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ABSTRACT 

We present the effects of nano carboxylic acrylonitrile butadiene (CNBR-NP) and nano 

acrylonitrile butadiene (NBR-NP) rubbers on the interlaminar shear strength, fracture 

toughness and Charpy impact strength of glass fibre/ dicyandiamide-cured epoxy matrix 

composites (GFRP). Dispersions of 20 phr of nanorubber into the matrix significantly 

improved the Mode I (GIC) and Mode II (GIIC) delamination fracture toughness of the 

GFRP panels by 190% and 70% respectively. No noticeable change in the glass 

transition temperature of the composite panels was observed. Scanning electron 

microscopy images of the fracture surfaces showed evidence of the existence of 

toughening mechanisms such as de-bonding of the nanorubber, as well as presence of 

crack path deflections and fibres bridging.  
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1. INTRODUCTION 

Fibre reinforced polymers (FRP) are gaining importance in engineering applications 

because of their high specific strength and versatility of use. However, FRPs are also 

characterised by low fracture toughness because of the brittleness of their main matrix 

material – epoxy resins. While strength and rigidity of epoxy resins are desirable in 

many engineering applications, low fracture toughness limits their performance. Due to 

this drawback, scientists have been modifying the structure of epoxy resins with 

tougheners for more than 3 decades. 

Dicyandiamide (DICY) cured epoxy resins are well known in industry as prepregs 

constituents and curable structural adhesives [1, 2, 3, 4, 5]. Solid acrylonitrile butadiene 

rubber (NBR) with high acrylonitrile content provides a good compatibility between the 

NBR and the epoxy resin [6, 7]. Carboxylic acrylonitrile butadiene rubber (CNBR) is a 

modified NBR with carboxylic groups along the hydrocarbon backbone, and imparts an 

even better compatibility with epoxy than NBR due to the presence of active polar 

groups on the particles surface [8]. To the best of the Authors’ knowledge no previous 

study has been reported or published in open literature about the toughening of 

dicyandiamide-cured epoxy matrix with acrylonitrile-based nanorubber materials and 

the related mechanical properties of the resulting nanocomposites, because of the 

challenges in processing the materials and the complex structure and cross-linking 

mechanism of DICY curing agent [9]. Further research is needed in this area, and this 

forms the primary motivation of the current work. 

A significant body of literature describes the effects on the mechanical properties of 

epoxy resin systems by adding nanorubber [10, 9, 8, 4, 11]. However, there is a 
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noticeable lack of work that illustrates the mechanical properties of FRPs with 

nanorubber-toughened epoxy as matrix, mainly because of the increase in the viscosity 

of the resin with the use of nanorubber that makes difficult the penetration of the nano-

modified resin through the fibres. In this paper we also describe the analysis on GFRPs 

panels with the nano-rubber toughened matrix produced by hand lay-up techniques. The 

outcome of the hand lay-up process is not affected by viscosity changes. Moreover, a 

relatively high viscosity of the nano-modified matrices prevent resin leakage at high 

processing pressures, providing therefore improved interfacial properties. Epoxy 

matrices have been toughened with nanorubber using a laboratory-scale triple mill that 

generated particles with small sizes and dispersions with even distributions that resulted 

in a toughened network. 

2. MATERIALS AND COMPOSITES MANUFACTURING 

The epoxy resin used was liquid DGEBA (Araldite LY1556) with equivalent weight of 

epoxide equal to 188 (Huntsman, UK). Dicyandiamide (DICY, Dyhard D50EP) was 

used as the curing agent and a difunctional urone (Dyhard UR500) was used as the 

accelerator, both supplied by AlzChem, UK. Nano carboxylic acrylonitrile butadiene 

rubber (CNBR-NP) Narpow VP-501 (single particle size distribution 50-100 nm, 

acrylonitrile content, 26wt %), and nano acrylonitrile butadiene rubber (NBR-NP) 

Narpow VP-401 (single particle size distribution 100-150 nm, acrylonitrile content, 

26wt %) were received as powders from SINOPEC, Beijing Research Institute of 

Chemical Industry (BRICI), China. Fumed silica (FS) received from Aerosil, UK (D50 

=1 µm) was used in some of the formulations to modify the rheological behaviour of the 

nanofluids to help with the GFRP laminates production. Glass plies from Sigmatex 
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(UK) Ltd (2x2 twill with 287GSM) have been used to produce the GFRP panels. The 

matrix formulations used in this work are shown in Table 1. 

