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Abstract 
Datasets containing large numbers (>10,000) of glacial lineaments are increasingly 

being mapped from remotely sensed data in order to develop a palaeo-glacial 

reconstruction or ”inversion”. The palimpsest landscape presents a complex record of 

past ice flow and deconstructing this information into a logical history is an involved 

task. One stage in this process requires the identification of sets of genetically linked 

lineaments that can form the basis of a reconstruction.  

 

This paper presents a semi-automated algorithm, CLustre, for lineament clustering 

that uses a locally adaptive, region growing, methodology. After outlining the 

algorithm, it is tested on synthetic datasets that simulate parallel and orthogonal 

cross-cutting lineaments, encompassing 1,500 separate classifications. Results show 

robust classification in most scenarios, although parallel overlap of lineaments can 

cause false positive classification unless there are differences in lineament length. 

Case studies for Dubawnt Lake and Victoria Island, Canada, are presented and 

compared to existing datasets.  For Dubawnt Lake 9 out of 14 classifications directly 

match incorporating 89% of lineaments. For Victoria Island 57 out of 58 

classifications directly match incorporating 95% of lineaments. Differences are 

related to small numbers of unclassified lineaments and parallel cross-cutting 

lineaments that are of a similar length. 

CLustre enables the automated, repeatable, assignment of lineaments to flow sets 

using defined user criteria. This is important as qualitative visual interpretation may 

introduce bias, potentially weakening the testability of palaeo-glacial reconstructions. 
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In addition, once classified, summary statistics of lineament clusters can be 

calculated and subsequently used during the reconstruction process. 
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Introduction 
Palaeo-glacial landforms are the result of past processes having acted upon the 

environment; their location, distribution and composition “encode” information 

concerning the environmental conditions during their formation. By recording at least 

their location and morphology (e.g. Clark and Meehan, 2001) it is possible to 

“decode” this information and, making certain assumptions about processes and 

boundary conditions, infer the extent and dynamics of former ice masses (Kleman 

and Borgström, 1996; Kleman et al, 2006). A palaeo-glacial reconstruction performed 

using a geomorphological inversion allows researchers to gain insight into the 

operation of ice sheets (e.g. Stokes et al, 2009) which can be used to  develop  a 

better understanding of the climatic system (e.g. Boulton and Clark, 1990a, b; 

Boulton et al, 2001; Greenwood and Clark, 2009). The interaction of an ice-mass with 

the underlying landscape creates a variety of erosional and depositional landforms, 

such as drumlins, eskers, meltwater channels and moraines. 

 

By using palaeo landform evidence as a proxy (e.g. landform size, shape, length, 

orientation), a reconstruction can be used to calibrate and test existing climate 

models helping to parameterise the integration of feedback mechanisms from 

oceanic and cryospheric systems (e.g. Hubbard et al, 2009). 

 

The process for performing a palaeo-glacial reconstruction has developed over a 

substantial period of time, dating back to the first mapping of large suites of 

landforms in the Nineteenth century and their interpretation (e.g. Close, 1867a, b; 

Kilroe, 1888; Wright, 1912, 1937; Charlesworth, 1924, 1939). Subsequently an 

understanding of process-landform assemblages developed, as well as the manner 

in which palimpsest evidence was interpreted (e.g. Sugden and John, 1976). A 

significant advance was the understanding that multiple ice flow phases can be 

recorded in the palimpsest landscape (Rose and Letzer, 1977; Boulton and Clark, 

1990a) through either the remoulding of existing landforms or the superimposition of 

a newer landform on top – termed cross-cutting (Clark, 1993). Not only did this 

recognise that the contemporary land surface could be a heterogenous record of past 

events, but that in these instances the relative age of landforms could be 

ascertained. However studies generally remained at a local scale (e.g. Rose, 1989) 

due to the extensive time required to map large regions in a consistent manner (e.g. 

Rose and Smith, 2008). The limited spatial scope of these studies prohibited 
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landscape scale interpretation and limited the potential to use these data for ice 

sheet reconstruction.    

 

To improve palaeo-glacial reconstruction for understanding past climate change , 

three significant methodological improvements can be observed over the last 40 

years. Firstly, the widespread availability of moderate resolution satellite imagery 

enabled the mapping of landforms across large regions consistently and 

economically (e.g. Punkari, 1980), resulting in the compilation of large databases of 

landforms (e.g.  Stokes et al, 2013). These have incorporated a range of landform 

evidence including drumlins (or more generically lineaments), moraines, ribbed 

moraine and meltwater channels (e.g. Dunlop and Clark, 2006; Margold et al, 2011).  

As sensor spatial resolutions have improved, so it has been possible to map smaller 

features (e.g. Hughes et al, 2010). Secondly,  digital elevation models (DEMs) have 

enabled the detection and mapping of many landforms, as well as improving the 

ability to produce quantitative measurements (Smith and Clark, 2005; Clark et al, 

2009). Thirdly, developments in the interpretation of palaeo landform evidence (e.g. 

Kleman and Borgström, 1996; Clark, 1997; Kleman et al, 2006) has led to more 

informed and better constrained numerical modelling of past ice sheets. 

 

The production of a palaeo-glacial model from landform evidence (Figure 1a) 

requires: (i) a base dataset (Figure 1b); (ii) landform mapping (Figure 1c); (ii) data 

reduction (generalisation; Figure 1d); (iii) assignment of relative chronology and (iv) 

interpretation (e.g. Clark, 1997; Kleman and Borgström, 1996; Smith and Knight, 

2011). More specifically satellite imagery or DEMs are used as data sources to 

manually map individual glacial landforms. For regions containing large suites of 

landforms, which may involve tens of thousands of individual features, this is a slow 

process. A data reduction stage is required (Smith and Knight, 2011) whereby 

qualitative, operator-based, visual heuristics are used to correlate regions of 

internally homogenous features to create flow patterns. Finally, these can  be merged 

over larger regions to form coherent units called flow sets (Clark, 1997) or fans 

(Kleman and Borgström, 1996); at this stage they are assigned a relative chronology 

and can then be used as a basis for an interpretation of the local and regional ice 

flow dynamics.  

