
Sensors 2015, 15, 17209-17231; doi:10.3390/s150717209
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Marginalised Stacked Denoising Autoencoders for Robust
Representation of Real-Time Multi-View Action Recognition
Feng Gu 1,*, Francisco Flórez-Revuelta 2, Dorothy Monekosso 1 and Paolo Remagnino 1

1 School of Computing and Information Systems, Kingston University, Penrhyn Road,
Kingston upon Thames KT1 2EE, UK; E-Mails: D.Monekosso@kingston.ac.uk (D.M.);
P.Remagnino@kingston.ac.uk (P.R.)

2 Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road,
Kingston upon Thames KT1 2EE, UK; E-Mail: F.Florez@kingston.ac.uk

* Author to whom correspondence should be addressed; E-Mail: F.Gu@kingston.ac.uk;
Tel.: +44-20-8417-9000.

Academic Editors: Jesús Fontecha and Paul Mccullagh

Received: 1 May 2015 / Accepted: 9 July 2015 / Published: 16 July 2015

Abstract: Multi-view action recognition has gained a great interest in video surveillance,
human computer interaction, and multimedia retrieval, where multiple cameras of different
types are deployed to provide a complementary field of views. Fusion of multiple camera
views evidently leads to more robust decisions on both tracking multiple targets and
analysing complex human activities, especially where there are occlusions. In this paper,
we incorporate the marginalised stacked denoising autoencoders (mSDA) algorithm to
further improve the bag of words (BoWs) representation in terms of robustness and
usefulness for multi-view action recognition. The resulting representations are fed into three
simple fusion strategies as well as a multiple kernel learning algorithm at the classification
stage. Based on the internal evaluation, the codebook size of BoWs and the number of layers
of mSDA may not significantly affect recognition performance. According to results on three
multi-view benchmark datasets, the proposed framework improves recognition performance
across all three datasets and outputs record recognition performance, beating the state-of-art
algorithms in the literature. It is also capable of performing real-time action recognition at a
frame rate ranging from 33 to 45, which could be further improved by using more powerful
machines in future applications.



Sensors 2015, 15 17210

Keywords: deep learning; marginalised stacked denoising autoencoders; bag of words;
multiple kernel learning; multi-view action recognition

1. Introduction

Multi-view action recognition has gained a great interest in video surveillance, human computer
interaction, and multimedia retrieval, where multiple cameras of different types are deployed to provide a
complementary field of views. Fusion of multiple camera views evidently leads to more robust decisions
on both tracking multiple targets and analysing complex human activities, especially where there are
occlusions. In real world application domains, e.g., ambient assisted living, multiple cameras are often
deployed to cover an extensive area. This is the case for larger indoor environments that cannot be
monitored with a single sensor. The use of a multi-camera sensor is also required in applications where
human behaviour is to be captured and analysed. A single camera, even when wide area coverage is
adequate, is insufficient when monitoring complex human behaviour particularly in situations where in
addition to position information, more detailed information about the posture, gestures and manipulation
of objects is sought. It is therefore not a surprise that multiple view recognition of behaviour and
action has recently attracted the attention of computer vision researchers and practitioners in the field
of intelligent monitoring and smart environments.

In recent years bag of words (BoWs) [1] has become a recognised method to model and classify
video data. It was borrowed from the information retrieval community [2], and is of great interest
because it is unsupervised and easy to implement with problems where multiplicity of patterns is the
discriminative feature, used to categorise large datasets. The method however has its disadvantages,
in particular its weakness in dealing with large number of classes, the sparseness of the underlying
representation and the difficulty in handling synonyms (different patterns carrying similar semantic
information) and polysemies (similar patterns carrying different semantic information) [3]. Because
of the above-mentioned weaknesses, stacked denoised autoencoders (SDA) have been introduced, which
are a family of methods developed in the deep learning research field. SDA algorithms make use
of different kinds of encoders to transform the input data, preserving a maximisation of the mutual
information between the raw and the encoded information, typically using the infomax principle [4],
while utilising a noise criterion for minimising the transformation error.

The paper applies the marginalised version of SDA algorithms that is computationally much less
expensive, to data captured by multiple cameras (an idea easily extensible to multiple sensors), with
partial overlapping fields of view. Accrued data is combined from the multiple streams with simple
methods, such as concatenating the extracted information, combining the information in a sum or
product. The combination techniques of information are then further improved and better formalised,
using multiple kernels, as described in [5]. The proposed framework works in real-time for multi-view
action recognition. The framework and variations thereof were thoroughly evaluated on a number
of multi-view action datasets. The proposed framework is compared with existing and successful
state-of-the-art algorithms recently published in the literature. The rest of the paper is organised
as follows: Section 2 provides an overview of the related work of multi-view action recognition;



Sensors 2015, 15 17211

Section 3 details the theory of using marginalised denoising autoencoders for robust and useful feature
representation; Section 4 describes the fusion techniques used for combining multiple camera views,
in particular, multiple kernel learning; Section 5 lists the experimental conditions, such as benchmark
datasets used for evaluation, implementation details, and a discussion of the real-time capacity of the
proposed framework; Section 6 demonstrates the results obtained from performed experiments as well
as their implications; finally Section 7 concludes this work and points out some possible future directions.