The nanorubber modified resin matrices were first produced by drying the nanorubber at 

~70°C for 16 hours in an oven to eliminate the absorbed moisture. After drying, the 

nanorubber was dispersed in the DGEBA matrix and the blend was speed-mixed at 

3500 rpm for 1 minute using a DAC 150.1 FVZ speed mixer. Fumed silica (0.25 to 1 

phr, depending on the final viscosity of the blend) has been then added to the epoxy 

matrix in selected samples. The dispersion of the fumed silica considerably increases 

the viscosity of the blends and helps to prevent the leakage of the resin matrix during 

the curing of the GFRP laminates in autoclave under high pressures. To improve the 

homogeneity of the mixture, the blend was triple milled for 6 times at room temperature 

(RT=23°C). After mixing, the blend has been magnetically stirred at a speed of 320 rpm 

and degassed at 70°C inside a glass flask for 16 hours under vacuum. After degassing, 

the curing agent and accelerator were added and the final mixture was speed mixed at 

2100 rpm for 6 minutes. 

Bidirectional dry glass plies [0/90]12 with the nanorubber-toughened matrix and 

produced by hand lay-up were vacuum bagged and cured in an autoclave under a 6 atm 

pressure. Twelve and eight layers of glass plies were used for fracture toughness tests, 

Charpy impact tests and inter laminar shear strength (ILSS) tests, respectively. The 

composite panels were heated to 120ºC at a heating rate of 0.5ºC/min and held for 1 

hour at this temperature before cooling down to RT at the same rate, in an autoclave. 

The GFRP samples were cut from the cured panels using high-pressure water jet. The 

volume fraction of the glass fibres in the GFRP-composites was estimated using the 

following equation: 
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%Vf =
100WFAW N p

BρF
                                                                                                    (1) 

Where WFAW  is the fibre areal weight, Np is the number of plies, B is the thickness of 

the GFRP panels and ρF  is the density of the glass fibre. The value of WFAW is quoted 

from the manufacturer’s datasheet of the glass fabrics, (287 g/m2). The density of the 

glass fibre is 2.54 g/cm3 [12]. The glass fibre volume fraction of the composites was 

40±4%. 

The scanning electron microscopy (SEM) studies on the fracture surface of the matrix 

showed that CNBR-NP was evenly distributed, however slight agglomeration existed in 

the X NBR-NP/ R formulations (Figure 1). In all the loadings a high amount of 

nanorubber de-bonding was observed, which resulted in nano and micro-voids 

formation in the composites. Further details on the processing and characterisation of 

these formulations can be found in [13].  

3. CHARACTERISATION 

The glass transition temperature of the GFRP was evaluated using a dynamic 

mechanical analyser DMA Q800, TA Instruments. Laminates with dimensions of 

50×10×2 mm have been tested under three point bending loading and a fixed frequency 

of 1 Hz. Temperature ramps were carried out from 20 to 200ºC at a heating rate of 

2ºC/min. The glass transition temperature was determined as the maximum stationary 

point of the tan δ vs. temperature curve. The data were obtained on an average of three 

samples.  
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For short beam shear (SBS) loading, samples with dimensions of 20×6.35×3.2 mm have 

been tested following the ASTM D2344 standard. The tests have been carried out using 

a Zwick Z250 universal testing machine at RT (23ºC), with a crosshead speed of 

1.3mm/min. The samples were placed on two rollers to allow a lateral adjustment and 

subjected to central loading at mid span. The span length (S) to specimen thickness (t) 

ratio was 5. The beams have been loaded until failure, and the failure load was used to 

calculate the apparent interlaminar shear strength (APS) of the composites. The failure 

load was interpreted as the first maximum load attained on load vs. crosshead 

displacement graphs. The APS was calculated as follows: 

wt

P
APS max75.0

=                                                                                                          (2) 

Where Pmax represents the breaking load, w the width of specimen and t the thickness of 

specimen. Five samples were tested from each configuration. 

The effect of the nanorubber toughening on Mode I delamination (toughness G1C), was 

studied using a double cantilever beam (DCB) test on GFRP samples following the 

EN6033 standard. Again, a Zwick Z250 tensile machine with a crosshead speed of 

10mm/min was used for these tests. The samples were loaded perpendicular to the 

delamination surfaces.  

