; coverage and visibility of ground flora taxa varies across the seasons, so results based 

on survey in other parts of the year might be different.  Developing a vegetation recording strategy 

which combines survey at multiple seasons without being too time-consuming so that a reasonable 

number of samples could still be recorded could be a useful development for studies of vegetation 

communities with strong seasonal variation (e.g. grasslands).  Using fewer sites per wood and 

exploring a wider range of woodlands might increase the applicability of the study, but the chosen 

strategy allowed us to look at a wide range of coppice stages, which was important since historic and 

presumably pre-historic coppice practice is known to have included cycles of different lengths, from 

a few years to several decades. 
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4.4. Implications for palaeoecology 

Whilst the pollen source area of the NAPS component in these woodlands seems to be quite small, 

and it is possible to estimate RPP and background influx for some taxa and therefore apply 

quantitative vegetation cover reconstruction strategies to their representation in the pollen record, 

the information on local vegetation contained within this pollen signal is limited. The strong 

contribution of the background pollen rain means that the suite of species present is quite similar 

across the wood regardless of coppice stage, although the diversity of ground flora present 

decreases with increasing years since cut. NAPS proportion does decrease with years since cutting 

(Figure 3c), and a cyclic rise and fall in % NAPS at an appropriate time interval in a pollen record 

might be a sign of coppicing. There is no correlation between % NAPS and % ground cover (Figure 

3f), so this signal is likely to reflect the behaviour of the AP signal and the changes in physical 

conditions associated with the progress of the coppice cycle.  As regrowths create more shade and 

shelter, they will reduce the occurrence and strength of below canopy trunk space air movement 

and therefore pollen transport, as well as creating more sites for impaction to remove pollen from 

the air stream before it reaches the sampling point, and also reduce light levels therefore supressing 

flowering in some species. 

 

The interpretative significance of NAPS taxa does not seem to be in providing information about the 

local conditions around the sampling point, but in reflecting the ground flora of the wider woodland. 

Identifying the indicator value (see e.g. Court-Picon, 2006) of the different pollen types recorded 

here will require a wider study of habitats throughout the landscape of interest, and may be 

inhibited by the heavily managed and industrialised nature of much of the northern European 

lowlands and by the taxonomic limitations of pollen identification. 

 

 

5. Conclusions 
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We set out to determine whether the NAPS component of the pollen record was a useful tool for 

identifying coppice management in long-term pollen records.  Our findings show that there is no 

unambiguous signal of coppice management.  However, there are a few years of increased %NAPS 

levels immediately following coppicing, which might show up through cyclic oscillations in these 

values in a pollen diagram of sufficiently high temporal resolution from a site where the spatial 

sensitivity of the assemblage is comparable to the coppiced unit.  RPPPoeaceae values are estimated for 

five taxa, Apiaceae (1.61 ± 0.40), Asteraceae (Cardueae) (0.03 ± 0.01), Cyperaceae (0.40 ± 0.07), 

Mercurialis perennis (0.24 ± 0.04) and Scilla-type (0.34 ± 0.06), which provide a starting point for 

future investigations using pollen dispersal and deposition models.  Indices of representation show 

quite poor relationships between pollen presence in traps and plant presence in spring vegetation 

surveys in the immediate area, and imply that the effective source area for these ground flora types is 

around 10m, but the non-arboreal component of the pollen record mainly reflects the ground flora of 

the wider woodland, not of the local sampling area. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

29 
 

Glossary 

A: Index of Association 

AP: arboreal pollen 

dwpa: distance-weighted plant abundance 

NAP: non-arboreal pollen 

NAPS: non-arboreal pollen and spores 

O: Index of Over-representation 

pe: palynological equivalent 

RPP: Relative Pollen Productivity 

RPPPoaceae: Pollen Productivity relative to Poaceae 

RSAP: Relevant Source Area of Pollen 

U: Index of Under-representation 

wNAP: woodland non-arboreal pollen 
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Figure list 

 

Figure 1: location map of field sites 

 

Figure 2: diagram showing the layout of the modified pin-frame used for recording the vegetation in 

the field (see text for details). 

 

Figure 3: a) % ground cover against year of cutting b) vegetation diversity (number of pe) in 10m 

radius area against year of cutting c) mean %NAPS in the pollen traps against year of cutting d) mean 

NAP influx per pollen trap against year of cutting e) number of pe taxa recorded in the pollen traps 

against year of cutting f) %NAPS against % vegetation cover.  Solid circles show locations in Bradfield 

Woods, grey shaded circles those in Chalkney Wood, and open circles those in Hayley Wood. 