2. Related Work

Fusion of multiple camera views often leads to more robust decisions on both tracking multiple targets
and analysing complex human activities, especially where there are occlusions. Weinland et al. [6]
introduced motion history volumes (MHV) as a free-viewpoint representation for human actions in
the case of multiple calibrated, and background subtracted, video cameras. These MHV are a 3D
generalisation of motion history images [7] in order to remove the viewpoint dependence. Alignment
and comparison of different actions are performed using Fourier transforms in cylindrical coordinates
around the vertical axis. Cilla et al. [8] proposed a probabilistic distributed system that fuses the posterior
distribution corresponding to each camera view into a single distribution for the final decision making.
Later on they applied a feature fusion approach to efficiently combine 2D observations extracted from
different camera viewpoints in [9]. Mosabbeb et al. [10] proposed a distributed system where each
camera processes its own observations, and while communicating with other cameras, they come to
an agreement about the activity class. This method, which is capable of removing noise and outliers,
is based on recovering a low-rank matrix over consensus to perform a distributed matrix completion via
convex optimization. Burghouts et al. [11] used BoWs consisting of STIP features to capture motion,
random forest to quantise the features into histograms, and a support vector machines (SVM) classifier
as action detector. Data fusion at different stages are tested and compared. Holte et al. [12] demonstrated
an approach that detects 4D spatio-temporal interest points and local description of 3D motion features
in multi-view images, using 3D reconstructions of the actors and pixel-to-vertex correspondences of the
multi-camera setup. A similar approach was presented by Yan et al. [13] by analysing the differential
geometric properties of spatio-temporal volumes XYT for each view generated by concatenating the
actor’s silhouette over the course of an action. These features obtained from multiple views are then
mapped to the 4D action shape.

Some approaches assume that the actor is performing the action in a pre-specified angle from
the camera (view dependency). This is not true in real-world applications where the actor may not
necessarily have constraints in location and orientation. Therefore, view-independent systems, which
remove view dependent features, lose discriminative information for action classification. In order to
resolve such an issue, Iosifidis et al. [14] introduced a method using a novel representation of multi-view
human movement videos, which is based on learning basic multi-view human movement primitives,
called “multi-view dynemes”. Fuzzy distances from the multi-view dynemes are used to represent the
human body postures in a new feature space, called “dyneme space”. For solving the view identification
problem, the method either uses a circular block shift procedure followed by the evaluation of the
minimum Euclidean distance from any dyneme, or exploits the circular shift invariance property of



Sensors 2015, 15 17212

the discrete Fourier transform. The resulting system produced a high human movement classification
accuracy. Hashemi and Rahmati [15] proposed a hybrid method consisting of a view-dependent
representation and a view-independent representation. The view-dependent representation is used to
reduce the number of possible categories for each video sequence. The view-dependent representation
places similar activities in the same clusters, then reduces the number of possible action’s labels prior
to the view-independent representation. This reduction in the number of possible actions is then fed
together with the view-independent representation. It shows a significantly increased accuracy compared
to other view-independent action recognition methods.

Most of the previous methods fuse pose information either before action description or post
classification. Zhu et al. [16] employed local segments of binary silhouettes on a random forests
classifier, and then applied a voting strategy of the classification results of all the decision trees to
obtain the action label. Iosifidis et al. [17] performed single-view action representation and classification.
Classifications from all the views are then combined using Bayesian learning instead of a voting system.

The above methods are computationally expensive and thus the recognition can only be performed
in an off-line manner. Researchers have therefore shifted their focus onto real-time multi-view action
recognition. Weinland et al. [18] proposed an approach to provide robustness to both occlusions and
viewpoint changes, which is capable of processing over 500 frames per second while maintaining a
reasonable recognition performance. Cherla et al. [19] used a low-dimensional feature vector obtained
from the silhouette’s bounding box and some spatio-temporal features. Later, dynamic time warping is
used to perform recognition. This method runs at 20 frames per second. Chaaraoui et al. [20] presented a
method, where pose representation is based on the contour points of the human silhouette and actions are
learned by making use of sequences of multi-view key poses. Their method is able to process 26 frames
per second, and the recognition accuracy and speed are then further improved in [21].

