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Abstract 

A ‘flexible Fourier trend’ unit root test, permitting smooth structural breaks of unknown form 

and dates, is used to test weak-form market efficiency in the Tehran stock market’s TEPIX 

index. Monte Carlo experiments show that this test has low power when non-trading-day gaps in 

the daily data are filled with missing value codes. The test’s properties for weekly returns and for 

data as published, with non-trading-day gaps suppressed, are better and similar to each other. 

Analysis of the full sample of TEPIX data as published supports a unit root null but indicates the 

presence of additional autocorrelation – questioning weak-form efficiency. Sub-sample analysis 

again finds evidence of a unit root, but also of complex autocorrelation. Support for the unit root 

increased in the years (2000-2004) following regulatory reform and has decreased since 2008. A 

Diebold and Mariano (1995) test is used to assess whether the revealed autocorrelation provides 

an effective basis for predicting price deviations from trend on the basis of their own history. 

Predictive effectiveness is found at a horizon of one trading day. We conclude that this market 

has not shown weak-form efficiency. 
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1. Introduction 

Whether or not a developing economy’s stock market is efficient is an important question. An 

allocatively efficient stock market, i.e. one in which the traded securities are appropriately 

valued, contributes significantly to sustainable growth and development by providing suitable 

conditions for savings and investment decisions. Where, as in the case of Iran, a stock market is 

not yet long-established then the question of whether it is developing as an effective institution 

is arguably particularly urgent. At the same time, the operating environment of an emerging 

stock market may bring a high risk of institutional instability, for example relatively frequent 

review and redesign of market microstructure and regulations. To the extent that emerging 

stock markets are often to be found in emerging market economies then such markets may 

additionally suffer instabilities that are a consequence of regime changes, e.g. liberalisation 

programmes, in the wider economy. Such considerations may intensify interest in the question 

of whether an emerging stock market is efficient but at the same time they point to the 

possibility of structural breaks, calling into question the applicability of statistical methods that 

have been employed to address the question of (weak-form) efficiency in well-established stock 

markets.  

This paper examines the (weak form) efficiency of Iran’s emerging stock market using a 

flexible trend unit root test proposed by Enders and Lee (2011) – hereafter E&L. This 

approximates structural breaks of unknown number and unknown date(s) by incorporating 

trigonometric components in the underlying data generating process. We use Monte Carlo 

simulations to assess the sensitivity of this test to the presence of non-trading days and apply 

the test to rolling sub-samples as well as to the full set of data, providing an extended table of 

critical values for this purpose. Where the test does not reject a unit root, we use the Diebold 

and Mariano (1995) comparison of predictive accuracy as a basis for confirming (or not) weak-

form efficiency. The remainder of the paper is organized as follows: the empirical methodology 

is described in section 2; issues arising from the presence of non-trading days in the data are 

discussed in section 3; section 4 presents the empirical investigations and section 5 concludes. 
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2. Assessing market efficiency in the presence of structural change 

Arguments based on Fama’s (1970) Efficient Markets Hypothesis label a stock market as 

allocatively efficient – relative to a particular set of relevant information, if prices fully and 

accurately reflect that information. In such a situation there is no distortion in the pricing of 

capital and risk, in the sense that traders who only know the current price act as if they have 

full knowledge of the given information set.  Given the unbounded nature of potentially 

relevant information, perfect efficiency may be typically an unrealisable ideal; more realistically 

a stock market is called ‘weak form efficient’ if it is allocatively efficient relative to the past 

history of stock prices. In this case, past prices contain no information that is not available from 

the current price and thus have no role to play in predicting future prices. Price behaviour can 

then be characterised for purposes of statistical analysis as a ‘random walk’, i.e. a series in 

which the non-deterministic component of future increments is unpredictable, viz:         

          . Here,    is the natural logarithm of the stock price index at time  ;     is a non-

random expected price change (‘drift’) at time  . The successive    are independently and 

identically distributed random variables with zero mean and are unpredictable, in the sense 

that the unconditional density for each    is no different to its density conditioned on the 

history of prices up until time  . A commonplace variant is the case where the deterministic 

drift is a constant:        , so that 

         ∑  

   

   

 (1) 

The random walk characterisation of weak form efficiency in equation (1) implies that    

should be ‘difference-stationary’, i.e. integrated of order one:     ( ), a ‘unit-root’ process. 

Unit root tests have become well-established in financial econometrics literature as an 

approach to assessing market (weak) efficiency by testing whether a price series appears to be 

difference-stationary. 
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A variety of unit root tests have been developed; arguably the most commonly 

employed is the augmented Dickey–Fuller (ADF) test (Dickey and Fuller 1979). Perron (1989), 

however, argues that structural changes in time series, for example in the value of a drift 

parameter, can reduce the effectiveness of this and other tests for unit roots. This argument is 

relevant if unit root tests are used to assess market efficiency when there is a possibility of 

institutional changes within a market, or of structural changes in the external environment, and 

thereby a possibility of structural breaks in time series data. A market that is at a relatively early 

stage of development or is situated in an emerging market economy may be especially 

susceptible to such breaks, a perspective adopted here with regards to the Iran stock exchange. 