 

Figure 4: WinTWINS cluster diagrams for a) vegetation data (numbers beneath groups show the 

mean ground cover/number of palynological equivalent taxa in the plant lists for each group) and b) 

non-arboreal pollen data (numbers beneath groups show the mean %NAPS/ number of palynological 

equivalent NAPS taxa in the pollen assemblage for each group) - see text for details.  Each sample is 

identified by a letter for the woodland and two digits for the year of cutting: B98 is the sample from 

the compartment in Bradfield Woods which was cut in 1998.  In addition, samples from Bradfield 

Woods are bolded and those from Hayley Wood are italicised.  Underlining within groups shows the 

next level of division into subgroups, where that was possible. 

 

Figure 5: trends in indices with increasing survey area for ground flora taxa.  Plots give examples of 

the three clusters described in the text. 

 

Figure 6: Filipendula pollen influx against dwpa to 10m – the solid line oval outlines samples with low 

dwpa and high pollen influx, and the dashed line oval outlines samples with lower influx.  These two 
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groups are considered to reflect two different dominant modes of pollen transport at different 

pollen traps (see text for details) 

 

Figure 7: Pearson product-moment Correlation coefficients between pollen influx and cumulated 

dwpa at increasing distances around the pollen traps for ground flora taxa.  Asteraceae (Cardueae) 

correlations are significant with 0.01 < p < 0.05, and all others at p < 0.01 

 

 

Table list 

Table 1: plant species recorded and palynological equivalent taxa (after Bennett 1994) 

 

Table 2: fall speed estimates for the ten taxa selected for linear regression analysis (see text for 

details) 

 

Table 3: indices of association between pollen trap assemblages and vegetation surveyed within 

10m of the centre of the trap array for ground flora species 

 

Table 4: summary of estimated pollen productivity values relative to Poaceae for the main six ground 

flora taxa (see text for details) 
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Table 1: plant species recorded and palynological equivalent taxa (after Bennett 1994) 

 

 actual plant species recorded 

Palynological 

equivalent 

Bradfield Woods Chalkney 

Woods 

Hayley Wood 

Allium-type Allium ursinum   

Apiaceae Conopodium majus  Angelica sylvestris 

Arum Arum maculatum  Arum maculatum 

Asteraceae 

(Cardueae) 

Arctium minus, Cirsium 

arvense, C. palustre, C. vulgare 

Cirsium arvense, 

Sonchos sp. 

 

Asteraceae 

(Lactuceae) 

Taraxacum oblogatum  Taraxacum oblongatum 

Brassicaceae  Cardamine pratensis  

Caryophyllaceae  Cerastium fontanum, 

Silenedioica 

 

Cyperaceae Carex pendula, C. strigosa, C. 

strigosa/sylvatica, C. sylvatica 

Carex pendula, C. 

sylvatica 

Carex flacca, C. pendula, C. 

riparia,  

Dactylorhiza-type   Orchis fuchsii 

Dryopteris dilatata  Dryopteris dilatata  

Epilobium-type  Epilobium sp Epilobium sp 

Filipendula Filipendula ulmaria  Filipendula ulmaria 

Geum Geum undif.  Geum urbanum 

Hypericum 

perforatum-type 

Hypericum hirsutum, H. 

humifusum 

 Hypericum hirsutum, H. 

humifusum, H. tetrapterum 

Lonicera 

periclymenum 

Lonicera periclymenum Lonicera 

periclymenum 

Lonicera periclymenum 

Lysimachia vulgaris 

type 

 Lysimachia nemorum  

Mercurialisperennis Mercurialis perennis Mercurialis perennis Mercurialis perennis 

Paris quadrifolia-type Paris quadrifolia  Paris quadrifolia 

Plantago major/media   Plantago major 

Poaceae Agrostis stolonifera, 

Brachypodium sylvatica, 

Agrostis stolonifera, 

Poa annua, P. 