 

The focus of this paper is upon automating the second and third stages; namely 

taking individual landforms to create “spatially coherent” flow patterns. This will 

enable the repeatable identification of flow patterns, a stage that currently requires 
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qualitative interpretation. Here we present a semi-automated algorithm for the 

clustering of landforms, specifically lineaments (CLustre). The objective of this paper 

is to show the usability of the algorithm to assess lineaments and extract flow 

patterns over large areas automatically, thereby allowing the user to subsequently 

interpret flow sets. We begin by proposing criteria for defining “spatially coherent” 

before outlining the algorithm and implementation. The algorithm is first tested on a 

synthetic dataset, before application to two contrasting case studies. One significant 

benefit is the ability to produce summary statistics of individual flow sets, something 

that is time consuming to do manually, particularly where flow sets are overlapping. 

 

 

Method 
Spatial Coherence 
The production of a glacial inversion model requires the reduction, or grouping, of 

large numbers of individually mapped landforms to create “spatially coherent” flow 

patterns (Figure 1). Landform mapping is usually performed within a geographic 

information system (GIS) and requires dimensional abstraction to either points, lines 

or polygons (Smith, 2011). Mapping has typically been performed using lines as 

these are able to represent linear features (marking their ridge crest), however the 

availability of high spatial resolution remotely sensed data has seen a move towards 

the use of polygons through mapping the bounding concave break-of-slope. For the 

lineament clustering presented in this paper it is necessary to use line geometry with 

a start and end connected by a single line. This can be easily be derived from 

polygons within a GIS. In addition to lineaments, moraines, ribbed moraine and 

meltwater channels have all been used as inputs to inversion models (Kleman and 

Borgström, 1996), however lineaments are by far the most numerous.  

 

The assessment of “spatial coherence” needed for the identification of flow patterns 

is a qualitative process that involves making a visual judgement as to the continuity 

of patterns identified in the mapping (Figure 2; Clark, 1999). This process is based 

upon the use of heuristics, both implicit and explicit, to reduce large numbers of 

individual observations to fewer, representative, flow patterns (and then flow sets). 

The heuristics used to perform this procedure can be classified as two types: (i) 

spatial and (ii) contextual.  
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Spatial heuristics are based upon the two dimensional spatial organisation of 

individual landforms relative to one another. Interpretation of spatial organisation is 

dependent upon the method used to make observations and subsequent metrics to 

describe them. For lineaments mapped as lines (Figure 1) we can define orientation 

and length for individual features and density for groups of features. Morphometric 

similarity (orientation, length and density) can then be used as a basis for grouping 

lineaments (Figure 2).  

 

Contextual heuristics use expert/operator knowledge about features to assign 

membership to flow patterns. Figure 3 demonstrates examples of two scenarios 

where membership to a flow pattern would not occur using just spatial heuristics (see 

the discussion for further detail). 

 

When interpreters make qualitative judgements, they combine spatial and contextual 

heuristics to assess pattern continuity and subsequently reduce large numbers of 

observations to fewer, more representative, ones. Our approach to semi-automate 

this process is to mimic the process of grouping, based upon orientation, length and 

density, and attempt to build-in processes to aid contextual grouping or allow an 

interpreter to assist the process. Computationally this is known as clustering – 

assigning lineaments to groups, based upon their attributes. This brings three 

primary benefits: (1) semi-automatic identification of flow patterns; (2) objective and 

interactive exploration of potential flow patterns; and (3) automatic grouping of 

lineaments for statistical analysis. 

 

Algorithm Development 
The method presented here clusters digitised lineaments and is based upon the 

initial work of Smith (2003). CLustre uses a vector based region-growing 

methodology in order to mimic the visual assessment of homogenous regions, whilst 

allowing for growth taking into account gradual spatial variations. It begins with an 

initial operator-selected lineament (or seed lineament), and groups neighbouring 

lineaments according to their distance (from the seed lineament), orientation and 

length (Figure 4). From the newly grouped lineaments, two new seeds are selected 

to continue the clustering procedure, iterating over until pre-defined thresholds, 

discussed below, are reached. CLustre is written in the Python programming 

language, and uses the open-source GDAL/ OGR library (http://www.gdal.org/). 

Interactive examination of the input and output files was undertaken using QGIS 
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(http://www.qgis.org). CLustre is freely available for download 

(https://github.com/niels-anders/clustre). 

 

Prior to processing lineament data, the interpreter is required to input user defined 

thresholds (Table 1). CLustre then requires a single input file comprised of an Esri 

polyline shapefile containing lineaments represented as single lines (two nodes, 

linked by an arc) recorded in Cartesian coordinates; the script ignores lineaments 

with more than 2 nodes. Prior to the iterations, the start and end node x,y coordinates 

are used to calculate the length and orientation of each lineament, with orientation 

corrected to fall within the 0-180° range. The algorithm then proceeds in the following 

manner (Figure 4): 

 

1. Begin at the seed lineament (s); 

2. Select all lineaments that are closer to s than the given threshold (d) ; 

3. Compare the orientation of s with the selected lineaments; sub-select those that 

do not differ by more than the given threshold α; 

4. Compare the length of s with the sub-selection and select those that do not differ 

more than the given threshold l; 

5. Add the current selection to the cluster; 

6. Two new seeds are assigned from the selection created in (5). The first new seed 

is  the lineament that is located farthest from s, this becomes s1; 

7. Calculate the position  of s1 relative to s; 

8. Select the second new seed (s2) as farthest away from s in the opposite direction; 

9. Both new seeds are added to a list of seeds that need to be processed. From 

there, the procedure iterates from (2) until all seeds are processed. Previously 

used seeds and classified lineaments cannot be reused. 

 
The use of farthest apart secondary seeds is designed to reduce the number of 

distance calculations whilst allowing expansion of the algorithm into all parts of the 

study area. The algorithm then simply operates by testing all lineaments for spacing 

(i.e. distance to its nearest neighbour), orientation conformity and length conformity. 

Output from CLustre is the original shapefile with five additional parameters: id, label 

(flow pattern number), seed (whether it was a seed), order (order of classification) 

and source (the source lineament for classification). Unclassified lineaments have 

label values set to zero which enables subsequent processing of a previously 

classified dataset. This is an important aspect of developing a set of flow patterns as 

http://www.qgis.org/
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it allows the end user to iteratively process and classify lineaments, developing 

groups that can then be used to produce flow sets.  

 

 

Synthetic Data 
In order to assess the operation of CLustre, three simulated scenarios (Figure 5) 

were produced which depict straight, curving and divergent (or convergent) 

lineaments. This spatial organisation is commonly found in real datasets and was a 

requirement of the testing. The scenarios incorporate the use of both one and two 

flow-sets to contrast a simple glaciological scenario with a more complex cross-

cutting one, with the latter tested for variations in lineament length and orientation. 