 

Several methods have been developed to deal with the adverse consequences of 

structural breaks for unit root tests (see, for example: Perron 1989, Zivot and Andrews 1992, 

Lumsdaine and Papell 1997, Lee and Strazicich 2003). In most of the methods employed to date 

for unit root testing in the presence of structural breaks, assumptions must be made regarding 

the number, date or form of these breaks. The breaks are typically represented by pulse or shift 

dummies and are thus modelled as occurring instantaneously and inducing abrupt jumps in the 

values of level and / or trend parameters. Leybourne et al. (1998) argue that, since it is more 

likely that structural changes are not instantaneous, breaks should be approximated as smooth 

processes. To allow for this feature in structural breaks and to control for the effect of unknown 

forms of nonlinear deterministic terms, E&L propose a unit root test that employs a Fourier 

function approach to flexibly model the trend component, using trigonometric terms to capture 

nonlinearities in the trend, including structural change at unknown dates. Structural change is 

thus characterised as an ongoing transition process, rather than as multiple regimes separated 

by instantaneous structural breaks. E&L demonstrate that an effective Fourier approximation to 

a nonlinear trend can be achieved with a small number of contributing frequencies, possibly 

only a single frequency. 
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Figure 1. Tehran market index (natural logarithms) 
 

 

Figure 1 shows, in logarithms, the Tehran Stock Exchange (TSE) all-share price index 

(TEPIX) over the period 2/January/2000 – 31/December/2012. The possibility of structural 

breaks in the trend is evident – whether this trend is deterministic or resulting from a random 

walk with drift. The following brief history points to a number of institutional and 

environmental developments that may have induced such breaks.  

 

The TSE opened in 1967; trading was initially limited to corporate and public sector 

bonds but economic growth during the 1970s fuelled demand for a market in equities. A 

nationalisation programme following the Islamic revolution of 1979, together with restrictions 

on interest-bearing assets slowed market developments, which were further hampered by the 

1980-1988 Iran/Iraq war. The TSE was re-launched after the war but the inherited regulatory 

framework proved inadequate. During the late 1990s the regulatory framework was reviewed 

and an automated trading system was introduced. Our data begins in 2000 following this 

institutional overhaul. The TSE then began to expand its activities until the election of an ant-

reformist government in 2004 triggered economic uncertainties that were exacerbated in the 
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following years by a sequence of U.N. and other sanctions prompted by the Iranian nuclear 

programme. During 2004-2006 many companies de-listed from the TSE; market size and trading 

volume both decreased. A brief bear market followed the global financial crisis of 2007-2008 

but recovery was strong and the final period covered by our data shows an expanding market 

with a rising index – possibly in part a consequence of Iranian investors repatriating their assets 

because of the impact of sanctions on their overseas investments. 

 

The possibility of a broken or otherwise non-linear trend motivates our use of the E&L 

flexible Fourier trend approach to unit root tests. This approach is constructed within the 

framework for Lagrange Multiplier (LM) unit root tests introduced in Schmidt and Phillips 

(1992) - hereafter S&P. The LM framework begins with a statement of the data generation 

process (DGP) as some variant of (2) below:  

 

        ,           

            
(2) 

 

In equation (2), the series {  } is to be assessed for stationarity; it is modelled as being 

driven by unobservable random shocks {  } and also a linear combination of observable 

exogenous variables:           ,    ∑     . The random shocks are autocorrelated, 

possibly with a unit root (   ). S&P develop in detail the case where {  } is a linear trend: 

       , or a polynomial time trend:         ∑    
    

   . E&L augment the linear 

time trend with trigonometric components intended to proxy non-linearities such as changes in 

the trend slope. These trigonometric terms may employ a single frequency ( ), viz:      

   (     (     ⁄ )       (     ⁄ )),     ⁄  , or multiple frequencies.  

 

LM tests in general begin by first estimating the model subject to the restrictions of the 

null hypothesis. Here,        makes equation (2) one in differences:           , 

equivalently             . Assuming the {  } to be independently and Normally 

distributed means that Maximum Likelihood (ML) estimation of   and of the parameters within 
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{  } is achieved by application of OLS to this equation. ML estimation of the intercept ( ) under 

the null hypothesis then proceeds by considering the first observation point, at which 

             . The value of   and of the initial shock (  ) cannot be separately 

identified under the unit root null; restricted ML estimation of their joint contribution is given 

by (    )̃       .  

 

The second stage of an LM test is to evaluate how significantly the maximised likelihood 

could increase if the null hypothesis were to be relaxed. S&P show that for equation (2) this 

derivative is equivalent to the coefficient,   , attaching to the term  ̃    in OLS estimation of an 

auxiliary regression:       ̃      ∑         . They show also that the LM test 

statistic can be calculated as the t-statistic for  ̂, denoted    .  In this auxiliary regression,  { ̃ } 

is the series of deviations around the fitted trend whose parameters were estimated in stage 1: 

 ̃      ̃ . Critical values for     depend upon sample size and the specification of {  }: 

S&P provide critical values for the case where {  } is a linear or polynomial time trend, E&L 

provide critical values for use when a linear trend is augmented with trigonometric terms and 

demonstrate that the asymptotic distribution of this test statistic depends only on the 

trigonometric frequency,  , being invariant with regards to all other parameters in the DGP.  

 

Hence, application of the flexible Fourier trend unit root test with a single trigonometric 

frequency ( ) involves 

1. OLS estimation of         in             (     ⁄ )        (     ⁄ )      

2. Estimation of (    ) as     ̃ ,  ̃   ̃    ̃   (     ⁄ )    ̃   (     ⁄ ); 

3. Construction of the fitted trend:   ̃  (    )̃   ̃ , and the deviations from trend: 

 ̃      ̃  

4. OLS estimation of the auxiliary regression:  

      ̃            (     ⁄ )        (     ⁄ )    ; 

5. Comparison of     (the t-statistic for  ̂) with critical values tabulated in E&L 
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In practice,   is not given a priori. E&L recommend that steps 1 – 4 are repeated for each 

integer value of   in the interval      . The preferred value for   is the one that produces 

the smallest residual sum of squares for the auxiliary regression in step 4. E&L offer evidence to 

suggest that such a Fourier approximation – employing only the preferred single frequency, is 

able to capture the effects of a (small) unknown number of structural changes at unknown 

dates, particularly when these are not sudden breaks. 