A piece of release film (PTFE film) was placed on the mid plane of the stacked plies 

during the hand lay-up process to create a 30mm long pre-crack. Five DCB specimens 

with dimensions of 250×25×3 mm were tested for each matrix formulation. Screw-able 

grips were clamped onto the two faces of the specimen ends that featured the 

manufactured cracks. The edges of the specimens have been coated with white paint and 
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marked for a clear reading of the crack length. The pre-cracked samples were loaded 

until a total propagated crack length of approximately 100 mm was reached. The 

interlaminar fracture toughness energy was calculated from the propagated crack length 

and the applied energy determined from load-cross head displacement diagram. The 

interlaminar fracture toughness is calculated with the following formula: 

610×




=
aw

A
GIC                                                                                                          (3) 

Where: 

ICG is the fracture toughness (J/m2), A is the required energy to achieve the total 

propagated crack length (Joules),a  is the crack length (mm) and w is the width of the 

specimen (mm). 

 

Scanning electron microscopy (SEM) at secondary electron mode was used to study the 

fracture surfaces of the GFRP laminates. The samples were vacuum coated with gold 

using a sputter coater. Images were taken using an accelerating voltage of 20-25 keV 

with a magnification between 90 to 2000 times. 

 

To study the Mode II interlaminar fracture toughness, samples with dimensions of 

150×25×3 mm were tested at a crosshead speed of 1mm/min. The samples were 

positioned on a three-point bend fixture with a total span of 100 mm and an initial crack 

length of 34-35 mm. Five specimens for each epoxy configuration have been tested.  

The samples were unloaded at the maximum load, and the mode II fracture toughness, 

GIIC, was calculated at the maximum load sustained by the sample. 
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According to the protocol described in [14, 15]: 
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In (4), P  is the load (N), δ  is the crosshead displacement at the crack growth onset 

(mm), w the specimen width (mm), α  the initial crack length (mm) and L the span 

length (mm). Similarly to Mode I delamination, five samples have been tested 

corresponding to each epoxy composition. The experimental setups for the GIC and GIIC 

testing are shown in Figure 2. 

For the Charpy impact tests, five samples from each epoxy batch were tested at RT 

(23°C) using a Hounsfield Balanced impact machine following the ASTM D 256 

standard.  

4. RESULTS AND DISCUSSIONS 

The variation of the Tg with the nanorubber loading is given in Table 2. A 2°C decrease 

in the Tg can be observed when adding 20 phr of NBR-NP to the matrix, indicating the 

presence of a slightly less dense resin network. Almost no change in the Tg of the 

samples with the CNBR-NP modification indicates that almost all of the CNBR-NP 

phase is phase-separated [16]. Further details on the general behaviour of the Tg versus 

the nanorubber loading can be found in [13]. 

The apparent interlaminar shear strength, failure stresses and corresponding strains of 

the GFRP panels are presented in Table 3. For each laminate tested, a load-displacement 
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curve that represents the average of the five samples is shown in Figures 3 (a) and (b), 

respectively.  

Laminates show a nearly linear elastic behaviour at the early stage of loading. This 

continues until an elastic limit is reached. After this point each laminate shows a 

decrease in load which is sudden in composites like GFRP with neat resin matrix. In the 

nanorubber-modified samples, the decrease in load is ductile and the crosshead 

displacement till fracture is larger. This increase in crosshead displacement is due to a 

decrease in the composite stiffness in nanorubber-modified samples, resulting in higher 

deflections at the same load levels.  

The results show that, GFRP with neat R/ 1FS matrix achieved the highest peak load 

and the apparent interlaminar shear strength (APS) decreased continuously with rubber 

loading. The decrease in the APS values is attributed to the low strength and stiffness of 

the nanorubber particles decreasing the final strength and stiffness of the laminates. 

The Mode I fracture toughness of the GFRP laminates based on an average of 5 samples 

are summarised in Table 4. There is a 190% and 150% increase in GIC with 20 phr 

CNBR-NP and NBR-NP addition to the matrix, respectively.  