3. Feature Representation for Action Recognition

A common practice in action recognition for generating discriminative feature representation is to
apply BoWs to local descriptors of motion and appearance. Local descriptors, e.g., spatio-temporal
interest points (STIP) [1] and improved dense trajectory descriptor (IDT) [22], first identify some regions
of interest (ROI) in the spatio-temporal space of a video, i.e., interest points and trajectories. They then
extract visual features, e.g., histograms of gradient, histograms of optical flows and motion boundary
histograms, from each ROI to represent local appearances and motions. In order to transform such local
descriptors into discriminative feature vectors that can be used by a classifier for action recognition,
a codebook or dictionary must be generated. A subset of descriptors are randomly selected from the
training data, and it is then fed into a unsupervised clustering method, e.g., K-Means [23], to generate
a user defined number of clusters. The generated clusters are called “visual words”, and together they
form the codebook. All descriptors of a video or a spatio-temporal cuboid in a video that is potentially
associated with the actions of interest, are then compared to every word in codebook to compute a high
dimensional histogram feature vector, by counting the numbers of closest clusters based on some metric,
e.g., the Euclidean distance. As a result, instances of the actions of interest are transformed into sparse
feature vectors, which can be trained with a discriminative classifier, e.g., SVM [23], for learning action



Sensors 2015, 15 17213

models. Although BoWs originated from the area of natural language processing (NLP), it has gained
great popularity in computer vision, especially for the recognition of simple and recurring actions.

3.1. Stacked Denoising Autoencoders

Despite the popularity, BoWs style representations suffer from their inherent over-sparsity and fail
to capture world-level synonymy and polysemy [3]. The nature of codebook generation results in the
majority of the dimensions of a computed histogram feature vector being zero. Such a transformation
process may lead to significant information loss, so that examples of different classes become more
uniform and thus insufficiently discriminative to train a classifier to distinguish between classes.
In addition, BoWs representations cannot capture synonymy, that is, the virtual words which have
the same connotations, implications, or reference, are considered dissimilar to each other. The BoWs
representations also cannot grasp polysemy, and thus they discard the possibility of a virtual word having
many different meanings. There drawbacks lead to the requirement of a trained classifier being exposed
to a very large set of labelled examples, in order to gain the sufficient predictive power for new examples.
It becomes more problematic when the amount of labelled data is limited and the number of classes is
large, which is the trend of a lot of newly collected datasets in action recognition.

To overcome the limitation of BoWs representations mentioned above, deep learning based stacked
denoising autoencoders (SDA) [24] was introduced. A traditional linear autoencoder [25] first takes an
input vector x ∈ [0, 1]d and transforms it into a hidden representation y ∈ [0, 1]d

′
using an encoder as,

y = fθ(x) = Wx + b (1)

and it is parametrised by θ = {W,b}, where W is a d× d′ weight matrix and b is an offset vector with
a dimensionality of d′ . The mapping in Equation (1) may be replaced by a nonlinear mapping in some
of the SDA algorithms. The resulting hidden representation y is then mapped back to a reconstructed
vector z ∈ [0, 1]d via a decoder as,

z = gθ′ (y) = W
′
y + b

′
(2)

and it is parametrised by θ′
= {W′

,b
′}. The vector is usually reconstructed following a probabilistic

distribution p(X|Z = z) that may generate x with a high probability. In order to minimise the
reconstruction error, we have to optimise the model as,

θ∗, θ
′∗ = arg min

θ,θ′

1

n

n∑
i=1

L(xi, zi) = arg min
θ,θ′

1

n

n∑
i=1

L(xi, gθ′ (fθ(xi))) (3)

where L is a loss function, e.g., squared error or cross entropy if x is a binary vector. Let q0(X) be the
empirical distribution associated with the n training examples, we can thus rewrite Equation (3) as,

θ∗, θ
′∗ = arg min

θ,θ′
Eq0(X)[L(X,Z(X))] = arg max

θ,θ′
Eq0(X)[log p(X|Y = fθ; θ

′
)] (4)

which is equivalent to the maximisation of a lower bound on the mutual information between X and
Y. According to the infomax principle proposed by Linsker [4], the mutual information between an
input random variable X and its higher level representation Y can be used as an important criterion



Sensors 2015, 15 17214

for measuring the amount of information retained by the representation from the input. The higher
the mutual information, the better representation is reconstructed. However, as pointed out by
Vincent et al. [24], the criterion that representation Y should retain as much information as possible
of input X by itself is not sufficient to generate a useful representation, as it is necessary to separate
useful information to be retained from noise to be discarded during the reconstruction process. As a
result, they propose that “a good representation is one that can be obtained robustly from a corrupted
input and that will be useful for recovering the corresponding clean input” [24]. The reconstruction
process of cleaning partially corrupted input to generate useful representation is called “denoising”.
This is based on the intuitions that on one hand a higher level representation should be stable and robust
under corruption of the input, and on the other hand the outcome of the denoising process is dependent
on the extraction of rich features that capture useful structure in the input distribution.