 

Before implementing this unit root testing procedure we consider some issues pertinent to 

the data series. 

 

 

3. The consequences of non-trading days 

Our data series gives the TEPIX daily closing values, obtained from the official TSE website 

(www.irbourse.com). The sample data (see figure 1) cover the time period from January 2, 2000 

to December 31, 2012, offering 3145 observations. As is commonplace for stock market data, 

the data source publishes the observations as a contiguous sequence without explicit 

recognition of data gaps caused by non-trading days, such as weekends and other periods of 

market closure. Application of the selected unit root test thus begs the question of whether or 

not to read equation (2) as applying to the data in its published form – in which dates and lags 

are expressed by reference to sequential observation numbers rather than the passage of 

calendar time. 

 

We take the position that market prices are a reflection of domestic and international 

fundamental forces that evolve largely independently of the market itself. In particular, we 

assume that these market fundamentals – which will include, for example, national and global 

macroeconomic fluctuations, proceed whether or not the market is trading. Consequently, we 

conclude that the passage of time is, in principle, better represented by calendar date than by 

observation number. The issue of whether to specify lag structures by reference to observation 

http://www.irbourse.com/
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number or calendar time may be less clear cut. If behavioural forces are dominant in price 

setting then the last observed price may have relevance, even if a period of closure has 

intervened – a consideration that argues for specifying lag structures by reference to 

observation number instead of, or as well as, calendar time. In this study we maintain an 

assumption that price-setting reflects fundamental asset values and test whether or not it does 

so efficiently. Some of the factors influencing fundamental value are best modelled as a 

deterministic trend, {  }, other factors are best modelled as unpredictable ‘news’, {  }. The 

trend and news flow exist whether or not the market is trading. From this perspective, we 

argue that equation (2) should be read as applying to all calendar dates; if the market is not 

trading then this equation models an unobservable ‘what the price would have been’. The 

autoregression in equation (2) is therefore understood to be defined on a sequence of values 

indexed by calendar time rather than observation number. We will consider the implications of 

this understanding of the DGP when the unit root test of E&L is applied to data which has 

recurrent missing values because of non-trading days. Ryan & Giles (1999) investigate the 

implications of recurrent data gaps for the Dickey-Fuller style of unit root tests; we are not 

aware of any such investigation for tests conducted within the LM framework of S&P. 

 

We will consider the properties of the E&L ‘flexible Fourier trend’ test in the context of 

three possible decisions by an investigator: a) the investigator records non-trading days as 

missing values in a daily data series indexed by calendar date; b) the investigator ignores the 

presence of non-trading days and works with the series as published – a daily series indexed by 

observation number; c) the investigator chooses to analyse weekly returns rather than daily 

returns. These alternatives are now discussed in more detail before a Monte Carlo experiment 

explores their finite sample consequences. 
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Case A: daily observations with weekly non-trading gaps in the data 

When equation (2) describes a data series with no missing values, then – as is argued 

more completely in Appendix 1 of S&P, the contribution that the     observation makes to the 

joint likelihood is           (         ). At    , however,         is not observed 

and so we must use             , making    another parameter to be estimated. This 

need for incidental parameters repeats at any gap in the sequence of observations. If     is 

the date of the first observation following a group of missing observations then      is 

unobserved. We should therefore employ                in constructing the likelihood 

function implied by equation (2), making each      a parameter to be estimated. Where the 

data are the daily prices reached in a stock market then these normally follow an ‘A:B’ trading 

pattern, in which a period of A trading days is followed by a period of B non-trading days.  

Consequently, the number of non-trading periods and, therefore, the number of parameters 

requiring estimation within the LM framework increases at the same rate as the sample size, 

invalidating the arguments used by S&P to develop the LM test statistic, of which the     

statistic (E&L, eq.11) is a special case. An investigator who simply applies the procedure 

documented in E&L to data with missing values fails to recognise the presence of these 

additional parameters. 

 

Case B: ignoring the non-trading gaps in the daily observations 

It is not unknown within the literature for an investigator to work with the daily 

observations from a market with a     trading:non-trading pattern, treating these as if they are 

a contiguous series of observations. In this case, each observation point, except the first, 

contributes data for both current and lagged price, eliminating the problem of incidental 

parameters described in Case a. However, the first trading day of each week now employs the 

price from the final trading day of the previous week as if it were the price from the 

immediately preceding day. In this case, equation (2) – now referencing observation number 

rather than calendar time, should in principle be modified for all weekly first trading days to 

read         ,     
       

                     , where   indicates the first trading 

day of some week,        ,         are the unpredictable news flows of the two preceding non-
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trading days, and       refers to the most recent preceding observation, which is from the final 

trading day of the previous week. This modification means that the joint likelihood function for 

the observed data is not exactly as is assumed in the LM framework introduced by S&P. 

Additionally, the investigator who is using stock market data in the form in which it is published 

may use the observation sequence number rather than the calendar date to indicate the 

passage of time when constructing deterministic trend contributions to {  }. This again 

constitutes a departure from equation (2). For example, the calendar date on the opening 

trading day of a week will be three calendar days ahead of the last trading day, whereas 

equation (2) assumes a gap of one day between all observations. Whilst this irregularity might 

be accommodated within equation (2) by suitable definition of deterministic contributions to 

{  }, it constitutes a departure from the assumptions underpinning the tabulated critical values 

in S&P and in E&L. 

