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Abstract 

 

Protein kinase C (PKC) contributes to the correct development of organisms, but its 

importance to embryogenesis of molluscs is not yet known. We report here that PKC 

activation is cyclic within early developing embryos of the gastropod snail Lymnaea 

stagnalis and that activation with phorbol myristate acetate (PMA) results in 

disorganised and developmentally arrested embryos within 24 h. Moreover, chronic 

modulation of PKC activation by PMA or by the PKC inhibitor GF109203X in early 

embryos results in altered rotation and gliding behaviours, and heartbeat during 

development. Finally, dis-regulation of PKC activity during early development 

significantly increased the duration to hatching. Our findings thus support novel roles 

for PKC in L. stagnalis embryos, in several physiological contexts, providing further 

insights into the importance of protein kinases to gastropod development in general.          

 

 

 

Keywords: Protein kinase signalling; Gastropod embryogenesis; Embryo gliding; 
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Introduction 

 

Protein kinase C (PKC) helps co-ordinate correct embryogenesis of many organisms 

including fruit flies, sea urchins, nematodes, and mice (Cox et al. 2001; Dickey-Sims 

et al. 2005; Gallicano et al. 1997; Tabuse et al. 1998; Wu et al. 1998). For example, 

when sea urchins are treated with the PKC inhibitor chelerthrine from the 

mesenchyme blastula stage onwards they display gastrulation defects and extensive 

apoptosis (Dickey-Sims et al. 2005), and in Caenorhabditis elegans, ablation of 

atypical PKC3 in oocytes results in disorganized developmentally arrested embryos 

(Wu et al. 1998). In mammals 10 PKCs exist including PKCβI/βII, which arises from 

alternate gene splicing. These PKCs are separated into structurally/functionally 

distinct groups according to their regulatory domains. Thus, conventional PKCs 

(cPKCs; PKCα, PKCβI/βII, and PKCγ) are diacylglycerol (DAG) sensitive and Ca2+-

responsive, novel PKCs (nPKCs; PKCδ, PKCε, PKCη, and PKCθ) are DAG sensitive 

but are unresponsive to Ca2+, whereas atypical PKCs (aPKCs; PKCζ and PKCι, λ-

murine) are insensitive to both DAG and Ca2+ (Rosse et al. 2010). Given the 

incomplete/draft nature of mollusc genomes it remains unclear how many PKC 

isotypes exist in molluscs.  

The extent to which PKC orchestrates developmental processes in molluscs 

remains unknown. This contrasts with extracellular signal-regulated kinase (ERK), 

which has been found to have a role in the dorsal (D) quadrant organizer cell 3D in 

molluscs (Henry and Perry 2008; Koop et al. 2007; Lambert and Nagy 2001, 2003), 

supporting a role for ERK in axis specification. The gastropod pond snail Lymnaea 

stagnalis is a model organism that has particularly been used in developmental 

biology for example in studying chirality (Shibazaki et al. 2004; Kuroda et al. 2009), 

development of the nervous system (Voronezhskaya et al. 2004), and shell formation 

(Hohagen and Jackson 2013; Shimizu et al. 2011). Embryos remain enclosed within 

their translucent egg capsules throughout development from oviposition to the 

juvenile stage, hatching as a miniature version of the adult snail. The aim of this 

study was to investigate PKC activation dynamics during early embryogenesis and 

identify physiological roles for PKC in gastropod development, using L. stagnalis as a 

model. To our knowledge, this study is the first to explore PKC signalling events 

during spiralian development. 

 
 
 
Materials and methods 
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Snails 

 

Lymnaea stagnalis were kept in tanks containing filtered (Brimak PO4 filtration unit, 

Silverline UK) aerated tap water within a temperature-controlled incubator (Sanyo) 

set on a 12 h light/12 h dark cycle at 21°C. Snails were fed round lettuce and fish 

food. Egg masses were selected based on the developmental status of their embryos 

(staged after Filla et al. 2008) as required.  