Agrostis stolonifera, 

Deschampsia caespitosa, 
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Deschampsia caespitosa, Poa 

annua, P. undif. 

trivialis, P. undif. Holcus mollis, Poa trivialis, 

P. undif. 

Potentilla-type Potentilla sterilis Potentilla sterilis Potentilla sterilis 

Primula veris-type Primula elatior  Primula elatior 

Prunella vulgaris-type Prunella vulgaris Prunella vulgaris Glechoma hederacea 

Ranunculus acris-

type 

Anemone nemorosa, 

Ranunculus ficaria 

Anemone nemorosa, 

Ranunculus ficaria, 

R. repens 

Anemone nemorosa, 

Ranunculus ficaria 

Rosaceae indet.   Rosa sp. 

Rubus undiff. Rubus fruticosus agg., R. 

idaeus 

Rubus caesius, R. 

fruticosus agg., R. 

idaeus 

Rubus caesius, R. fruticosus 

agg., R. idaeus 

Rumex sanguineus 

type 

 Rumexcrispus  

Scilla-type  Hyacinthoides non-

scripta 

Hyacinthoides non-scripta 

Scutellaria-type Ajuga reptans Ajuga reptans Ajuga reptans 

Sedum   Sedum telephium 

Stachys-type Stachys sylvatica  Lamium sp. 

Urtica dioica Urtica dioica Urtica dioica Urtica dioica 

Veronica  Veronica 

chamaedrys, V.undif 

 

Viola undiff. Viola undif. Viola undif. Viola reichenbachiana 
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Table 2: fall speeds of abundant pollen types 

 

Taxon Fallspeed (m/s) source 

Apiaceae 0.021 this paper 

Asteraceae (Cardueae) 0.067 this paper 

Cyperaceae 0.035 Sugita et al 1999 

Filipendula 0.006 Broström et al. 2004 

Lonicera periclymenum 0.158 this paper 

Mercurialis perennis 0.024 this paper 

Poaceae 0.035 Sugita et al 1999 

Ranunculus acris-type 0.014 Broström et al. 2004 

Rubus undiff. 0.019 this paper 

Scilla-type 0.088 this paper 
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Table 3: indices of association between pollen trap assemblages and vegetation surveyed within 

10m of the centre of the trap array for ground flora species 

 

Taxon Index of 

Association 

Index of Under-

representation 

Index of Over-

representation 

 

 

A>0.5: Associated 

Poaceae undiff. 0.73 0.00 0.27  

Ranunculus acris-type 0.65 0.24 0.18  

Cyperaceae 0.63 0.03 0.35  

Scilla-type 0.60 0.13 0.34  

 

A>0.25: weakly associated 

Mercurialis perennis 0.48 0.11 0.49  

Rubus undiff. 0.46 0.23 0.46  

Filipendula 0.31 0.22 0.66 over-

represented? 

Asteraceae (Cardueae) 0.26 0.17 0.73 over-

represented? 

Lonicera periclymenum 0.25 0.68 0.46  

Allium-type 0.25 0.00 0.75  

 

A<0.25, U>O: under-represented 

Prunella vulgaris-type 0.04 0.96 0.75 poor 

Potentilla-type 0.08 0.88 0.79 poor 

Primula veris-type 0.13 0.85 0.54 poor 

Paris quadrifolia-type 0.20 0.78 0.33  

 

A<0.25, O>U: Over-represented 

Plantago major/media 0.04 0.67 0.95  
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Lysimachia vulgaris type 0.03 0.67 0.96  

Rumex sanguineus type 0.08 0.33 0.91  

Dryopteris dilatata 0.04 0.33 0.96  

Caryophyllaceae 0.15 0.17 0.84  

Urtica dioica 0.08 0.13 0.92  

Apiaceae 0.22 0.06 0.77  

Asteraceae (Lactuceae) 0.05 0.00 0.95  

Brassicaceae 0.03 0.00 0.97  
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Table 4: estimated pollen productivity values relative to Poaceae for the main six ground flora taxa 

(see text for details). 

 

 RPPPoaceae 

regression 

method 

Background pollen 

influx 

(grains cm-2) 

rounded to nearest 

10 grains 

Broström et 

al. 2004 

values 

Mazier et al 

2012 PPE.st2 

dataset 

Hjelle 

1998 

Apiaceae 1.61 ± 0.40 50  0.26 0.27 

Asteraceae 

Cardueae 

0.03 ± 0.01 30   0.06 

(Cirsium 

type) 

Cyperaceae  0.40 ± 0.07 50 1.0 0.87 0.29 

Mercurialis 

perennis 

0.24 ± 0.04 70    

Poaceae  1 1950 1 1.0 1 

Scilla-type  0.34 ± 0.06 80    

 
 