 

Case C: using weekly observations 

Empirical investigations of financial markets for which daily prices, and thus daily 

returns, are observed may also report the behaviour of returns taken over a longer period, for 

example weekly. In the notation of equation (2),    then might be the mid-week log-price of the 

current week and      the mid-week log-price of the preceding week, making {   } a series of 

weekly returns. The passage of time can be measured in days or weeks without consequence 

for the test results since one measure is a simple rescaling of the other. Assuming that 

incidental market closures do not cause any missing mid-week values, every week excepting 

only the first, contributes both current and lagged observations of {  } – as was assumed in the 

development of the LM test by S&P. At the same time, however - since each week now 

provides only one observation, the sample size is dramatically reduced, with consequent power 

reduction for the test. Additionally, iteration of equation (2) shows that its autocorrelation 

component can be expressed as     
        ̅, with   ̅  ∑       

   
   , implying that, under 

the unit root null, the random shock to weekly returns (  ̅) has higher variance than the shock 

to daily returns (  ), again weakening the test. On the other hand, whereas the autoregressive 

coefficient in equation (2), has a value of   for daily data, it has a value of    for weekly returns. 
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Since     under the alternative hypothesis then     , presumably making it easier for the 

test to detect departures from       . This consideration points to the possibility that, 

although weekly data offer fewer observations than do daily data, and with higher variance in 

the disturbance term, the power of the LM test for weekly data might still not be much 

reduced, if at all, relative to when it is applied to daily data over the same span of weeks. 

 

The consequences of an investigator’s response to weekend non-trading gaps in the 

data is now explored through Monte Carlo experiments. (The Monte Carlo simulations and the 

statistical investigations that follow were conducted using Eviews v8.) Each experiment consists of 

50,000 trials in which we apply the flexible Fourier unit root test with multiple frequencies to a 

‘daily’ data series, {  }, that is artificially generated according to (3). 

 

        ,           

            

        ∑       (    ⁄ )        (    ⁄ )
   

   
 

    

(3) 

 

Equation (3) is a variant of equation (2) employing multiple trigonometric frequencies. 

We set the maximum frequency to     since this is sufficient to generate data series similar 

in appearance to the TEPIX data shown above in figure 1. In each trial the     and     

parameters are drawn independently from a uniform distribution on the range (     ), 

reflecting the range of parameter values considered in the power simulations in E&L. The linear 

trend parameter,  , is drawn from a uniform distribution on the range (           ); this 

produces a ‘standardised drift’, meaning the average value of the {   } series expressed as a 

ratio to its standard deviation, which is on average close to     , a value in the range that S&P 

(page 271) suggest might be expected for financial market data. The intercept parameter,  , is 

set to zero in each trial, as also is the initial deviation from trend,   . The random disturbances, 

{  }, are generated as independent drawings from the standard Normal distribution.  
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In each trial, data is generated for a sample period spanning 100 seven-day ‘weeks’ - 

giving a total of 700 observation points. Each week has a 5:2 trading:non-trading pattern. For 

simulation of case A, which has      , the unobservable values on day 6 and day 7 each 

week are replaced by missing value codes, leaving 400 useable observation points, i.e. days 2, 3, 

4, 5 of each week. For simulation of case B, the missing value at day 7 each week is replaced by 

the observed value of the preceding day 5. This simulates an investigator using the data series 

as published – giving 499 useable observation points (every trading day except the first), with 

     . Case C is simulated by restricting the sample to include only day 3 of each week, 

implying      , with 99 useable observation points. In each trial, a test of        

employing multiple frequencies   (    jointly with    ) was conducted for each of cases A, 

B, C, following the method as described in E&L, with 5% critical values drawn from or 

interpolated from their table 2. This experiment of 50,000 trials was repeated for various values 

of the autoregressive root and a count was kept of the percentage of rejections; the results are 

summarised in table 1.  

 

Table 1. Empirical rejection percentages using 5% critical values from Enders & Lee (2011) 

with 100 weeks of 5:2 daily data    

    1 0.995 0.99 0.975 0.95 0.9 0.75 0.5 

         

Case A: daily, with gaps 0.37 0.34 0.38 0.78 3.03 15.54 37.28 45.13 

Case B: daily, no gaps 5.41 5.76 7.04 17.2 64.88 99.95 100 100 

Case C: weekly returns 5.03 5.29 6.42 15.16 54.19 98.86 100 100 

 

From table 1 it is evident that failure to recognise, within the likelihood function, the 

additional pseudo-parameters occasioned by the missing value gaps in Case A greatly reduces 

the power of this LM-based test when those gaps are occurring repetitively and frequently, as 

with weekend market closures. We should also note that the insertion of missing value codes 

means that contiguous data appear in groups of only five observations. This implies a greatly 
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reduced sample size for any model including lagged variables. For example, the E&L test 

equation cannot be estimated on such data if it is augmented with lagged differences to a lag 

depth greater than three.  

 

Table 1 also suggests that proceeding as in Case B (ignoring data gaps) gives marginally 

better power than is obtained when employing weekly returns. The price being paid for this 

slight advantage is that Case B produces a somewhat over-sized test, rejecting the unit root 

hypothesis more than 5% of the time when it is actually true. In the context of assessing market 

efficiency, this slight conservatism may be acceptable.  