 

 The synthetic lineaments were generated using the following procedure: 

 

1. Define spacing (ds), orientation (αs) and length (ls) for the synthetic lineaments; 

2. Define the variance for spacing (dvar), orientation (αvar) and length (lvar) of the 

synthetic lineaments; 

3. Define the size (As) of the synthetic area ; 

4. Calculate synthetic lineament x,y location based upon As and ds to create the 

“straight” scenario; 

4a. Progressively rotate each row (or column) of lineaments to create a 

“curving” scenario - greater amounts of rotation increase the amount of 

curvature; 

4b. As per 4a, a curving pattern is generated and then mirrored to create a 

“divergent” scenario; 

5. Randomly add dvar, αvar, lvar to each lineament. 

 

The synthetic area was fixed at 150x150 units with a total of 100 lineaments. Step 

(4a) allows the generation of a curvature to the lineaments and (4b) modifies this to 

create a divergent pattern. For testing, ds, αs and ls values for the first flow-set (FS1) 

were set at 15, 2 and 5 respectively, with values of 15, 92 and 5 for the second flow-

set (FS2). Variance was also applied to spacing (dvar=1), orientation (αvar=2)_and 

length (αvar=0.5) in order to better simulate a real-world dataset. 

 

Figure 5 shows the 15 synthetic datasets that were generated for testing from the 

three scenarios. For the straight (Figure 5a), curving (Figure 5f) and divergent (Figure 
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5k) scenarios our expectation is that CLustre should correctly identify the flow 

patterns. In these cases, variations in length of lineament datasets are not relevant 

as it is a characteristic related to scale and is accommodated by manually selecting a 

high length threshold that allows the classification to operate effectively. 

 

Figure 5 also shows more complex two flow-set examples that test the CLustre 

algorithm for variations in lineament orientation (using end-members) and length:  

 

1. Straight Lineaments: end-member examples with lineaments aligned orthogonal 

and parallel to one another. For orthogonal alignment we expect CLustre to 

successfully classify lineaments based upon variations in orientation (Figure 5b) 

and length (Figure 5d). For parallel alignment it is not possible to classify based 

upon orientation (Figure 5c), only length (Figure 5e). 

2. Curved Lineaments: end-member examples with lineaments aligned orthogonal 

and parallel to one another. As for straight lineaments, orthogonal alignment 

should successfully classify for orientation (Figure 5g) and length (Figure 5i). For 

parallel alignment it is only possible to classify based upon length (Figure 5j). 

3. Converging/Diverging Lineaments: end-member examples with lineaments 

aligned orthogonal and parallel to one another. As for straight lineaments, 

orthogonal alignment should successfully classify for orientation (Figure 5l), and 

length (Figure 5n). For parallel alignment it is only possible to classify based upon 

length (Figure 5o). 

 

In order to remove any bias associated with the selection of the seed lineament, each 

of the 15 synthetic datasets was classified iteratively using each of the 100 

lineaments as a seed – in total there were 1500 classifications performed. A 

classification was considered successful if it classified all FS1 lineaments and did not 

classify any FS2 lineaments. User thresholds were set for distance 

𝑑 = �2𝑑𝑠
2 + �2𝑑𝑣𝑣𝑣

2 + 0.001 ≈ 24.04 

as well as for orientation (α=6) and length (l=2). This was designed to maximise 

inclusivity of the classification - the distance radius was set slightly larger than the 

maximum (diagonal) distance between two lineaments, with orientation and length 

thresholds larger than the variation between directly neighbouring lineaments of a 

single flow pattern. 
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Figure 6 and Table 2 present results for the classification of the synthetic lineament 

data. Only seeds for FS1 were used, which means that a "correct" classification is 

where all FS1 lineaments are classified and all FS2 lineaments are not classified. 

Figure 6a and 6b show results for the straight flow sets; for FS1, nearly all 100 

simulations classified the 100 lineaments correctly (Table 2). No lineaments from 

FS2 were misclassified. In a small number of classifications, not all FS1 lineaments 

are classified – this shows the potential impact of the seed lineament and, in this 

case, the effect of lineaments at the edges causing the classification to partially fail. 

Figure 6c shows that, as expected, nearly all FS2 lineaments were misclassified 

when the flow sets were aligned in parallel. Similar results were achieved for the 

curved flow sets (Figure 6f, 6g and 6h). For the convergent lineaments a more 

complex picture emerges – Figure 6k shows that for ~10% of classifications only 

~50% of FS1 lineaments were classified. For the orthogonal flow sets (Figure 6l) a 

highly complex picture is apparent and whilst for ~80% of classifications nearly all 

FS1 lineaments were correctly classified, in ~80% of classifications ~60% of the FS2 

lineaments were incorrectly classified as FS1. For the parallel aligned flow sets 

(Figure 6m) lineaments from FS1 are correctly identified in nearly all classifications, 

although nearly all FS2 lineaments were misclassified. 

 

When the length of lineaments is varied between both flow sets, the ability to 

discriminate between flow sets is dramatically improved. As before, for the straight 

(Figure 6d) and curved (Figure 6i) orthogonal scenarios nearly all 100 classifications 

classified the 100 lineaments correctly for FS1, with no lineaments from FS2 

misclassified. With the introduction of a difference in length, the straight (Figure 6e) 

and curved (Figure 6j) parallel scenarios are now correctly classified. In the more 

complex divergent scenarios, nearly all the orthogonal classifications (Figure 6n) 

correctly identified FS1 with no misclassification of FS2, with a similar result achieved 

for the parallel scenario (Figure 6o). 

 
Discussion 
Results clearly show the efficacy of CLustre in classifying lineaments into individual 

flow sets. Whilst spatial coherence can potentially be assessed on the basis of 

orientation, length and density, density cannot be used as it requires a priori 

knowledge of the flow set extent. The success of CLustre comes from replicating the 

visual process that interpreters use, but doing so more efficiently. That is, it is based 

upon proximity, then assessing similarity of orientation and length – as a “region 

growing” clustering technique it can locally adapt, within thresholds, to natural 
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variations within the data. The results also demonstrate the importance of using both 

length and orientation in a successful classification. Where there is one flow set, or 

flow sets that cross-cut one another obliquely, it is relatively simple to classify 

lineaments that are straight or curving. It is when lineaments from different flow sets 

are aligned parallel to one another that classification becomes more difficult. And 

whilst Table 2 shows overall accuracy is high, user accuracy (Congalton and Green, 

1999) is significantly reduced by the misclassification (i.e. false positives) of FS2 

lineaments (e.g. 50.2% for straight flow sets). By introducing the second constraint of 

lineament length it is possible to successfully classify parallel flow sets for both 

straight and curving lineaments, assuming a consistent difference in length is present 

between the two flow sets. 