A denoising autoencoder is trained by first corrupting the initial input x to get a partially destroyed
version x̃ via a stochastic mapping, e.g., x̃ ∼ q(x̃|x). The corrupted version x̃ is then mapped to a hidden
representation y using an encoder as in Equation (1) from reconstructing a decoder as in Equation (2).
The training can be performed by minimising the average reconstruction error over the training set as in
Equation (4), so that z can be as close as possible to the corrupted input x̃. The corruption process is often
achieved by randomly choosing νd components of the input x and setting them to zero while keeping
the rest untouched, where ν is a predefined parameter of proportion. It is aimed to simulate the process
of removing the components which are set to zero from the input. A deep network can be initialised
by stacking denoising autoencoders in the same way as stacking restricted Boltzman machines [26] or
basic autoencoders [27]. The training of such a deep network is usually performed in a greedy layer by
layer manner, where the output of the lower layer is treated as the input the the higher layer. Once the
a stack of denoising autoencoders is learnt through training, its highest layer output can be used as the
input representation of a supervised learning algorithm, e.g., SVM, for further classification.

3.2. Marginalised SDA for Multi-View Representation via Domain Adaptation

The stacked denoising autoencoders (SDA) algorithm has been successfully applied to a wide range
of problems, and yielded record performance in benchmark NLP datasets [28] even when using a simple
linear SVM for the classification [29]. Although the SDA algorithm is capable of generating robust
features, it has several drawbacks associated with its optimisation process. First of all, the algorithm uses
stochastic gradient descent for training, making it slow and difficult to parallelise although some recent
advances in a dense-matrix GPU implementation [30] and an implementation based on reconstructing
sampling for sparse inputs [31] have significantly reduced the computational complexity. Secondly,
it has quite a few hyper-parameters, e.g., learning rate, number of epochs, noise ratio, mini-batch size
and network structure, which need to be tuned through cross validation where each run can take a
considerable amount of time. Finally, the optimisation problem of the SDA algorithm is inherently
non-convex, thus difficult to converge to a global optimum, and highly dependent on the initialisation
for finding even a sub-optimal solution. Some of these drawbacks limit the applicability of the SDA
algorithm to complex problems, e.g., the second and third drawbacks in particular for computer vision.
Chen et al. [32] proposed the marginalised version SDA, named “mSDA”, where the noise introduced in



Sensors 2015, 15 17215

the corruption process is marginalised. This leads to the optimal reconstruction weights being computed
in a closed-form and the elimination of using back-propagation for tuning as in SDA.

Let x1, . . . ,xn be the inputs taken from D = DS ∪DT , where DS and DT denote the source domain
and target domain respectively. As in the SDA algorithm, the corruption process is performed by random
feature removal, i.e., setting a randomly selected subset of components to zero with a probability p ≥ 0.
Following notations of the previous section, we denote xi and x̃i as the input and its corrupted version
respectively. A one-layer denoising autoencoder reconstructs the corrupted inputs through a mapping
W : Rd → Rd while minimising the following squared reconstruction loss

1

2n

n∑
i=1

‖xi −Wx̃i‖2 (5)

where a constant feature that is never corrupted can be added to the input, such that xi = [xi; 1], in order
to incorporate a bias into the mapping, i.e., W = [W,b]. As the solution of Equation (5) depends
on which components of each input are randomly corrupted, a multi-pass process over the training
set is applied to reduce the variance, with a different corruption each time. Therefore, the solution
of Equation (5) is equivalent to the minimisation of the overall squared loss as following,

L(W) =
1

2mn

m∑
j=1

n∑
i=1

‖xi −Wx̃i,j‖2 (6)

where x̃i,j is the jth corrupted version the input xi during the multi-pass process. Assuming we have a
matrix X = [x1, · · · ,xn] ∈ Rd×n, its m times repeated version X̄ = [X, . . . ,X], and X̃ the corrupted
version of X̄, we can rewrite Equation (5) as,

L(W) =
1

2mn
tr
[
(X̄−WX̃)>(X̄−WX̃)

]
(7)

where its solution can be expressed as the closed-form solution for ordinary least squared loss [23], i.e.,
W = PQ−1, where Q = X̃X̃> and P = X̄X̃>. It can be computed as a set of linear equations without
requiring any computationally expensive matrix inversions.

According to the law of large numbers, asm→ +∞ the matrices P and Q converge to their expected
values. We thus have W = E[P]E[Q]−1, and E[Q] can be computed as,

E[Q] =
n∑
i=1

E[x̃ix̃
>
i ] (8)

where off-diagonal entries of the matrix x̃ix̃
>
i are uncorrupted with a probability (1 − p)2, while the

probability of diagonal entries is equal to 1−p. Let q = [1−p, . . . , 1−p, 1]> ∈ Rd+1 be a vector, where
qα is the probability of a feature α being uncorrupted and similar probability can be defined as qβ for a
feature β. We also have qd+1 = 1, since the constant feature should not be corrupted. If we define the
scatter matrix of the original input as S = XX>, the expectation the matrix Q can be thus computed as,

E[Q]α,β =

Sα,βqαqβ if α 6= β

Sα,βqα if α = β
(9)