 

The suite of experiments reported in table 1 was repeated with other sample sizes (50 

weeks, 200 weeks, 500 weeks). At the larger sample sizes Case A remains a weak performer, 

Cases B, C both improve in power, with Case B continuing to be slightly oversized and retaining 

a small power advantage relative to Case C when   is close to unity. At the smaller sample size 

(50 weeks) Case C apparently becomes substantially over-sized which may be a consequence of 

interpolating a critical value below the limit of applicability of table 2 in E&L, where the 

minimum sample size is      . 

 

Based on this Monte Carlo evidence, we will analyse the TEPIX daily data series as 

published, ignoring the gaps created by days when the market is closed and defining trend 

variables, trigonometric and linear, by reference to observation number rather than calendar 

time. 
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4. Empirical results 

4.1 Unit root testing on the full sample 

To model nonlinearity of unknown form by a Fourier approximation employing a single 

frequency, E&L recommend selecting whatever frequency in the range     to     yields 

the smallest sum of squared residuals in least squares estimation of equation (4). They also 

recommend pre-testing for non-linearity. We dispense with this pre-testing for the full sample 

of TEPIX data on the grounds that figure 1 provides sufficient evidence to discount a linear 

trend. 

 

      ̃            (     ⁄ )        (     ⁄ )     (4) 

 

As described previously, in section 2,  { ̃ } is a series of deviations from a non-linear 

trend that employs the nominated frequency and embodies the unit root null hypothesis. Once 

the preferred frequency is established, equation (4) may be augmented with lags of   ̃  if this is 

necessary to remove residual autocorrelation. The test-statistic,    , is the t-statistic for  ̂ in 

the (possibly) augmented version of equation (4), with critical values for the single frequency 

case as tabulated in table 1 of E&L. For our data the frequency giving the lowest sum of squared 

residuals in equation (4) is  ̂     , with  ̂      being a close runner-up. Because their SSR 

values are similar, we report the test results for all frequencies in table 2, along with critical 

values interpolated from table 1 in E&L.  

 
Table 2. Unit root tests for TEPIX, full sample, employing single frequencies (k) 

   Critical values  

  SSR     1% 5% 10% lags 

       

1  0.09981 -2.250 -4.56 -4.02 -3.77  10 

2  0.10053 -1.146 -4.16 -3.54 -3.22  10 

3  0.10105 -1.121 -3.94 -3.30 -2.98  10 

4  0.09951 -1.056 -3.80 -3.19 -2.88  10 

5  0.10114 -1.106 -3.74 -3.13 -2.83  10 
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The final column of table 2, reports the maximum lag length ( ) in the augmented 

version of equation (4). Our specification search strategy for determining ( ) was to begin with 

    and to apply increments,       with the compound stopping rule ‘Stop when there 

is no residual autocorrelation at the current maximum lag and also no AIC improvement would 

result from incrementing the maximum lag’. (Residual autocorrelation was deemed absent if 

the prob. values for the Ljung-Box Q-statistics were above 5% at each of lags 1 through 25.)  

 

It is apparent in table 2 that the unit root null hypothesis, characterising a weakly 

efficient market, is not rejected by a test where a non-linear trend is approximated by a Fourier 

approximation employing any single frequency in the range     to    . It is, however, well-

known that inappropriately restricting the deterministic trend component of a series can bias 

unit root testing towards erroneous non-rejection of the unit root when the DGP is in fact 

stationary around a trend process more complex than can be accommodated within the testing 

framework. For this reason we also apply the flexible Fourier unit root test with multiple 

frequencies in the deterministic trend. E&L provide critical values for a test equation containing 

sine and cosine terms at multiple frequencies. The test statistic, denoted    ( ), is now the t-

statistic for the estimator of   in 

 

      ̃      ∑       (    ⁄ )        (    ⁄ )
   

   
    (5) 

 

Again, the { ̃ } are deviations from a fitted trend obtained as outlined in section 2 but 

now with multiple frequencies,      , for the sine and cosine terms. Because additional 

trigonometric terms reduce the power of the test, E&L limit the cases considered to    . In 

table 3, we report    ( ) for        . Critical values for our sample size are obtained by 

interpolating those provided by E&L.  The test equation (5) is augmented with lagged terms, 

  ̃   ,       , with   selected by the same stopping rule as previously. It is evident that the 

more flexible trend specifications (     ) do not reverse the previous conclusion of a weakly 

efficient market. One caveat that shall be noted here and considered more fully below is that 
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the unit root testing has found evidence of a more complex autocorrelation structure than the 

simple AR1 process envisaged in equation (2). Such autocorrelation is potentially a basis for 

predicting price movements from their own past history and thus calls into question market 

efficiency, regardless of the results of unit root testing.   

 

Table 3. Unit root tests for TEPIX, full sample, employing all frequencies    

  Critical values  

     ( ) 1% 5% 10% Lags 

      

3 -3.281 -5.87 -5.37 -5.12 10 

2 -3.067 -5.27 -4.76 -4.51 10 

1 -2.250 -4.56 -4.02 -3.77 10 

 

4.2 Sub-sample testing 

We have discovered that the daily TEPIX data for the period from 2/1/2000 to 31/12/2012 

satisfies the unit root requirement for a weakly efficient market when the unit root test 

assumes that non-linearities in the trend can be adequately approximated by Fourier series 

employing a single frequency or a small number of frequencies, as in equation (3) above. It 

seems appropriate, in the context of an emerging stock market, to investigate whether the 

evidence for or against market efficiency is uniform throughout the period of available data. By 

employing a rolling sub-sample window for unit root testing, we can potentially address 

questions such as (i) whether, following its regulatory reforms, the Tehran exchange required 

some operational experience in order to develop an institutional framework supportive of 

efficient price-setting, and (ii) whether the efficiency of price-setting was challenged by 

particular historical episodes. 