 

Microscopy analysis of PKC activation within embryos  

 

To study the temporal dynamics of PKC activation within embryos during 

development, selected embryos at various stages (1- to >24-cell stage) within their 

capsules were dissected from their egg masses, fixed for 45 min in 3.7% 

formaldehyde and washed twice in 300 µl PBS. Additionally, 2-cell stage embryos 

adjacent to one another in the same egg mass (and thus of slightly different age to 

one another) were removed from the mass and fixed immediately to provide a 

temporal picture of PKC activation during this developmental phase. Furthermore, in 

parallel experiments, 2- or 4-cell stage embryos within their egg capsules but 

dissected from the egg mass were exposed to the PKC inhibitor GF109203X (10 µM; 

Calbiochem), the PKC activator phorbol myristate acetate (PMA, 10 µM; New 

England Biolabs (NEB)), or vehicle (water or DMSO (0.1%)), respectively, for various 

durations prior to fixing to determine the ability of these compounds to modulate PKC 

activity within embryos. After fixing, embryos were carefully released from their 

capsules under a dissecting microscope using a scalpel, collected individually using 

a pipette, and were each transferred to a well of a 24-well tissue culture plate (Nunc) 

containing 300 µl PBS. Embryos were then permeabilised in 0.1% Triton X-100 in 

PBS for 40 min, washed with PBS, then incubated for 30 min in 0.1% glycine. After a 

further wash in PBS, embryos were blocked in 0.4% BSA for 60 min and washed in 

PBS/Tween 20 (0.1%; PBST) before incubating in rabbit anti-phospho-PKC (βII Ser 

660) (Cell Signalling Technology, NEB) and mouse anti-β-tubulin cy3 (Sigma-Aldrich) 

primary antibodies (each 1/100 in blocking buffer) for 72 h while rocking at 4°C. 

Afterwards, embryos were washed 5 times (twice 20 min, thrice 5 min each) with 

PBST and incubated in FITC-conjugated anti-rabbit Alexa Fluor 488 secondary 

antibodies (1/500 in blocking buffer) overnight. All samples were then washed a 

further 4 times with PBST prior to carefully mounting onto slides in Slow Fade Gold 

anti-fade reagent (with DAPI). Cover slips were sealed with clear nail varnish and 
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specimens visualised under a Leica TCS-SP2-AOBS laser scanning confocal 

microscope using a 20x dry objective and images captured. Any background signal 

received from the negative controls (i.e. embryos incubated only in secondary 

antibody) was negated from that of the positive samples by reducing the 

photomultiplier tube voltage, which was then kept constant for observations. 

 

Effect of PKC modulation on developmental parameters 

 

To establish long-term effects of GF109203X or PMA on developing L. 

stagnalis embryos, sibling 2- or 4-cell stage embryos within their capsules were 

dissected from eggs masses and randomly placed individually into wells of a 24-well 

tissue culture plate containing either PMA or GF109203X at different concentrations 

(0.01 – 10 µM), water, or DMSO (vehicle control for PMA, 0.1%); all solutions and 

compounds were changed daily for the duration of the experiment. The effects of 

PMA or GF109203X on the following parameters were then observed at the same 

time each day whilst embryos were developing: 1) rotation, the number of complete 

turns of the embryo within the capsule; 2) gliding, the number of complete circles 

performed around the capsule by an embryo moving along the inner surface of the 

egg capsule wall; and 3) heartbeat. Ten embryos were used per treatment, and each 

parameter was observed for 3 min. The embryos were maintained at 21°C on a 12 h 

light/12 h dark cycle. Where appropriate, images were captured under a Motic 

inverted light microscope with a Moticam 5 digital camera system.  

Next, to determine any potential immediate (rather than developmental) 

effects of PKC modulation on rotation, gliding and heartbeat, trochophore/veliger/ 

adult-like form stage embryos were collected and exposed to PMA (1 or 10 µM), 

GF109203X (1 or 10 µM), DMSO (vehicle) or water for 5 – 30 min and observed; a 

60 min time point was also included for GF109203X. These embryo stages were 

used because they display rotation, gliding and heartbeat (Filla et al. 2008); care was 

taken to ensure that all embryos used to study a particular parameter were of a 

similar developmental stage.  