 

Divergent lineaments are more complex as they represent a single, coherent, spatial 

pattern that combines together both straight and curving geometric elements that are 

mirrored around a centreline. This means that, even for orthogonal flow sets, there 

remain individual lineaments that are aligned parallel to one another. This makes 

classification more complex with a large number of misclassifications for the 

orthogonal flow set and almost complete misclassification for the parallel flow set. 

With the introduction of length as a further constraint, classification is successful. 

 

The results also show that CLustre is not particularly sensitive to the seed lineament 

used to begin the classification – this is an important finding as the user can be 

confident in the classification result. There are clearly instances where the selection 

of some lineaments as a seed can decrease accuracy (Table 2). For example when 

(i) located on the edge of a study area or (ii) parallel to a lineament from another flow 

set. The latter is particularly important when there are curving or divergent flow sets. 

However Figure 6 demonstrates that most simulations converge on a good solution. 

As CLustre is similar in general method to the common k-means classifier (Lillesand 

et al, 2008; Schowengerdt, 2006) used with raster datasets, it is expected that where 

there are well defined, separable, flow patterns the seed lineament will be less 

sensitive (Congalton and Green, 1999). With testing completed on the synthetic data 

set, CLustre was subsequently applied to real world data sets in order to test its 

applicability to two contrasting examples. 

 
 

Case Studies  
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Dubawnt Lake 
The first case study comprises 11,825 lineaments, covering ~100,000 km2 mapped 

from the Dubawnt Lake region, on the border between Nunavut Territory and 

Northwest Territories in the Canadian Arctic (Stokes, 2000; Stokes and Clark, 2003). 

This area is comprised of mega-scale glacial lineations (MSGL) which are thought to 

be indicative of fast ice flow over relatively short periods of time; these are interpreted 

as representative of a palaeo-ice stream that drained the interior of the Laurentide 

Ice Sheet during the last glaciation (Stokes and Clark, 2003). The landforms are 

elongate and highly attenuated – they are longer than drumlins, typically 10-100 km, 

yet only 300-1300 m wide (Stokes et al, 2013) and densely packed.  

 

The Dubawnt Lake data were selected as providing a simple case study with one 

primary flow pattern defined by the highly attenuated lineations in the form of MSGL 

and drumlins. Additionally, there are a smaller number of other lineaments of varying 

orientations and spacings that provide contrast to the main flow pattern (Figure 7a). 

Note that the straight edges (top of figure) mark the Landsat Multi-Spectral Scanner 

scenes that were used to map lineaments in the original work (Stokes, 2000).  

 

The workflow initially comprised of visually identifying the primary flow pattern and 

selecting a seed lineament. Based upon the results for the synthetic data, this should 

not be near an "edge" or parallel to another flow pattern. A lineament approximately 

in the centre of the flow pattern and of "average" length and orientation was selected 

(Table 3). With many MSGLs 2-3 km in length and with high attenuation and density, 

a distance threshold (d) of 10 km was selected. And, given the high attenuation, a 

relatively small orientation threshold (α) of 2º was used. Finally a relatively large 

length threshold (i) of 3 km was chosen given the wide range of MSGL lengths 

(Figure 7a). Inspection of the classification suggests that the thresholds have isolated 

this flow pattern, although there are some lineaments that remain excluded due to 

threshold exceedance. Once a flow pattern was classified it was then hidden, leaving 

the remaining lineaments visible; each flow pattern was then iteratively classified in 

the same manner 

 

An interactive approach for establishing threshold values (Table 3) was taken, 

reviewing the classification results using QGIS. Given that CLustre is not sensitive to 

the seed lineament, if a classification produced unexpected results the reason for this 

was explored further. This often resulted in adjusting the threshold values and then 

re-running CLustre. Figure 7b shows the application of threshold values from flow 
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pattern 1 to flow pattern 2. This is successfully grouped 93 lineaments but a small 

adjustment of thresholds produced a better classification with 103 (Figure 7c). 

Similarly flow pattern 6 was classified using the initial thresholds (Figure 7d; 128 

lineaments), however visual inspection of this pattern indicates a low density of short 

lineaments, with some clustering. Threshold values were adjusted to a larger 

distance (35 km) and orientation (5º) resulting in a significantly better classification 

(Figure 7e; 1015 lineaments). 

 

Once classified, it is possible to report quantitative measures of spatial coherence for 

each flow pattern (Table 3); these include the number and density of lineaments, and 

summary statistics for lineament length.  Density was calculated by dividing the 

number of lineaments by the area of the convex hull (smallest bounding area) for 

each flow pattern. For illustration, Figure 8 shows histograms of length for each flow 

pattern, demonstrating clear differences between them. FP1 has, by far, the most 

lineaments with many MSGLs, interspersed with drumlins, producing a relatively 

large mean and wide range. Whilst FP2 has a greater mean and standard deviation 

(SD), it is a relatively small flow pattern. FP3 and 4 are similar to FP2, although with 

fewer longer lineaments. FP5, 6, 7 and 8 generally have the shortest lengths and 

lowest SD, with FP6 and 7 having the lowest densities.  

 

Figure 9 shows the outcome of the classification process with a total of eight flow 

patterns, with 1,285 (11%) lineaments unclassified (termed residuals; black). Flow 

pattern 1 (FP1; red) forms the main classification, however it is clear that a small 

number of residuals have been excluded due to variations in length (of MSGLs) and 

orientation. FP2 (dark grey) and FP4 (brown) form two low angular cross-cutting 

classifications that have been separated, however residuals from both flow patterns 

have been excluded on the basis of length and orientation. FP3 (blue) forms a 

distinct classification, although a number of small groups of residuals could be 

incorporated into this and have been excluded due to variations in spacing. FP5 

(pink; partially on Figure 8) forms a separate group of low density, short, lineaments. 

FP6 (green) is comprised of small groups of short, moderately dense, lineaments. 

The large spacings between groups required a significant increase in this threshold. 

FP7 (sky blue) form a small coherent group on the southern margin and cross-cut 

FP8 (light grey). The remaining notable area of residuals is on the western margin of 

the study area; this is a complex area of converging ice flow for FP1, whilst also 

having numerous lineaments of varying orientations. Whilst some could be 
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incorporated into FP1, their small number  and varying deviations in orientation make 

them anomalous and open to interpretation; they therefore remain unclassified. 