 

We employ a sub-sample window with a width of 250 observations, approximately a 

year’s trading, and roll this window through the available data, advancing the window with a 

step size of a single observation. For each position of the sub-sample window, we perform the 

test with a single frequency. The preferred single frequency for each sub-sample is selected as 

described in section 4.1. With the substantially reduced sample size we do not attempt the test 

with multiple frequencies, both because of power considerations and also because, in the light 
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of the arguments and examples in E&L, we expect adequate approximation by a single 

frequency at this sample size. We pre-test for a null hypothesis of linearity, using the F-test 

described in E&L, with critical values interpolated from their table 1 (panel c). Whenever 

linearity is not rejected we employ the LM test with a linear trend, as described in S&P, in place 

of the LM test with a flexible Fourier trend.  
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Figure 2. Sub-samples F-test, null hypothesis = ‘linear trend’ 
 

Figure 2 shows the results of the pre-testing for linearity; the F-test statistic from each 

sub-sample window is plotted against the mid-point of that window. The horizontal dotted line 

shows the critical value for a test with 5% significance level. For some periods of time a linear 

trend appears to be sufficient - implying that unit root testing with a simple linear trend is to be 

preferred (see E&L), but these episodes are not in the majority and there are other periods 

where the rejection of linearity is emphatic. 

 

Figure 3 plots the t-statistic obtained within each sub-sample window against that 

window’s mid-point. The t-statistics result from employing the best single frequency Fourier 

trend for that sub-sample, or a simple linear trend, according to the results of the pre-testing 

for linearity. Because the critical values for the t-statistics vary according to the selected test, 
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the results are reported as the deviation of each t-statistic from its median value under the null 

hypothesis, with this deviation expressed as a percentage of the distance between the median 

and the one-tailed critical value for a 5% significance level. So, for example, a test result that 

falls exactly on whatever is the appropriate critical value would be recorded as 100% and lie 

exactly on the dashed line in figure 3. Plotted values that fall above this line indicate sub-

samples for which the unit root hypothesis is rejected.  To support these calculations, table 1 in 

E&L was extended to include a more complete range of quantiles for the test-statistic under the 

null. These are appended as table A1 since they are potentially useful for any investigation 

employing the flexible Fourier trend unit root test. 

 

-150

-100

-50

0

50

100

150

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

 
 

Figure 3. Deviation of t-stats from median, relative to 5% quantile 
 

In figure 3 we see that there are only a small number of sub-sample windows for which 

the unit root test statistic enters the 5% rejection region. There are, however, a number of 

episodes where the evidence against a unit root has spiked – most recently, for example, in 

subsamples whose mid-point is in late 2010 / early 2011. Figure 3 is also suggestive of 

cumulative strengthening of support for the null hypothesis in the early years, up until 2004, 

and a cumulative weakening of support in recent years, from 2008 to 2012. It is tempting to 
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associate the earlier of these trending episodes with a market that is developing its institutional 

practices and depth of trading. The more recent cumulative weakening of support for weak 

efficiency coincides with the aftermath of the global financial crisis and covers the period during 

which market activity and the TEPIX index have rapidly increased as nationals repatriate their 

overseas investments. 

 

4.3 Assessing the predictability of prices 

We noted earlier that the test equation (4) is augmented with lags of   ̃  whenever there is 

evident need to remove autocorrelation from this equation’s disturbance process. Such 

augmentation was required in over 95% of the sub-sample windows. The median lag-length 

was 2 trading days, with an upper quartile of 3 days, and almost half of the remaining sub-

samples requiring a lag-length of 10 days. Such autocorrelation is evidence that the DGP In 

equation (2) should be amended to be         ,  ( )     , with  ( ) being a lag 

polynomial that expresses the pattern of the autocorrelation. In the case where we have 

accepted the presence of a unit root in this lag polynomial then we can factor it as  ( )  

 ( )(   ). Noting that the leading coefficient is normalised to unity, we can write  

    ∑        
   
       and recalling that    has been introduced earlier as a notation for 

deviations from trend when a unit root is assumed present allows the DGP in first differences to 

be written as: 

  

        ∑        
   
      ,           (6) 

 

Equation (6) appears to be inconsistent with market efficiency inasmuch as deviations 

from trend in the one-day returns (           ) are dependent upon their own past 

history. A counter argument is that equation (6) is only de facto inconsistent with weak 

efficiency if the    are known a priori and are thus a basis for predicting prices. Where the    

must be estimated from market history the question to be addressed is then whether or not 

the past history contains sufficient information to make equation (6) an effective predictor. We 
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therefore examine the possibility that ‘the Tehran stock exchange is weakly efficient in the 

sense that past deviations of returns from their deterministic trend do not provide an effective 

basis for predicting future such excess returns’. We approach this as an exercise in comparing 

predictive effectiveness. The first of the two predictors which are to be compared is (i): 

  ̃    ∑  ̃   ̃     
   
   . This is an implication of equation (6) in which   ̃        ̃ , 

where   ̃   is the ML estimator for the flexible Fourier trend under the unit root null 

hypothesis, as defined previously in section 2 and  ̃  are OLS estimates. This is a dynamic 

predictor, meaning that, for  >1, it predicts   ̃    by using its own predicted values for those 

  ̃      that are outside of the estimation sample period. As such, it reflects the position of a 

market participant who only has access to current and past prices when forming expectations 

of future prices. The effectiveness of this dynamic predictor is compared with (ii):   ̃     , 

which simply sets predictions equal to the unconditional mean, thus asserting that past prices 

have no useful predictive power. 