Figures 4 (a) and (b) show the load vs. displacement curves of the GFRP samples with 

CNBR-NP and NBR-NP modified matrices, respectively. The maximum loads and 

displacements to fracture increase proportionally to the nanorubber concentration. 

Figure 4 also shows that the force linearly increases until it reaches the maximum force 

value, and then gradually decreases with zigzag shape during the propagation stages. 

This could be due to the variations of resin-rich or fibre-rich regions along the 

longitudinal directions [17, 18]. 
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The fracture process was recorded by a video camera to analyse the crack initiation and 

propagation. In Figure 5 (a), it is possible to observe that the type of crack has a rather 

typical brittle topology, and no micro crack formation is observed in the GFRP panel 

with the R/ 1FS matrix. However, in the laminate with the 20 CNBR-NP/ R matrix a 

significant amount of micro crack formation has been observed, with the crack often 

deviating from its path (Figure 5 (b)). Such zig-zag propagating crack with branched 

paths requires a higher driving force and creates a larger fracture area, resulting 

therefore in higher fracture toughness. Hence, the enhanced interlaminar fracture 

toughness of the GFRP panels with nano-toughened matrices can be explained by the 

increased fracture surface area due to the crack deflection [17]. 

SEM over the fracture surfaces from the DCB samples has been used to evaluate the 

fibre-matrix interfacial bonding and the toughening mechanisms existing in the 

composites. In Figures 6 (a) and (b), the fracture surface of the composite panel with the 

unmodified epoxy matrix shows a typical brittle fracture with no plastic deformation. 

Figures 6 (c) and (d) shows the micrographs of the fracture surface of a laminate with 

20 CNBR-NP/ R matrix, in which a high amount of nanorubber debonding can be 

observed to provide the toughening mechanism. In Figure 6 (f), it is possible to observe 

the initiation of an interesting interphase between the glass fibres and the NBR-NP 

modified matrix. The same interphase was however not observed in the CNBR-NP 

toughened laminates. High amount of fibre bridging responsible for the high 

interlaminar fracture toughness appears to exist in the two nanorubber-modified epoxy 

formulations. Due to good adherence of NBR-NP modified resin matrix to the glass 

fibre, tortuosity is observed in greater aspects, which was reflected in the mechanical 

properties as a higher GIIC value. The toughening effect can be attributed to the inherent 
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tough and ductile properties of the nanorubbers themselves. It is proved with SEM that 

these properties of nanorubbers resulted in fibre bridging as well as nanorubber 

debonding. 

The Mode II fracture toughness data of the GFRP samples obtained from the ENF 

specimens are presented in Table 5. Mode II interlaminar fracture energy values are 

higher than the Mode I ones because the crack propagation occurs in shear rather than 

tensile mode. It is possible to observe a strong dependency of the Mode II fracture 

toughness (GIIC) on the fibre-matrix bonding. The increase in the GIIC toughness with 

increasing nanorubber concentration can be explained by the enhanced bonding of the 

nanorubber toughened resin matrix to the glass fibres (see Figure 6). When the fiber-

matrix bonding is strong, several energy absorbing phenomena such as matrix 

deformation, matrix cracking, fibre pull-out, and interfacial failure take place [19]. As a 

result of these phenomena, the GIIC of the composites shows a significant improvement.  

Figure 7 shows the corresponding load vs. displacement curves related to the ENF 

samples. The load increases until the crack initiates and propagates, which then results 

in a decrease in load. It can be seen that with an increase in nanorubber loadings, the 

maximum load attained before fracture and the displacement to failure both increase. 

The Charpy impact strength data of the GFRP panels are given in Table 6. Addition of 

20 phr of CNBR-NP or NBR-NP to the resin matrix resulted in this case in a 37% 

average decrease in the impact strength of the composites.  

A composite with low interfacial strength has an inefficient transfer of energy from the 

matrix to the fibre, and as a result a lower energy is required for breaking. Moreover, 

the cracks formed in a composite with higher impact toughness tend to branch out. A 
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large number of cracks lead to a greater area of fracture and therefore a higher energy 

level is associated with the toughness of the composite. It is therefore justifiable that a 

composite with lower interfacial strength between the fibres and the matrix has higher 

impact strength values [20]. Thus, it is likely that the adhesion between the fibres and 

the matrix is enhanced with the increase of the nanorubber loading.  