Sensors 2015, 15 17216

and the expectation of the matrix P can be obtained in a similar fashion as Equation (9).
The reconstruction mapping W can thus be computed directly in a closed-form without explicitly
reconstructing any single corrupted input x̃i, and the noise is marginalised. This algorithm is known as
the mSDA, which only requires to go through the data to once compute E[Q] and E[P]. In addition,
the optimisation problem is convex and thus a global optimum is guaranteed, and the optimisation
process is performed in a non-iterative closed-form and therefore computationally much cheaper than
the SDA algorithm. Similar to the layer-wise stacking of the standard denoising autoencoders algorithm,
the marginalised denoising autoencoders algorithm can be stacked by feeding the output of the (t− 1)th

as the input of the tth layer. Let ht denote the output of the of the tth layer and h0 = x be the
initial input. The training is performed in a greedy layer by layer manner, where each Wt is learned
to reconstruct the previous output ht−1 from all possible corruptions and the output of the tth layer
becomes ht = tanh(Wtht−1) by applying a squashing function.

Chen et al. [33] has successfully apply the mSDA algorithm to the Amazon review benchmark
dataset in NLP [28] in terms of representation learning and domain adaptation, where the mSDA
algorithm outperforms all the existing state-of-the-art algorithms. It was achieved by first learning
feature representation in an unsupervised manner on the union of the source and target data inputs.
This is based on the observation by Glorot et al. [34] that sharing the unsupervised pre-training of the
SDA algorithm across all the domains available is more beneficial than the pre-training performed solely
on the source and target. After a mSDA is trained over all the domains, the output of all layers after
squashing tanh(Wtht−1) is combined with the original feature h0 to form the new representation via
concatenation, where all the inputs are transformed into the new feature space. Such a transformation
process involves only two meta-parameters, i.e., the corruption probability p and the number of layers l,
which are either pre-defined by the user or tuned through cross validation. We propose to apply a
similar transformation process of the mSDA algorithm to multi-view action recognition, where video
sources of the multiple camera views of the same monitored environment are temporally synchronised.
The intuition of this application is that multiple views of the monitored environment can be treated as
multiple domains of the same actions that are collected in different spatial perspectives. All camera views
are assumed to share some structural similarities in terms of motions and appearances of the actions of
interest, which are expected to be retained by the transformation process of the mSDA algorithm. As a
result, we train a mSDA deep network over all the camera views and the learned deep network is then
used to generate a new presentation for each camera view respectively, through the concatenation of its
original input and the output of all layers after squashing as described above.

4. Fusion of Multiple Camera Views

Assuming the representation of each camera view is obtained through either BoWs or mSDA for
the purpose of multi-view action recognition, the next step is to fuse these representations and classify
an action example with respect to all the camera views into one of the action classes. Due to high
dimensional nature of the input feature space, the classification stage uses discriminative models
(e.g., kernel methods) to learn appearance and motion patterns of each action class, while employing
various fusion techniques to combine either the visual features or the classification scores of multiple



Sensors 2015, 15 17217

camera views for an aggregated decision making. As demonstrated in [5], various fusion techniques
can be applied before, during or after the classification stage. One can combine input features of all
the camera views to create a single integrated representation, which can then be fed into a classifier.
Alternatively, the fusion can be achieved during the classification, where the parameters of a classifier
and those of a fusion techniques can be optimised simultaneously. Finally, the classification scores of
all the camera views obtained by feeding the input features of each camera view into a classifier can be
combined to derive a single classification score for all the camera views. In the rest of this section, we
demonstrate three simple fusion strategies as well as an advanced learning technique known as multiple
kernel learning (MKL), which are used to fuse all camera views and produce an aggregated decision on
the class label of an action example.

4.1. Simple Fusion Strategies

Let xki ∈ RD, where i ∈ {1, 2, . . . , N} is the index of an input feature vector and k ∈ {1, 2, . . . , K}
is the index of a camera view. xki is derived from the feature representation process using either BoWs
or mSDA, and it is potentially associated with an action of interest. It is expected input feature vectors
of all the camera views with respect to an action instance to be classified into the correct action class.
We here use three simple fusion techniques [35] that combine either the input histogram feature vectors
at pre-classification stage or the output classification scores of SVM classifiers at the post-classification
stage as follows.

4.1.1. Concatenation of Features

A simple solution is to concatenate the histogram feature vectors of multiple camera views of a
spatio-temporal cuboid (an action instance) that is potentially associated with an action class, into one
single feature vector x̃i = [x1

i , . . . ,x
K
i ]. The concatenated feature vectors are then used as the input for

training a SVM model per action class as

f(x) =
N∑
i=1

αiyik(xi,x) + b (10)

where αi is the dual-form weight, yi ∈ {−1,+1} is the label with respect to the action class, k(·) is the
non-linear kernel function, and b is the bias. Thus we can compute a classification score in terms of the
probability of an instance x being positive via a sigmoid function as,

p(y = 1|x) =
1

1 + exp(−f(x))
(11)

which gives the probability of the instance x belonging to the action class the SVM model trained for.
This solution essentially transforms the multi-view action recognition problem into a single-view action
recognition one through concatenating the inputs of all camera views into one.