To determine the effects of PMA or GF109203X on hatching, sibling 2-cell 

stage embryos (incubated at 0.01 and 0.1 µM, or 0.01 – 10 µM, respectively) or early 

veliger stage embryos (incubated at 10 µM) isolated from separate egg masses were 

exposed to these compounds. Embryos in 24-well tissue culture plate wells were 

maintained at 21°C, 12 h light/12 h dark cycle, and PMA, GF109203X, DMSO 
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(vehicle for PMA), or water were changed daily; 10 embryos were used per treatment 

and the experiment was repeated twice.  

 

Statistical analysis  

 

Raw phenotype data was collected from a series of independent experiments 

and was tested to ascertain if it was normally distributed using the Shapiro-Wilk test; 

not normally distributed data was transformed (square-rooted). Data was then 

analysed by analysis of variance (ANOVA) and post-hoc multiple-comparison tests 

(Fisher’s) using SPSS. Duration to hatching data were analysed using the Kaplan-

Meier curves and the log-rank test was used to deduce statistical significance 

between treatments (Rich et al. 2010). In all cases data for embryos treated with 

GF109203X and PMA was compared to that for control embryos in water and 

DMSO, respectively.  

 

 

Results and Discussion 

 

Analysis of PKC activation within early embryos 

 

Previously we validated anti-phospho PKC (βII Ser660) antibodies for detecting 

exclusively phosphorylated, activated, PKC in adult L. stagnalis (Plows et al. 2004, 

2005; Walker and Plows 2003; Wright et al. 2006). These antibodies detect PKCα, 

βI, βII, δ, ε, η and θ isotypes only when phosphorylated at a residue homologous to 

Ser660 of human PKCβII that is essential for activation (Behn-Krappa and Newton 

1999). In both adults and hatchling L. stagnalis the antibodies detect a PKC with 

molecular mass of ~85 kDa. Here, we used these antibodies to determine the 

dynamics of PKC activation in gastropod early embryos. In all cases, embryos that 

were incubated only in secondary antibodies displayed negligible fluorescence (data 

not shown). Across each of at least five replicate experiments, phosphorylated 

(activated) PKC was found in early embryos of different cell stages (1- to >24-cell 

stage) from within the same or different egg masses; however, the extent of 

activation within embryos varied (Fig. 1a-h). Thus embryos of similar or different 

developmental stages displayed inconsistent levels of phosphorylated PKC with 

some positively stained and others not, suggesting a dynamic cycle of PKC 

signalling. Consequently, 2-cell embryos adjacent to one another in the same egg 
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mass (and thus differing slightly in age) were stained and imaged, revealing a 

transient PKC activation within embryos of the same cell stage during development 

(Fig. 1i-p). A similar transient pattern of activation was observed for 4-cell stage 

embryos adjacent in an egg mass although the PKC signal intensity was less 

apparent (data not shown). Further observation of embryos demonstrated that when 

undergoing division, 2-cell embryos possessed activated PKC in the dividing zygote, 

including in the nuclear region (Fig. 1q, r); inspection of individual serial optical z-

sections revealed that activated PKC did not directly associate with the microtubule 

network in the nucleus. In this context, recently, an aPKCζ-like protein was found to 

localize to the microtubule network of early L. stagnalis embryos during cell division 

and to associate with the polarity protein Par6 (Homma et al. 2011); in C. elegans 

embryos, interaction between aPKC and Par6 is important to polarity establishment 

and Par6 cortical localization (Li et al. 2010). Given its sensitivity to GF109203X, the 

activated L. stagnalis PKC detected in the current study is likely most similar to a 

cPKC isotype, as also deduced for adult snails (Walker and Plows 2003; Wright et al. 

2006). Although it is currently unknown how many PKC isotypes are present in L. 

stagnalis, isoform-specific PKC expression/localisation has been shown to alter 

during early development of mammal embryos (Kalive et al. 2010), whereby 2-cell 

stage embryo nuclei are enriched with PKC α,δ, and ζ, whereas at the 4-cell stage 

PKCζ is found at the nuclear periphery (Kalive et al. 2010). As in the current study, 

the use of antibodies that detect exclusively the activated form of a kinase can yield 

valuable knowledge of kinase activation rather than simply expression during 

development, and other anti-active antibodies (including that for PKCζ) should be 

characterised for use in L. stagnalis and other molluscs and invertebrates. 