 

Stokes (2000) identifies and reports descriptive statistics for 14 flow patterns. Of 

these 9 are matched in this study and show very similar descriptive statistics for 

lineament morphology (Table 3), representing 89% of all lineaments. Unmatched flow 

patterns of Stokes are 2 (38), 5 (45), 8 (59), 9 (142) and 13 (95) (totals in brackets). 

Confidence with the definition of a flow pattern comes from the number of 

lineaments, areal coverage and density; as these increase there is greater certainty 

in their classification and so their use as palaeo-glaciological indicators. Within this 

context Stokes' (2000) flow patterns 2, 5 and 8 have low numbers, whilst 9 and 13 

are also of low density. Whilst these residual lineaments could be classified, they 

have deliberately been excluded due to uncertainty over their grouping. 

 

Victoria Island 
The second case study, covering Victoria Island, Canada (Storrar and Stokes, 2007; 

Stokes et al, 2009),  is much larger than the Dubawnt Lake case study in terms of 

both area (~225,000 km2) and number of lineaments (54,468). This large landmass 

also spans the border between Nunavut Territory and Northwest Territories in the 

Canadian Arctic Archipelago and has a rich array of well-preserved glacial landforms, 

particularly lineaments. The glacial history is complex, with lineaments comprising 

straight, curved and converging/diverging patterns that cross-cut one another (Stokes 

et al, 2009). They are often discontinuous with “patches” of lineaments interspersed 

with regions free from glacial bedforms. As a result it is a complex task to develop a 

palaeo-glacial reconstruction for this area due to the partial, intersecting, palimpsest 

landscapes. It is therefore one of the most challenging regions that can be used for 

an automated routine. 

 

A similar procedure was used to classify the lineaments for case study 2 as was used 

for case study 1, however in this instance there are a much greater number of 

lineaments, covering a  larger area and segmented into more flow patterns of varying 

orientation, length and density. In total 57 flow patterns were identified (Figure 9), 

leaving 3,038 (5%) residual lineaments.  

 

For comparison, results from Stokes et al (2009) were used. Whilst both Stokes 

(2000) and Stokes et al (2009) provide a schematic outline of each flow pattern, the 

former produced flow pattern morphometric statistics (for far fewer groups) which 
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made direct comparison straightforward. For the latter it was necessary to work from 

the schematic diagrams (their Figure 6). Stokes et al (2009) identify 71 flow patterns, 

of these 57 are directly matched or partially matched (see discussion below), 1 is 

matched by residuals, 6 are not included in their reconstruction and 7 appear not to 

be based on underlying lineaments. Table 4 illustrates the flow pattern statistics, 

showing a high lineament density for many flow patterns.   
 

Review of the residuals shows four different types of lineaments that are unclassified:  

 

(1) N-S MSGLs: on the eastern side of the island there are a moderate number of 

MSGLs that run N-S. These cross-cut FP 2, 7 and 6, and are aligned with 1 and 9. 

Stokes et al (2009) incorporate the aligned lineaments within those flow patterns, but 

have not classified the cross-cutting lineaments. It is possible these form one flow 

pattern but this is open to interpretation. 

 

(2) E-W MSGLs: FP3 is a highly complex region of partially aligned lineaments. A 

number of MSGLs remain unclassified due to significant differences in length with 

other lineaments in this flow pattern. Indeed Stokes et al (2009) classify three flow 

patterns in this area (53-55) based upon cross-cutting relationships and this 

highlights that unless there is a significant difference in length, it is not possible to 

differentiate between parallel flow patterns and so this would have to be performed 

manually. 

 

(3) Small Numbers: a number of smaller "clusters" of lineaments could be further 

classified, however, as per the first case study, these are comprised of low counts 

and have therefore been left as residuals (e.g. between FP5 and 6). 

 

(4) Isolated: across the study area there are individual isolated lineaments that have 

not been incorporated into a flow pattern as they do not meet orientation, size or 

distance criteria for classification (e.g. between FP5 and 7). 

 

Table 4 also shows matched flow patterns with Stokes et al (2009). Of the 71 flow 

patterns there are three broad categories of equivalence: (a) a direct match from 

CLustre to Stokes et al (2009) (e.g. CLustre FP18) (21 flow patterns). (b) a match of 

multiple CLustre classifications to a single Stokes et al (2009) (e.g. CLustre FP28,29) 

(9 flow patterns). (c) a match of a single CLustre classification to multiple Stokes et al 

(2009) classifications (e.g. CLustre FP3 and FP2) (21 flow patterns). 
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These results show outcomes which are largely expected; there is good direct 

equivalence between flow patterns, as well as overlapping equivalence of both 

multiple CLustre and multiple Stokes et al (2009) flow patterns. For (a), FP18 (Figure 

10) is a good example of a direct match where a simple flow pattern has the same 

classification. For (b), the combination of FP26 and 42 reflects the classification of 

two discrete patterns into a single flow set. This illustrates interpretation by the 

observer, merging two flow patterns to form the final flow set.  

 

The greatest differences however arise from the last category of equivalence; FP3, 

as noted above, is a highly complex region of partially aligned lineaments. From 

visual interpretation, it is apparent that this region has a number of MSGLs, as well 

as many lineaments with discordant orientations. The creation of flow patterns by 

Stokes et al (2009) is primarily dependent upon cross-cutting relationships visible on 

the satellite imagery, augmented with the morphological characteristics noted above. 

In the absence of this information an automated routine will be unable to differentiate 

parallel flow patterns. 

 

In contrast, FP2 corresponds to (at least) four Stokes et al (2009) flow patterns 

(SFP27, 39, 42, 43) and reflects a different classification of lineaments. It is worth 

noting that Stokes et al (2009) also used a range of other landform indicators, 

including eskers, moraines and meltwater traces. They also split apart multiple time 

transgressive deglacial flow sets. SFP27 is the core flow pattern, however SFP42 

and 43 show length and orientation concordance and have been grouped together. 

The SW terminus of SFP27 includes lineaments from FP7, yet CLustre showed 

significant orientation differences and did not classify them together. In addition the 

NW terminus of SFP42 does not include the continuation of FP2 which has strong 

orientation conformity. This is not to state that either flow pattern is "correct", but 

rather it highlights how objective approaches to forming flow patterns can aid 

objective interpretation. 