4.1.2. Sum of Classification Scores

We can also train a SVM model and compute a classification score for each camera view with respect
to an action class, i.e., p(y = 1|x) as in Equation (11). This leads to the number of trained SVM models



Sensors 2015, 15 17218

being equal to the number camera views multiplied by the number action classes. Input features of a new
action instance are then fed to the SVM models of all the camera views with respect to an action class
to produce a probability of the action instance belonging to the class in question for each camera view.
All the classification scores or probabilities are then averaged to give an aggregated probability as.

p̄(y = 1|x) =
1

K

K∑
k=1

p(y = 1|xk) ∀k ∈ {1, 2, . . . , K} (12)

Such a fusion process basically assumes each camera view has an equal contribution to the
identification of an instance belonging to one of the action classes.

4.1.3. Product of Classification Scores

Alternatively if we assume that a camera view is independent of another, we can apply the product
rule to the classification scores or probabilities of all the camera views as.

p̂(y = 1|x) =
K∏
k=1

p(y = 1|xk) ∀k ∈ {1, 2, . . . , K} (13)

The strategies of Equations (12) and (13) can be applied, due to the fact the classification scores are
presented in a probabilistic form thanks to the sigmoid function in Equation (11). Generally speaking,
all three basic fusion strategies ignore the difference between multiple camera views, without considering
the benefit of allowing the camera views to compensate or complement each other. As a result, a more
advanced fusion technique is desired.

4.2. Multiple Kernel Learning

MKL algorithms have been shown to be flexible and effective for learning complex problems
involving multiple, heterogeneous data sources [36]. They consider multiple kernels that correspond
to the multiple data sources, and combine them via a linear function such as

K(xi,xj) =
K∑
k=1

βkkk(xi,xj) (14)

where βk ≥ 0 and
∑K

k=1 βk = 1 and each kernel kk only uses a distinct set of features. We can
rewrite Equation (10) with respect to a kernel kk as f(xk) =

∑N
i=1 α

k
i yikk(x

k
i ,x

k) + bk. As a result,
in addition to learning the αk weights and bk bias of a standard SVM model, the system also needs to
learn the combination parameters βk in Equation (14). Such an optimisation problem involves two set
of continuous parameters, namely “kernel parameters” (αk, bk) and “combination parameters” (βk).
A popular solution is to employ a nested two-step optimisation as suggested in [36], where the first
step finds the optimum of the kernel parameters (αk, bk), e.g., via quadratic programming, while fixing
the combination parameters (βk), and the second step searches for the optimum of the combination
parameters, e.g., via line search based gradient decent, while fixing the kernel parameters. The system



Sensors 2015, 15 17219

keeps alternating between these two steps, until it converges to an optimal solution of both sets of
parameters. Such a two-step optimisation process can be expressed in the following objective function,{

minw,b,d
1
2
‖w‖2 +

∑
i L(yi, f(xi)) +R(d)

subject to d ≥ 0
(15)

where in addition to the Euclidean norm of the weight vector w of a SVM model, we have a
loss function L = C max(0, 1 − yif(xi)) for a classification case, and a regularisation term R
that can be any differentiable function of d = [β1, β2, . . . , βK ]. Since f(·) is a function of w,
the minimisation is performed over the kernel parameters of SVM models w and combination parameters
of d, as demonstrated above. On one hand only mild restriction needs to be placed on the learning of kK
of the SVM model, which should be strictly positive definite for all valid d. This gives the flexibility of
constructing different combinations of base kernels, as long as the resulting kernels are positive definite.
On the other hand, the restriction of d being a non-negative orthant requires the regularisation term’s
derivative to exist and be continuous, i.e., differentiable. Such a restriction makes it possible to apply
gradient decent based optimisation techniques for the learning of combination parameters.

In [37], the authors proposed a generalised MKL algorithm [38] for object detection, where each
kernel corresponds to a particular type of visual features. We adopt a similar idea, where each kernel
in our framework corresponds to a particular camera view. The combination of multiple kernels is
thus equivalent to the fusion of multiple camera views. The intuition behind this is that the optimal
combination of parameters enables a weighted sum of all the camera views while ensuring the optimality
of the kernel parameters. Such a system should be advantageous over methods merely using weighted
sum of classification scores. We therefore expect that it should outperform the methods using the simple
fusion techniques, due to the inherited advantage of MKL algorithms for coping with the heterogeneous
nature of multiple camera views. Additionally due to the relaxed restrictions of the generalised MKL
algorithm for the SVM model and regularisation term, we can implement the algorithm using existing
standard libraries of SVM algorithms and gradient decent optimisation techniques.