 GF109203X inhibits, and PMA activates, PKC in adult L. stagnalis defence 

cells (Walker and Plows 2003; Wright et al. 2006) and GF109203X also attenuates 

PKC signalling in L. stagnalis neurons (van Soest et al. 2000). GF109203X acts as a 

competitive inhibitor for the ATP binding site of PKC which blocks PKC 

autophosphorylation at Ser660 (Motley et al. 2002) and PMA acts as a DAG 

analogue. These compounds were therefore tested for their ability to modulate PKC 

activation, with 2-cell and 4-cell embryos used for GF109203X and PMA treatments, 

respectively, due to greater PKC activation generally seen in 2-cell embryos and vice 

versa. Treatment with PMA for 5 or 10 min (Fig. 2b, c) increased PKC 

phosphorylation in embryos in contrast to that seen in DMSO controls (Fig. 2a). In 

contrast, treatment with GF109203X reduced PKC activation over time (Fig. 2d-f). 

Because PKC activation in embryos appears transient, it could be argued that the 
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observed effects of PMA/GF109203X treatment might be due to developmental 

fluctuations in PKC activity. However, across five separate replicate experiments 

over 30 embryos were analysed for each treatment and in all cases PMA resulted in 

increased staining, whereas GF109203X resulted in a substantial reduction or 

complete loss of activated PKC, demonstrating the ability of these compounds to 

either activate or inhibit PKC in intact embryos, respectively. 

 

Multiple effects of PKC modulation on embryo phenotype and behaviour 

 

We next explored the effects of PKC modulation on embryo development. Initially, 2- 

or 4-cell embryos were removed from a single egg mass and were exposed to PMA, 

GF109203X, or vehicle at differing concentrations for 24 h. Whereas no obvious 

developmental aberrations were seen after 24 h with GF109203X (0.01 – 10 µM) or 

with low (<1 µM) doses of PMA, incubation with either 1 or 10 µM PMA resulted in 

deformed embryos with disrupted tissue patterning and no discernable axes (Fig. 2g-

k); protrusions of yolky cells were also often apparent. These findings support the 

notion that while cPKC-like activation seems non-essential for early embryogenesis 

and correct patterning of L. stagnalis, sustained cPKC activation might be detrimental 

and needs to be tightly controlled. In contrast, in C. elegans ablation of aPKC (PKC-

3) function results in disorganized and developmentally arrested embryos (Wu et al. 

1998) and in Drosophila melanogaster RNA interference (RNAi) of the nPKCδ 

homologue PKC98E affects embryo development along the dorso-ventral axis 

(Tremmel et al. 2013). 

 Because 1 or 10 µM PMA severely impacted embryogenesis, experiments 

investigating effects of chronic PMA treatment on physiology of developing embryos 

were done using lower PMA doses (0.01 or 0.1 µM), whereas GF109203X was used 

at 0.1 – 10 µM. Rotation of embryos was determined from day three (when at veliger 

stage) until they ceased rotating. Two factor ANOVA revealed an overall effect of day 

(P≤0.001) and treatment (P≤0.01) on rotation; slower rotation was seen on days 3 

and 7/8 compared with days 4-6 (P≤0.001) irrespective of treatment (Fig. 3a, d). 

However, 0.01 or 0.1 µM PMA significantly increased rotation (P≤0.001) when 

compared to DMSO controls, with 0.1 µM having the greatest effect, particularly on 

days 5 and 7 where increases of ~150% and ~400% were seen compared to DMSO 

(P≤0.01; Fig. 3a). On the other hand, each dose of GF109203X attenuated rotation 

on days 4 and 5 (P≤0.001) by up to ~29%, whereas surprisingly 0.1 – 10 µM 

GF109203X increased rotation on day 6 (P≤0.05) (Fig. 3d). Heartbeat, observable 
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from day 6, was also affected by day (P≤0.001) and treatment (P≤0.001). PMA (0.01 

or 0.1 µM) enhanced heartbeat on the majority of days when compared to DMSO-

treated sibling embryos (Fig. 3b). In contrast, chronic GF109203X treatment caused 

reduced embryo heartbeat, particularly on days 9 -11 (P≤0.001), with the greatest 

reduction (~45%) seen with 1 µM GF109203X on day 11 (P≤0.001) (Fig. 3e). Finally, 

gliding was observed over 4 – 5 days starting once embryos approached the end of 

metamorphosis. Again, two factor ANOVA revealed a significant overall effect of day 

(P≤0.001) and treatment (P≤0.05) on gliding. In control embryos gliding on day 8 was 

greater than on day 7 (P≤0.05), but declined again by day 10/11 (Figs. 3c, f). 