In Figure 8, the GFRP sample with the pristine matrix showed a high amount of 

delamination during fracture. However, delamination was hardly noticed in the other 

laminates with the nanorubber-modified matrices, confirming similar findings from 

other researchers [21, 22]. 

5. CONCLUSIONS 

In the present study, nano-sized CNBR and NBR rubber particles have been used to 

improve the fracture toughness of GFRP composites. Special emphasis has been placed 

upon the evaluation of the fracture toughness of the nano-acrylonitrile butadiene rubber 

toughened epoxy composites under loading conditions corresponding to Modes I and II. 

The most efficient dispersion technique was evaluated and the mechanical and 

morphological properties of the glass fibre laminates produced with these nano-

modified matrices have been analysed.  

The fracture toughness of the GFRP laminates improved significantly with the 

nanorubber modification of the matrix, which was justified by the changed morphology 

of the resins.  GIC and GIIC toughness of the GFRP panels were increased by 190% and 

70% with rubber loading in both systems. The Tg was constant within the experimental 

error. The main toughening mechanisms were identified as fibre bridging, crack path 

deflection and nanorubber de-bonding. The elastomeric nature of the nanorubbers 
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caused a reduction in the interlaminar shear strength, indicating an enhancement in 

flexibility of the GFRP composites with the dispersion of the nanorubber. 
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Figure Captions 

Figure 1. SEM images of the fracture surfaces of (a) R/ 1FS, (b) 20CNBR-NP/ R, (c) 

20NBR-NP/ R 

Figure 2. Experimental apparatus of (a) DCB test, (b) ENF test 

Figure 3. Loads vs. displacements for the GFRP panels with (a) X CNBR-NP/ R 
matrix, (b) X NBR-NP/ R matrix 

Figure 4. Load vs. displacement curves of GFRP tested with DCB (a) X CNBR-NP/ R 
matrix, (b) X NBR-NP/ R matrix 

Figure 5. Propagating cracks during the DCB test, (a) GFRP with R/ 1FS matrix, (b) 
GFRP with 20 CNBR-NP/ R matrix 

Figure 6. SEM images of the fracture surfaces of (a), (b) laminate with R/ 1FS matrix, 
(c), (d) laminate with 20 CNBR-NP/ R matrix, (e), (f) laminate with 20 NBR-NP/ R 
matrix 

Figure 7. Force vs. deformation for (a) GFRP with X CNBR-NP/ R matrices, 1: R/1FS, 
2: 5CNBR-NP/ R, 3: 10CNBR-NP/ R, 4: 15CNBR-NP/ R, 5: 20CNBR-NP/ R  (b) 
GFRP with X NBR-NP/ R matrices, 1: R/1FS, 2: 5NBR-NP/ R, 3: 10NBR-NP/ R, 4: 
15NBR-NP/ R, 5: 20NBR-NP/ R   

Figure 8. GFRP with nanorubber-toughened matrices show less delamination during 
fracture 
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Table Captions 

Table 1. Formulations of the epoxy used in this work in phr (parts per hundred of 
DGEBA) 

Table 2. Glass transition temperature (Tg) of the GFRP samples 

Table 3. Apparent interlaminar shear strength of the GFRP samples, σ = standard 
deviation, s = Crosshead displacement at fracture, Vf = Volume fraction of the glass 
fibres in the composites 

Table 4. GIC Test data of the GFRP panels, σ= Standard Deviation 

Table 5. GIIC Test data, σ = Standard Deviation 

Table 6. Charpy impact test data, σ = Standard Deviation 
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Table 1. Formulations of the epoxy used in this work in phr (parts per hundred of DGEBA) 

CODE DGEBA DICY Diurone NBR-
NP 

CNBR-NP Fumed 
Silica 

R 100 14 6 - - - 

R/ X FS 100 14 6 - - X 

X CNBR-NP/ 
R 

100 14 6 - X - 

X NBR-NP/ R 100 14 6 X - - 
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Table 2. Glass transition temperature (Tg) of the GFRP samples 

X (NP phr) 
 

X CNBR-NP/ R X NBR-NP/ R 

Tg (°C) σ (°C) Tg (°C) σ (°C) 

0 (1 FS) 140 0.1 140 0.0 

5 143 0.2 140 0.0 

10 142 0.1 139 0.6 

15 141 0.0 140 0.1 

20 140 0.0 138 0.8 
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Table 3. Apparent interlaminar shear strength of the GFRP samples, σ = standard deviation, s 