5. Experimental Conditions

In order to validate our hypothesis that features representations generated by the mSDA algorithm
should yield improved performance in terms of multi-view action recognition, than those derived from
the BoWs approach, we conduct a series of experiments on three benchmark multi-view action datasets.
Moreover, we also want to find out if the MKL (SVM-MKL) algorithm can still outperform other simple
fusion techniques, e.g., concatenation (SVM-COM), sum (SVM-SUM) and product (SVM-PRD) rules,
for real-time multi-view action recognition, as observed in [5]. Finally, the proposed systems in this
work will be compared to the state-of-the-art algorithms tested on those benchmark datasets.

5.1. Benchmark Multi-View Datasets

We have chosen three well known benchmark multi-view action datasets in computer vision, namely
“IXMAS dataset”, “IXMAS actions dataset” and “ACT42 dataset”. Those datasets are all focused on
the recognition of a list of predefined actions of a single person in an indoor environment monitored by



Sensors 2015, 15 17220

multiple cameras providing complementary fields of views of the scene. A multi-view action recognition
system is required to take the video streams of multiple cameras and output an action class label for an
instance that is defined in a particular temporal window across all the camera views.

5.1.1. IXMAS Dataset

The original IXMAS dataset was created for view-invariant human action recognition [6]. It captured
13 daily actions, each of which was performed 3 times by 12 actors. Views of 5 cameras produce video
sequences at 23 frames per second and 390× 291 resolution, as shown in Figure 1. Each actor was free
to choose the location and the direction to which they face while performing the actions. As a result,
the view of each camera may vary from one actor to another for different runs. We use all 12 actors and
5 cameras, and evaluate 11 actions classes as in [6].

Cam-0 Cam-1 Cam-2 Cam-3 Cam-4

Figure 1. An example of all the camera views in the original IXMAS dataset.

5.1.2. IXMAS Actions Dataset

The IXMAS actions dataset consists of new videos of the same 11 action classes in the original
IXMAS dataset [18]. The dataset was recorded with different actors, cameras, and viewpoints, so the
environment settings are different from those of the original IXMAS dataset, as shown in Figure 2. There
are totally 7 new actors, each of which performs 5 times per action. There overall 1148 video sequences,
which are recorded in a resolution of 400×300 at 24 frames per second. In addition, more than 2/3 of the
actions were recorded with objects in the scene partially occluding the actors in cluttered background, as
main focus of the new recordings is to test a multi-view action recognition system’s ability to deal with
occlusions [18].

Cam-0 Cam-1 Cam-2 Cam-3 Cam-4

Figure 2. An example of all the camera views in the IXMAS actions dataset.

5.1.3. ACT42 Dataset

The ACT42 dataset is recorded to overcome the bottleneck of existing action recognition approaches,
by providing a framework for investigating both colour (RGB) and depth information and handling action
variants across multiple viewpoints [39]. All the videos are recorded in a living room environment,



Sensors 2015, 15 17221

by 4 Microsoft Kinect cameras with a resolution of 640 × 480 at 30 frames per second, as shown in
Figure 3. Please note due to the scope of this work, we only use the RGB information in our experiments,
but not the depth information at all. There are 24 actors performing 14 daily actions, which results totally
6844 action instances. However only a subset of the whole dataset containing 2648 action instances is
used in this work, as provided publically by the authors of [39].

Cam-0 Cam-1 Cam-2 Cam-3

Figure 3. An example of all the camera views in the ACT42 dataset.

All long videos that contain more than one action instance are temporally segmented into short
clips, e.g., one action instance per clip, according to the ground truth. This is due to the fact, we are
merely interested in the action recognition task, rather than the action detection task in which temporal
localisation is required. A subject-wise leave-one-out cross validation (instances of one actor used for
testing, and the remaining instances used for training) is applied to create the training set and testing set
for each fold, and the reported recognition rates will be the means of all the folds.

5.2. Implementation Details

The improved code of [22], implemented in C++ and OpenCV, is used to generate the IDT descriptors
representing motions and appearances in each video, which is downscaled to 0.5 of the original width
and height (equivalent to 0.25 of the original resolution) by FFmpeg (FFmpeg by default compresses
an input video when downscaling, making the video much easier and faster to compute by the IDT
descriptor code.). It was clearly demonstrated in [5], the IDT descriptor yields much better recognition
performance than the STIP descriptor, and the gain of computational complexity of the STIP descriptor
is minor. In this paper, we therefore only use the IDT descriptor. Default parameters suggested
by the original authors are used. The computation of BoWs representations uses a codebook sized
{4000; 8000; 12, 000; 16, 000; 20, 000}, which is quantised from 1,000,000 randomly selected descriptor
features of a training set. Using different codebook sizes is to test its effect on recognition performance,
since the mSDA representation often has a higher dimensionality. The codebook is then used to
compute the histogram feature vectors as the inputs for the mSDA algorithm, which are transformed
to a new representation. The probability of corruption p is chosen from {0.1; 0.2; 0.3; 0.4; 0.5} through
a 5-fold cross validation in a training set, and the number of layers l of the deep network is set
to {1; 2; 3; 4; 5}, as suggested in [32]. Choosing different numbers of layers is to test its effect on
recognition performance. When the number of layers is equal to 1, the resulting network is equivalent
to a multi-layer perceptron with a hidden layer. The new representation obtained by mSDA thus has
a dimensionality of 4000 × 5 = 20, 000, when the input BoWs representation has a dimensionality of
4000 and the number of layers of the deep network is equal to 5. While for systems that use the BoWs