 

The two predictors just defined will be compared by the ‘DM test’ (Diebold and Mariano 

1995). This requires that we define a non-negative loss function to represent the cost of 

forecast error – we shall simply use squared error. The null hypothesis is ‘no expected 

difference between the losses resulting from the two predictors’, as is appropriate to a weakly 

efficient market. The appropriate alternative hypothesis for assessing market efficiency is one-

tailed, namely that expected losses are less when employing the predictor utilising past market 

history.  

 

We consider a range of forecast horizons, from   1 to  =25 trading days. For each of 

the 2862 rolling sub-samples of 250 days, in which the unit root hypothesis was not rejected 

(see figure 3), we retrieve   ̃ , the ML estimate of a flexible Fourier trend in differences using 

the best single frequency, as discovered in the unit root testing for that sub-sample. This 

provides   ̃  within that sub-sample and also within its immediately following forecast period. 

We then use those deviations from trend within the sub-sample as data for OLS estimation of 
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the coefficients in   ̃  ∑  ̃   ̃   
   
   , with the maximum lag ( ) set to the lag length 

previously determined in unit root testing for that sub-sample. This autoregression then 

provides a dynamic forecast for each of   ̃            , where   is the last date in that 

rolling sub-sample. For each of these horizons, the rolling sub-samples generate a sequence of 

forecast errors for the two predictors being compared. A sequence of ‘loss differentials’ for any 

given forecast horizon is given by subtracting the sequence of squared errors for predictor (ii) 

from those for predictor (i). The null hypothesis of equal forecast accuracy proposes that these 

loss differentials have an expected value of zero; an alternative hypothesis that predictor (i) is 

superior implies a negative expected value.  

 
Table 4. Diebold-Mariano test of equal forecast accuracy at various forecast horizons 

h 1 2 3 4 5 6 7 8 9 10 

DM-tstat -2.839 -0.635 0.011 -0.293 -0.742 -0.516 -1.730 -1.048 -0.494 -0.425 

prob 0.0023 0.2628 0.4955 0.3847 0.2292 0.3028 0.0418 0.1475 0.3108 0.3355 

h 11 12 13 14 15 16 17 18 19 20 

DM-tstat 0.525 0.771 0.823 1.072 0.551 0.763 0.196 0.275 -0.083 0.716 

prob 0.2998 0.2205 0.2054 0.1419 0.2909 0.2229 0.4224 0.3916 0.4667 0.2371 

h 21 22 23 24 25 
     DM-tstat 0.789 0.996 -1.001 0.486 0.381 
     prob 0.2151 0.1598 0.1584 0.3137 0.3518 
      

Diebold (2012) notes that the DM test statistic can be conveniently calculated as the t-

statistic in an intercept-only regression model for the loss differential, estimated by OLS with 

HAC-robust standard errors. These are presented in table 4, together with their left-tail p-

values, showing that the null hypothesis that past market history gives no useable information 

for predicting future market behaviour is supported at most forecast horizons in         . 

There are two exceptions. The hypothesis of equal forecast accuracy is clearly rejected 

(p=0.0023) for    ; recent deviations of market price from its deterministic trend are 

relevant predictors for this deviation on the next trading day. For    , the rejection of the 

null is borderline (p=0.0418) and less easy to rationalise (The passage of time is measured in 

trading days so     should not be read as a ‘week-day effect’.) We can note, however, that 
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one false rejection of a null hypothesis in twenty five applications of a test would not be 

surprising. 

 

5. Summary and conclusions 

We have investigated whether pricing in the Tehran stock market is weak-form efficient, using 

unit root testing and also an assessment of the predictability of the non-deterministic 

component of the market index. The history of the market index is such that unit root testing 

should admit the possibility of structural breaks. The ‘flexible Fourier trend’ unit root test of 

Enders and Lee (2011) allows the timing and also the degree of abruptness of such non-

linearities to be data-determined. 

 

The theoretical development of this test assumed a data generation process with no 

missing values but stock market data at daily frequency typically has repeated missing value 

gaps because of weekend market closure. We argue that the fundamental forces driving asset 

values play out in calendar time, whether or not the market is trading and discuss the 

implications for the test procedure when applied to data with non-trading gaps. By Monte Carlo 

simulation of a market with regular weekend closure we establish that the test is grossly 

underpowered if the non-trading gaps are filled with missing value codes and has much better 

power when applied to either (i) weekly returns dated in calendar time, or (ii) daily returns as 

published, in which observation number replaces calendar time. The latter appears to be 

slightly more powerful and so was employed, despite its disrespect of the test’s assumptions 

regarding data generation. 

 

We apply the test first to the full sample of available data and conclude in favour of a 

unit root, whether employing a single trigonometric frequency or multiple frequencies for the 

Fourier trend. We note the need to augment the test equation with lagged terms, and argue 

that this begs the question of whether a unit root is sufficient evidence of weak-form efficiency. 

 



24 

 

We also conduct unit-root testing on rolling sub-samples of 250 observations. Pre-

testing for linearity of trend in each sub-sample determines whether unit root testing follows 

E&L or S&P. We again conclude in favour of a unit root in almost all sub-samples but note that 

the evidence of a unit root strengthens during the period 2000 – 2004, suggesting improvement 

in market efficiency as operational experience accumulated following the earlier regulatory 

reforms. We also note a weakening in the support for a unit root after 2008 and conjecture that 

this may be associated with very rapid expansion in market activity when international 

sanctions forced repatriation of funds that had been previously invested overseas. 