However, post-hoc multiple comparison tests revealed that the treatment effect did 

not depend on day of observation; thus PMA did not effect gliding on any one day 

when compared to controls (Fig. 3c). In contrast, chronic exposure to 0.1 µM or 10 

µM GF109203X resulted in a significant 49% (P≤0.05) and 57% (P≤0.001) reduction 

in embryo gliding, respectively, on day 8 (Fig. 3f). 

 In an attempt to further establish whether effects of PMA or GF109203X on 

rotation, heartbeat and gliding were due to altered physiology during development or 

were due to short-term exposure to the compounds, embryos were incubated in 

GF109203X or PMA (each at 1 µM or 10 µM) for up to 60 min and rotation, heartbeat 

and gliding determined every 5 or 10 min and compared to that of sibling embryos in 

water and DMSO. ANOVA revealed that mean rotation and heartbeat were 

unaffected by GF109203X or PMA at any time point, or by either dose. However, 1 

µM PMA increased gliding by ~105% at 30 min and 10 µM PMA increased gliding by 

between 90 % and 230 % after 10, 20 and 30 min exposure (P≤0.01; data not 

shown) when compared to DMSO controls. On the other hand, gliding rates of 

GF109203X treated embryos were not significantly different to those of control sibling 

embryos at any time observed over the 60 min treatment period.  

Ciliary motion drives rotation in L. stagnalis embryos (Voronezhskaya et al. 

1999) and PKC modulates ciliary beat frequency (CBF) in mammals (Salathe 2007) 

and mediates serotonin (5-HT) stimulated CBF in embryo epithelial cells of the 

gastropod Helisoma trivolvis (Chistopher et al. 1999). In addition, gliding in Lymnaea 

results from combined action of the cilia and phasic smooth muscles in the sole of 

the foot (Pavlova 2010, 2013). Moreover, smooth muscle contraction, including that 

of the heart, relies upon co-ordinated PKC activity (Andrea and Walsh 1992; 

Salamanca and Khalil 2005). Thus, although further experiments are required to 

unravel the complex effects of PKC modulation on these parameters during L. 

stagnalis embryogenesis, the results in this study support the hypothesis that rotation 
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and heartbeat, and to some extent gliding, result from changes mediated by PMA 

and GF109203X treatment during development, rather than from short-term 

treatment alone.   

 

Effect of PKC modulation on duration to hatching 

 

Although hatching of L. stagnalis embryos can lack synchrony when embryos remain 

in the egg mass, hatching is largely synchronous when eggs are isolated from the 

mass (Marois and Croll 1991) as done in the current study. Kaplan-Meier curves and 

log-rank tests of hatching data obtained from experiments with isolated early 

cleavage stage (2- or 4-cell) embryos revealed that chronic PMA (P≤0.01) (Fig 4a) or 

GF109203X (P≤0.001) (Fig. 4b) treatment delayed hatching when compared to 

control embryos, with only 0.01 µM PMA being without effect. On day 12, 60% fewer 

embryos hatched following 0.1 µM PMA treatment than with vehicle (DMSO) (Fig. 

4a) and 50% and 90% less hatched when exposed to 0.01 µM and 0.1/1 µM 

GF109203X, respectively (Fig. 4b). Furthermore, a small proportion, 10% and 20%, 

of embryos died following chronic treatment with 0.1 µM PMA and 10 µM 

GF109203X, with death occurring on days 14 and 13, respectively. Finally, a further 

experiment was undertaken to ascertain whether hatching was affected when later 

(veliger) stage sibling embryos were chronically exposed to 10 µM PMA or 10 µM 

GF109203X. While 10 µM GF109203X did not delay hatching or kill embryos, 10 µM 

PMA caused 70% death within three days, without significantly affecting the hatching 

time of survivors (data not shown). This difference in duration to hatching between 

early and later embryos in the face of PKC modulation, supports the idea that that 

blocking or promoting PKC activity alters the molecular events that influence normal 

development leading to increased developmental periods, possibly influenced by 

secondary effects of cilia motion and muscle activity.  