 

Discussion 
The two case studies were successful in demonstrating the application of CLustre to 

existing data and the ability to classify individual flow patterns by iteratively building 

objective groups of lineaments based upon a consistent methodology.  In comparison 

to a manual method, it is rapid and reduces any bias that may be inherent in any 

subjective procedure. The process required the operator to check all classifications 
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and review reasons for particular classification outcomes. This enabled an iterative 

process where threshold values could be modified based upon the flow patterns that 

were identified.  

 

It became apparent whilst reviewing classification results from CLustre and 

comparing them to our own (manual) subjective assessments that we subconsciously 

used visual biases. Of particular note was the natural grouping of low density (or 

“short”) lineaments; in these instances, subjective assessment placed less emphasis 

upon orientation variation meaning that increasing dissimilarity of orientation was 

incorrectly used as a basis for manual classification in these situations.  

 

In addition to the application of the above objective workflow, CLustre was also used 

to produce quantitative measures of flow patterns that could then be used to support 

subsequent interpretation and the development of a full palaeo-glacial reconstruction. 

Descriptive statistics of lineament length and density can be used to demonstrate 

quantitative differences between flow sets (Table 3 and 4, Figure 8). 

 

There are two potential weaknesses in the results outlined above. Firstly, CLustre 

calculates the distance between lineament centroids; in the instance where a long 

lineament is surrounded by much shorter lineaments, the lineaments may actually be 

close together yet the centroids far apart. Whilst this would likely affect MSGLs, no 

examples were identified in the case studies, possibly due to the ability of CLustre to 

grow its classification spatially. Secondly, lineament density is calculated using a 

convex hull; whilst calculating a minimum bounding area, it doesn’t represent the 

area covered by lineaments and so will likely under-estimate density.  

 

Wider Interpretation 
Application to Palaeo-Glacial Reconstruction 
Once flow sets have been created, a full palaeo-glacial reconstruction requires their 

mode of emplacement to be ascertained. It is important to note that there are a 

variety of different glaciological scenarios thought to be able to generate flow sets 

(Kleman and Borgström, 1996; Clark, 1999; Kleman et al, 2006). These can be 

categorised as either time transgressive (formed over a period of time) or 

synchronous (formed at a point in time).  Synchronous flow sets exhibit high 

conformity of orientation and length over small areas, with gradual and systematic 

changes over larger areas (Clark, 1999). Time transgressive flow sets are formed 
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during periods of varying regimes of ice flow and consequently display obvious 

discordancy, with lower conformity of orientation and length, including unsystematic 

cross-cutting (Clark, 1999). Time transgressive lineaments may form behind a 

retreating (deglacial) ice margin which would account for this discordancy. 

 

In general, synchronous flow sets are easily identified, even when they are cross-

cutting as they have high orientation conformity and gradual changes in geometry. 

However, there are two scenarios which are more complex and so more difficult to 

identify: 

 

1. Low Angular Cross-cutting (Figure 3a) – flow sets which cross-cut at low angles 

are very difficult to identify, even by manual techniques, as lineaments become sub-

parallel and the criteria for their classification non-unique. In the example illustrated, 

a synchronous flow set has low-angular cross-cutting with another synchronous flow 

set. They may be distinguishable through differences in orientation, but at the 

southern margin lineaments may be oriented in the same direction. The iterative 

nature of CLustre allows the interpreter to review the flow patterns they create, 

enabling them to identify potential cross-cutting. Whilst length is the only threshold 

that could be used to differentiate these flow patterns, the operator can at least be 

aware of the potential for misclassification. 

  

2. Time-Transgressive (Figure 3b) – the diagnostic criteria for time-transgressive flow 

sets are contrary to all the techniques used to identify synchronous flow sets. There 

can be cross-cutting (low to medium angular differences) within flow patterns, abrupt 

changes in morphometry and low orientation conformity. CLustre is particularly 

helpful here as variations in orientation can be rapidly identified. However 

interpretation can become complex if there are topographic constraints or if, in 

addition, there is low-angular cross-cutting. 

 

In both of the above cases further morphological evidence in the form of cross-cutting 

and related landforms (i.e. eskers, moraines, meltwater traces) can aid in 

distinguishing between flow sets. 

 

Optimisation and Further Development 
CLustre enables the automated classification of individual flow patterns based upon 

user thresholds and the identification of a seed lineament. Further development could 

seek to optimise the parameterisation of thresholds and present the outcomes of a 
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large number of multiple classifications to the interpreter. This would allow a range of 

scenarios to be reviewed and could be extended to enable a lineament to “belong” to 

multiple flow patterns, assigning probabilities based upon the input thresholds used 

in that classification. Making use of cross-cutting information could form a valuable 

part of this process if the superimposition (or Z-level) of lineaments was recorded. 

 

Further development could also automate the calculation of flow pattern statistics, 

including the calculation of the convex hull and lineament density. 

 

Conclusions 
This paper has introduced a semi-automated algorithm for lineament clustering, 

CLustre, that uses a GIS-based region-growing, locally adaptive, methodology. 

Processing requires the user to specify thresholds for lineament orientation, length 

and spacing in order to follow a rule-based classification procedure for the inclusion 

of a particular lineament within a flow pattern. A “seed” lineament is specified by the 

user and this forms the basis from which groups of lineaments can be “grown” into 

flow patterns. The remaining lineaments remain excluded from flow pattern 

membership and subsequent classifications, using different seed points, can then be 

used to identify additional flow patterns. 

 

CLustre was tested using synthetic datasets representative of lineaments formed in 

common palaeo-glaciological scenarios. These demonstrate that it is not sensitive to 

the initial seed lineament used and that it produces consistent results. It was then 

applied to two existing datasets that were produced by manually digitising lineaments 

depicted on satellite imagery; these represented contrasting simple and complex 

glaciological scenarios. The data encompassed 11,825 and 54,468 individual 

lineaments, with a range of lineament orientations, lengths and densities from 

different glaciological scenarios. CLustre was used to classify 8 and 57 flow patterns 

respectively that were produced through an iterative process to classify, review and 

re-classify flow patterns. Summary statistics of lineament length and density were 

produced and would enable an interpreter to statistically test differences between 

flow patterns and group them into glaciologically meaningful flow sets.  

 

CLustre enables three significant benefits: (1) the semi-automated procedure is fast; 

(2) it applies an objective, repeatable methodology and (3) once grouped, summary 

statistics of flow patterns can be assessed. 
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Table 1: User defined thresholds defined prior to running CLustre. 