 

As with the full-sample, the application of unit root testing in sub-samples typically 

required augmentation with lagged differences. These might provide a basis for prediction of 

prices, thus questioning weak-form market efficiency, even with a unit root present. We argue 

that a market is de facto weak-form inefficient only if the past prices provide a basis for 

effective prediction of future prices. We use the Diebold and Mariano (1995) test to assess 

whether this is the case, discovering that the empirical evidence suggests that past price 

deviations from trend are an effective predictor for future deviations from trend at a forecast 

horizon of one trading day. To this extent, our analysis suggests that the Tehran Stock Exchange 

has not displayed weak-form efficiency.  
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APPENDIX 
 

Table A1 reports the simulated distribution of the Enders & Lee (2011) ‘   ’ test statistic for sample sizes quoted in their table 1 and 

with an extended selection of quantiles. Each column is derived from 100,000 simulations of equation (2) with    ; {  } a null 

series; {  }      (   ),          and      . The 5% quantiles reported here do not all exactly match those in Enders & Lee 

(2011) but are all within the range of empirical variation that can be expected with 100,000 repetitions of the DGP. 

 

TABLE A1. Quantiles for      
 

 
T=100 T=200 T=500 

 
T=2500 

 
k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5 

 
k=1 k=2 k=3 k=4 k=5 

1.0% -4.69 -4.24 -3.97 -3.84 -3.74 -4.60 -4.20 -3.96 -3.83 -3.73 -4.57 -4.14 -3.94 -3.80 -3.74 
 

-4.55 -4.15 -3.93 -3.80 -3.72 

2.5% -4.37 -3.87 -3.61 -3.48 -3.40 -4.31 -3.85 -3.61 -3.48 -3.40 -4.29 -3.82 -3.59 -3.47 -3.41 
 

-4.26 -3.82 -3.59 -3.46 -3.39 

5.0% -4.10 -3.58 -3.30 -3.18 -3.12 -4.07 -3.56 -3.32 -3.19 -3.11 -4.05 -3.54 -3.30 -3.20 -3.13 
 

-4.03 -3.54 -3.30 -3.18 -3.13 

10.0% -3.82 -3.23 -2.96 -2.85 -2.80 -3.79 -3.22 -2.98 -2.87 -2.81 -3.77 -3.21 -2.98 -2.88 -2.83 
 

-3.77 -3.22 -2.98 -2.88 -2.83 

20.0% -3.49 -2.82 -2.57 -2.50 -2.46 -3.47 -2.82 -2.60 -2.51 -2.47 -3.47 -2.82 -2.60 -2.52 -2.49 
 

-3.46 -2.83 -2.61 -2.53 -2.49 

30.0% -3.27 -2.53 -2.32 -2.26 -2.23 -3.25 -2.54 -2.34 -2.27 -2.25 -3.25 -2.54 -2.35 -2.29 -2.27 
 

-3.24 -2.55 -2.36 -2.29 -2.27 

40.0% -3.08 -2.29 -2.12 -2.07 -2.04 -3.07 -2.30 -2.14 -2.08 -2.06 -3.07 -2.31 -2.15 -2.10 -2.08 
 

-3.07 -2.33 -2.16 -2.11 -2.08 

50.0% -2.91 -2.09 -1.94 -1.90 -1.89 -2.91 -2.10 -1.97 -1.92 -1.91 -2.91 -2.11 -1.97 -1.93 -1.92 
 

-2.91 -2.12 -1.99 -1.94 -1.92 

60.0% -2.76 -1.90 -1.78 -1.75 -1.74 -2.75 -1.91 -1.81 -1.77 -1.76 -2.76 -1.92 -1.81 -1.78 -1.77 
 

-2.75 -1.93 -1.82 -1.79 -1.77 

70.0% -2.60 -1.71 -1.63 -1.61 -1.59 -2.59 -1.73 -1.65 -1.62 -1.61 -2.60 -1.75 -1.66 -1.64 -1.63 
 

-2.59 -1.75 -1.67 -1.64 -1.63 

80.0% -2.42 -1.53 -1.47 -1.45 -1.44 -2.42 -1.54 -1.49 -1.47 -1.46 -2.43 -1.56 -1.49 -1.48 -1.47 
 

-2.42 -1.56 -1.50 -1.48 -1.47 

90.0% -2.20 -1.32 -1.28 -1.27 -1.27 -2.19 -1.34 -1.30 -1.28 -1.28 -2.20 -1.34 -1.30 -1.30 -1.29 
 

-2.19 -1.35 -1.31 -1.30 -1.29 

95.0% -2.03 -1.18 -1.15 -1.14 -1.14 -2.03 -1.19 -1.16 -1.16 -1.15 -2.03 -1.20 -1.17 -1.16 -1.16 
 

-2.03 -1.20 -1.17 -1.17 -1.16 

97.5% -1.90 -1.08 -1.06 -1.05 -1.05 -1.90 -1.09 -1.06 -1.06 -1.06 -1.90 -1.09 -1.07 -1.06 -1.07 
 

-1.89 -1.10 -1.07 -1.07 -1.07 

99.0% -1.76 -0.98 -0.96 -0.96 -0.95 -1.76 -0.99 -0.97 -0.96 -0.96 -1.75 -0.99 -0.97 -0.97 -0.97 
 

-1.75 -0.99 -0.98 -0.97 -0.97 

 