= Crosshead displacement at fracture, Vf = Volume fraction of the glass fibres in the 

composites 

X  

(NP phr) 

 

X CNBR-NP/ R X NBR-NP/ R 

APS 

(MPa) 

σ 

(MPa) 

s 

(mm) 

Vf APS 

(MPa) 

σ 

(MPa) 

s 

(mm) 

Vf 

0 (1 FS) 70 0.7 0.6 0.40 70 0.7 0.6 0.40 

5 68 0.4 0.7 0.38 69 0.5 0.7 0.38 

10 63 0.8 0.7 0.38 63 0.4 0.8 0.37 

15 61 0.2 0.8 0.38 57 0.1 0.8 0.39 

20 56 0.4 0.9 0.36 54 0.8 0.9 0.38 
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Table 4. GIC Test data of the GFRP panels, σ= Standard Deviation 

X (phr) 

 

X CNBR-NP/ R X NBR-NP/ R 

GIC  

(J/m²) 
σ (J/m²) 

% 

Increase 

GIC  

(J/m²) 
σ (J/m²) 

% 

Increase 

0 (1 FS) 441 22 - 441 22 - 

5 741 13 68 705 54 60 

10 860 33 95 887 16 101 

15 1042 20 136 977 42 122 

20 1277 17 190 1103 52 150 
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Table 5. GIIC Test data, σ = Standard Deviation 

X (phr) 

 

X CNBR-NP/ R X NBR-NP/ R 

GIIC   (J/m²) σ (J/m²) % 

Increase 

GIIC   (J/m²) σ (J/m²) % 

Increase 

0 (1 FS) 2678 153 - 2678 153 - 

5 3796 53 42 3884 297 45 

10 3461 61 29 4475 430 67 

15 3838 303 43 3407 206 27 

20 4637 397 73 3830 250 43 
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Table 6. Charpy impact test data, σ = Standard Deviation 

X (phr) 

 

X CNBR-NP/ R X NBR-NP/ R 

σC  

(kJ/m²) 

σ  

(kJ/m²) 

%  

Decrease 

σC  

(kJ/m²) 

σ  

(kJ/m²) 

%  

Decrease 

0 (1 FS) 185 12 - 185 12 - 

5 141 9 24 144 7 22 

10 135 5 27 136 6 26 

15 127 7 31 126 7 32 

20 116 11 37 118 4 36 
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Figure 1. SEM images of the fracture surfaces of (a) R/ 1FS, (b) 20CNBR-NP/ R, (c) 

20NBR-NP/ R 
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Figure 2. Experimental apparatus of (a) DCB test, (b) ENF test 

 

(a) 

(b) 
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Figure 3. Loads vs. displacements for the GFRP panels with (a) X CNBR-NP/ R 
matrix, (b) X NBR-NP/ R matrix 
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Figure 4. Load vs. displacement curves of GFRP tested with DCB (a) X CNBR-NP/ R 
matrix, (b) X NBR-NP/ R matrix 
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Figure 5. Propagating cracks during the DCB test, (a) GFRP with R/ 1FS matrix, (b) 
GFRP with 20 CNBR-NP/ R matrix 
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Figure 6. SEM images of the fracture surfaces of (a), (b) laminate with R/ 1FS matrix, 
(c), (d) laminate with 20 CNBR-NP/ R matrix, (e), (f) laminate with 20 NBR-NP/ R 
matrix 
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Figure 7. Force vs. deformation for (a) GFRP with X CNBR-NP/ R matrices, 1: R/1FS, 
2: 5CNBR-NP/ R, 3: 10CNBR-NP/ R, 4: 15CNBR-NP/ R, 5: 20CNBR-NP/ R  (b)
GFRP with X NBR-NP/ R matrices, 1: R/1FS, 2: 5NBR-NP/ R, 3: 10NBR-NP/ R, 4: 
15NBR-NP/ R, 5: 20NBR-NP/ R   
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Figure 8. GFRP with nanorubber-toughened matrices show less delamination during 
fracture 

 

Delamination zone, GFRP with 
20CNBR-NP/ R matrix 

Delamination zone, GFRP with R/ 1FS 
matrix 