 

Input Definition 

Distance (d) the maximum distance [m] allowed between the seed and target 

lineaments, based upon lineament centroids 

Orientation (α) the maximum orientation difference [degrees] allowed between 

the seed and target lineaments 

Length (l) maximum difference in length [m] allowed between seed and 

target lineaments 

Seed ID (s) the ID of the initial seed lineament from which the clustering 

begins 
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Table 2. Aggregated results from 100 simulations for each of the 15 synthetic 

datasets (see Figure 5). Mean number of lineaments classified for flow set 1/flow set 

2 and unclassified. Overall accuracy is shown by the results for flow set 1. User 

accuracy takes in to account the misclassification of flow set 2 lineaments. 

 

Synthetic 
Dataset 

Flow Set 1 (%) Flow Set 2 (%) Unclassified (%) User Accuracy (%) 

5a 99.8 0.0 0.2 100.0 

5b 99.6 0.0 0.4 100.0 

5c 99.8 98.8 0.2 50.2 

5d 99.8 0.0 0.2 100.0 

5e 98.9 0.0 1.1 100.0 

5f 99.9 0.0 0.1 100.0 

5g 99.9 0.0 0.1 100.0 

5h 99.9 99.0 0.1 50.2 

5i 99.8 0.0 0.2 100.0 

5j 99.9 0.0 0.1 100.0 

5k 92.2 0.0 7.8 100.0 

5l 89.1 44.3 10.9 66.8 

5m 97.3 94.0 2.7 50.9 

5n 93.5 0.0 6.5 100.0 

5o 94.9 0.0 5.1 100.0 
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Table 3. Summary data of flow patterns classified for the Dubawnt Case Study 

(n=11,825). For each for the eight flow patterns (Figure 9), the seed lineament and 

thresholds, along with summary statistics for lineament length and density, are 

presented. Comparative results from Stokes (2000) are highlighted in grey. 

 

 User Thresholds Summary Statistics (Length)  

Flow 
Pattern 

Seed 
ID 

Dist 
(km) 

Orient 
(°) 

Len 
(km) 

n Mean 
(km) 

StDev 
(km) 

Min 
(km)  

Max 
(km) 

Density 
(lins/km2) 

1 5175 10 2 3 8407 1.9 1.2 0.3 12.7 0.11 

(blank)     8856 1.8   12.7  

2  775 15 4 5 103 3.1 1.4 0.9 6.9 0.11 

(7)     120 3.0   9.1  

3  735 15 4 5 136 1.9 0.7 0.7 4.5 0.07 

(6)     232 1.7   4.5  

4  1729 10 10 3 129 1.7 0.8 0.4 4.9 0.07 

(3)     140 1.6   4.8  

5  857 20 3 3 555 0.4 0.2 0.1 1.4 0.06 

(4)     812 0.4   1.4  

6  2386 35 5 3 1015 0.6 0.3 0.2 2.2 0.02 

(1,10)     1053 0.6,1.1   2.2  

7  1261 20 3 3 109 0.9 0.3 0.3 1.9 0.08 

(12)     131 0.9   1.9  

8  1253 35 3 3 86 0.9 0.2 0.4 1.8 0.03 

(11)     102 3.9   1.8  

Unclassified    1,285 1.1 1.2 0.2 11.5 - 
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Table 4. Summary data of flow patterns classified for the Victoria Island Case Study 

(n=54,468).  For each for the 58 flow patterns, the seed lineament and thresholds, 

along with summary statistics for lineament length and density, are presented. Each 

flow pattern is numbered on Figure 10. 

 

 User Thresholds Summary Statistics (Length)  

Flow 
Patter
n 

Seed 
ID 

Dist 
(km) 

Orient 
(°) 

Length 
(km) 

n Mean 
(km) 

StDe
v 
(km) 

Min 
(km)  

Max 
(km) 

Density 
(lins/km2) 