 

Given the relative paucity of research into protein kinases during mollusc 

development it is hoped that the founding experiments detailed here, perhaps 

coupled with RNAi (Knight et al. 2011) and embryo culture outside the capsule 

(Dickinson and Croll 2001) will help provide a framework for further work to 

functionally elucidate signalling during processes such as tissue patterning in this 

important group of animals.  
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Figure Legends 

 

Fig. 1 Cyclic PKC activation occurs in L. stagnalis embryos during early 

development. a-h Confocal fluorescence micrographs of embryos stained with anti-

phospho PKC (Ser660) and AlexaFluor 488 antibodies showing activated PKC 

(green) within embryos at various (1-cell - >24-cell) stages. i-p Confocal fluorescence 

micrographs of 2-cell stage embryos from the same mass of egg capsules. Embryos 

were fixed in chronological order from the first (1st) to the last (8th) laid egg observed 

within the egg mass and were stained for activated PKC (green), and for 

microtubules (red) with anti-tubulin cy3 conjugated antibodies. q Activated PKC 

(green) during embryo division with microtubule spindle shown (red). r Zoom of 

boxed region shown in ‘q’. In each case, results shown represent those observed 

from at least 5 independent experiments. Confocal microscopy images are maximum 

projections of image z-stacks. Bars represent 25 µm. 

 

Fig. 2 Modulation of PKC activation in L. stagnalis embryos by PMA or GF109203X, 

and effects of PMA on development. a-f Confocal fluorescence micrographs of 

embryos stained with anti-phospho PKC (Ser660) and AlexaFluor 488 antibodies 

showing activation of PKC (green) by PMA, or inhibition by GF109203X within 

embryos. Embryos were exposed to either 10 µM PMA for 5 or 10 min or 0.1% 

DMSO vehicle (control), or to 10 µM GF109203X for 5 or 30 min or water (control) 

prior to fixing and staining with antibodies. g-k Effects of 24 h PMA (1 or 10 µM) 

treatment on embryo development compared with sibling control embryos (0.1 % 

DMSO). In each case, results shown represent those observed from at least 5 

independent experiments. Confocal microscopy images are maximum projections of 

image z-stacks. Bars represent 25 µm. 

 

Fig. 3 PMA or GF109203X modulate heartbeat and rotation of L. stagnalis embryos 

when administered continuously during development from the early embryo stage.  

2-cell or 4-cell stage embryos were treated with a-c PMA (0.01 µM or 0.1 µM), 0.1 % 

DMSO (vehicle), or water, or d-f GF109203X (0.01 µM – 10 µM), or water. Rotation, 

heartbeat and gliding were then observed daily under a dissecting microscope over a 

3 min period whilst the embryos were still developing within their egg capsules. Mean 

values (± S.E.M) are shown. * P≤0.05, ** P≤0.01, and *** P≤0.001 (one-way ANOVA 

with Fisher post-hoc multiple comparison) when compared to a-c DMSO, or d-f water 
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controls; n=10 per treatment and dose, with all embryos randomly selected from five 

egg masses.  

 

Fig. 4 Effect of GF109203X or PMA on hatching rate of L. stagnalis when 

administered continuously during development from the early embryo stage. 2-cell or 

4-cell stage embryos were collected from the same egg mass and were treated with 

a PMA (0.01 µM or 0.1 µM), 0.1 % DMSO (vehicle), or water, or b GF109203X (0.01 

µM – 10 µM), or water. Numbers of hatched embryos from each treatment were 

recorded and results are expressed as mean values; n=10 per treatment and dose. 

Kaplan-Meier analysis/log rank test was applied to the data to determine significant 

differences between duration to hatching curves: ** P≤0.01 and *** P≤0.001 for 

treatments when compared to a DMSO or b water curves. 
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