Stokes' Flow 
Pattern 

1  7958 10 2 3 6140 0.01 6.39 1.21 0.76 0.39 16 

2  10301 10 2 3 4187 0.02 6.29 1.14 0.72 0.30 29,39,42,43 

3  43083 10 2 3 7833 0.01 7.26 0.95 0.65 0.54 53,54,55 

4  46382 10 2 3 377 0.15 2.72 0.83 0.41 0.68 60 

5  27546 10 2 3 3261 0.04 6.38 0.91 0.66 0.33 20 

6  13761 10 2 3 3966 0.03 5.36 1.06 0.62 0.33 31 

7  14572 10 2 3 4272 0.01 6.06 0.93 0.65 0.36 17,27 

8  17724 10 2 3 2992 0.01 3.07 0.6 0.31 0.52 
33,34,35,45,4

6,47 

9  21909 10 2 3 1357 0.17 5.18 1.5 0.8 0.18 19 

10  33484 10 2 3 2491 0.01 6.67 0.81 0.58 0.40 17 

11  9762 10 2 3 446 0.02 3.39 1.17 0.52 0.70 37 

12  8949 10 2 3 300 0.21 2.66 0.94 0.41 1.33 24 

14  50571 10 3 3 1034 0.11 4.3 0.91 0.54 0.62 76 

15  49682 10 3 3 853 0.19 2.92 0.69 0.35 0.57 80 

16  49400 20 2 3 590 0.2 2 0.71 0.31 0.23 78 

17  15469 15 2 3 788 0.02 4.53 0.95 0.47 0.23 30 

18  47584 12 3 2 548 0.01 4.9 0.87 0.52 0.53 56 

19  29887 12 3 3 571 0.16 3.07 0.63 0.37 0.43 61,63 

20  48253 12 3 3 718 0.18 2.39 0.67 0.32 0.48 74,75 

21  52340 12 3 3 958 0.01 2.98 0.54 0.27 0.68 85 

22  32074 15 4 5 817 0.19 10.22 1.27 1.13 0.15 66,67,68,69 

23  19393 10 2 3 360 0.19 1.85 0.66 0.27 0.35 48 

24  53922 15 3 3 266 0.28 4.52 1.45 0.75 0.19 17 

25  49126 15 3 3 276 0.25 3.47 0.85 0.46 0.28  

26 47087 10 2 3 303 0.25 3.01 1.12 0.55 0.26 58 



27 

27 47970 10 2 3 52 0.01 0.8 0.44 0.14 0.61 59 

28 41317 25 5 5 351 0.23 2.52 0.89 0.37 0.10 73 

29 41299 10 3 4 75 0.25 2.46 0.85 0.42 0.26 71,73 

30 51639 20 4 4 113 0.35 3.42 1.05 0.47 0.08 80 

31 1813 15 4 4 210 0.41 4.61 1.4 0.65 0.35 16 

32 18903 10 4 7 176 0.35 10.9 2.34 1.68 0.09 16 

33 22193 10 3 3 68 0.39 2.29 1.1 0.47 0.30 16 

34 4257 10 3 3 785 0.01 2.21 0.41 0.26 1.15 40 

35 4843 10 5 5 164 0.03 4.57 0.93 0.61 0.26 18 

36 38161 10 4 8 223 0.26 3.86 1.11 0.67 0.40 70 

37 37204 10 4 5 135 0.15 1.65 0.65 0.28 0.47 70 

38 31273 10 3 3 766 0.09 2.6 0.55 0.32 0.50 52,62 

39 46100 10 3 3 270 0.21 2.28 0.78 0.38 0.76 60 

40 41190 15 5 5 41 0.22 1.68 0.61 0.28 0.20 78 

41 47267 15 5 5 80 0.3 2.94 1.02 0.42 0.29 58 

42 48982 15 5 5 133 0.22 1.45 0.6 0.22 0.95 57 

43 51381 15 3 5 96 0.2 1.41 0.56 0.26 1.12 86 

44 51503 15 3 5 81 0.16 1.58 0.73 0.31 0.86 87 

45 14551 15 3 3 72 0.3 1.67 0.71 0.22 0.17  

46 50162 15 3 3 74 0.37 1.88 0.92 0.37 0.24 81 

47 53352 10 4 4 88 0.22 1.63 0.64 0.28 0.54 80 

48 52851 10 3 4 137 0.15 1.44 0.54 0.25 0.66 82 

49 54251 10 4 4 50 0.38 2.81 1.18 0.47 0.25 17 

50 8671 10 4 4 76 0.01 2.68 1.07 0.57 0.27 26 

51 9015 10 4 4 26 0.02 1.37 0.74 0.31 0.92 26 

52 9022 10 4 4 20 0.39 1.69 0.84 0.29 0.38 26 

53 19195 10 4 4 237 0.18 5.41 0.94 0.86 0.22 35 

54 40406 15 3 3 129 0.24 3.36 1.04 0.52 0.15 31 

55 13213 15 3 3 112 0.45 4.14 1.36 0.71 0.22 28 

56 26083 15 3 3 687 0.14 5.26 0.9 0.72 0.12 20,49,50 

57 22932 20 3 3 121 0.13 1.03 0.4 0.16 0.45 44 

58 26135 20 3 4 78 0.26 7.15 1.31 1.25 0.13 51 

Unclassified    3038         
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Figure 1: Data collection involved in glaciological inversion modelling: (a) oblique 

view of a lineament (Photo: J. Rose), (b) base satellite imagery, (c) manual mapping 

of individual landforms, (d) qualitative data reduction to form flow patterns and (e) 

flow sets (see Smith, 2003). 

 

Figure 2: (a) shows individual mapped lineaments, whilst (b) and (c) show two 

alternative interpretations of their formation. Do they represent a transgressive 

retreating margin or two separate flow patterns? (d) illustrates that by grouping 

lineaments  and reviewing their characteristics (e.g. spacing and length), there can 

be a basis for interpretation  (after Clark,1993). 

 

Figure 3: Two contextual scenarios with similar morphological patterns where spatial 

heuristics may fail to form flow patterns. (a) two flow patterns that cross-cut yet 

lineament orientations coincide in-part and (b) a single time-transgressive flow 

pattern which displays cross-cutting, low orientation conformity and abrupt 

morphometric changes (after Clark, 1999). Without further contextual information it is 

difficult to interpret the flow patterns in these two scenarios. 

 

Figure 4: Graphical depiction of the clustering algorithm. (i) seed lineament selected 

(random or identified), (ii) nearest lineaments located, (iii) cluster membership 

evaluated based upon length/orientation, (iv) two furthest lineaments become 

secondary seed lineaments, (v) nearest unallocated lineaments are selected and (vi) 

cluster membership is evaluated. The algorithm iterates until no more lineaments can 

be selected. At (1) the maximum distance to a lineament is exceeded and so cannot 

be selected. At (2), the maximum deviation in orientation is exceeded and so cannot 

be selected. 

 

Figure 5 Synthetic datasets generated for testing with CLustre. a,f,k show the 

simplest scenarios with one flow set that is straight, curving and divergent. b,g,l and 

c,h,m show end-members for a more complex two flow set example with straight, 

curving and divergent lineaments orthogonal and parallel to one another. d,j,n and 

e,j,o show the same datasets, but with the extra variable of different lineament 

lengths for each flow set. 
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Figure 6. Results of classification simulations using the 15 different synthetic 

datasets. Each dataset contains 100 lineaments per flow set, with the simulation 

iteratively run using each lineament as a seed (i.e. 100 classifications per dataset). 

The histograms  show the frequency of FS1 (grey bar) and FS2 (black bar) 

lineaments classified based upon the frequency of simulations. For example (b) 

shows all FS1 lineaments are correctly classified, whilst all FS2 lineaments remain 

correctly unclassified. 

 

Figure 7. Procedure for the extraction of flow patters for the Dubawnt Case Study. (a) 

Flow pattern 1; (b) Flow pattern 2 with initial thresholds; (c) Flow pattern 2 with 

modified thresholds; (d) Flow pattern 6 with initial thresholds and (e) Flow pattern 6 

with modified thresholds (see Table 3). Grey box indicates the extent of 7b, 7c and 

7d. Grey box indicates the extent of Figure 9. 

 

Figure 8. Histograms of length for the six flow patterns classified in the Dubawnt 

Case Study (0=unclassified). 

 

Figure 9. Extract of classified flow patterns for the Dubawnt Case Study. The different 

flow patterns (1=red, 2=blue, 4=brown, 5=pink, 6=green; unclassified=black) illustrate 

the robustness of the classification procedure and complexity that can be highlighted 

(Projection: UTM13N, Coordinates: Metres). Note a number of unclassified 

lineaments that are part of flow pattern 1 but have been excluded on the basis of 

length. 

 

 

Figure 10. Extract of classified flow patterns for the Victoria Island case study. The 

different flow patterns are numbered (see Table 4); black lineaments are unclassified. 

(Projection: UTM13N, Coordinates: Metres). 
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