Sensors 2015, 15 17222

representation, the computed histogram feature vectors are directly fed into a classifier. All the SVM
models use `1 normalisation and employ the χ2 kernel as

χ2(xi,xj) = 2
D∑
l=1

xilxjl
xil + xjl

(16)

where l is the dimension index of feature vectors. All the cost parameters of SVM models are set to
100, which is found to give the overall best performance on a validation set randomly selected from the
training set. The SVM code used in this work is the well known LIBSVM [40], implemented in C++.
The remaining parts of the systems, e.g., the optimisation processes are implemented MATLAB Release
2014a. All the experiments are run on an Intel i7 Quad-Core CPU, 32GB RAM machine with Ubuntu
14.04 LTS operating system installed.

5.3. Real-Time Capacity of the Framework

Assuming the codebook of BoWs and action models are learned through training, the systems that
use the BoWs representation execute the following steps at testing: local descriptors (1) are extracted
within certain frame span; The derived local descriptors are used to compute the histogram feature of
an instance that is potentially associated with one of the action classes (2); The histogram features are
then classified by the action models to produce the recognition results (3). Empirically we find that the
actual bottleneck of the above pipeline is step (1). The IDT descriptor code can be extracted at up to
50 frames per second, if videos are downscaled to 0.25 of the original resolution, as described in the
previous section. The systems using mSDA require an additional step to generate and compute the new
mSDA representations, however the optimisation of both the training and testing stages can be solved
in a closed-form, i.e., linear complexity. In practice, the additional step of mSDA during testing can be
computed within milliseconds, due to the fact it simply computes linear functions of an input feature
vector and the learned weights of mSDA from training. Therefore, it would not increase the overall
runtime complexity of the corresponding systems. Since previous works in the literature have used the
number of frames per second a recognition system can handle as a measure of its real-time capacity,
we consider the proposed framework to meet the requirement of real-time action recognition, if the
testing videos of a dataset have a frame rate less than 50.

6. Results and Analysis

In this section, we demonstrate the results of all the methods described in this work on the benchmark
datasets listed in the previous section. The comparisons start with an internal evaluation on two important
parameters, i.e., the codebook size of BoWs and the number of layers of mSDA. They are followed by
the comparisons between the proposed methods in this work and the state-of-the-art algorithms in the
literature. The comparisons are concentrated on the average recognition rate of each method over all
the action classes, as well its real-time capacity in terms of the number of frames processed per second.
Various significant setting parameters or variables reported by other algorithms in the literature are also
provided for the sake of comparison.



Sensors 2015, 15 17223

6.1. IXMAS Dataset

Figure 4 shows the evaluation of the codebook size of BoWs and the number of layers of mSDA
on the original IXMAS dataset. On one hand, the increase in the codebook size results in minor
improvements initially, however the recognition performances drop as the size is close to 20 K. This is
due to the fact the number of selected descriptor features in the training set is limited, as the codebook
size increases the number of clusters generated during the K-Means clustering increases accordingly.
As a result, the average number of descriptor features per cluster has been significantly reduced, and
the resulting representation become much more sparse and less discriminative. On the other hand, the
increase in the number of layers of mSDA leads to slight but consistent improvements. A large number
of layers results in a higher dimensional representation that is denser and more robust with respect to
discrimination between different action classes. The results of all compared methods on the original
IXMAS dataset are listed in Table 1, where the top half of the table consists of the offline systems while
the bottom half lists the online systems with frames per second (FPS). As reported in [5], the simple
fusion strategies and MKL algorithm using the IDT descriptor and the BoWs representation outperform
the state-of-the-art algorithms in terms of average recognition rate. The FPS has been improved as well
due to the downscaled resolution of video, which reduces the time required to compute IDT descriptors
of each video. More importantly, the incorporation of mSDA further improve the overall performance
of all the methods, especially the MKL algorithm has reached 0.965 at 45 FPS. This implies that the
mSDA algorithm can indeed improve the basic BoWs representation by providing a more robust and
useful representation, which leads to significant gains in the system’s overall recognition performance.

4K 8K 12K 16K 20K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

SVM−COM

SVM−SUM

SVM−PRD

SVM−MKL

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

SVM−COM

SVM−SUM

SVM−PRD

SVM−MKL

(b)

Figure 4. Performance comparisons on the original IXMAS dataset, of proposed methods,
with respect to the size of BoWs (from 4 K to 20 K when the number of layers of mSDA
is 5) and the number of layers of mSDA (from 1 to 5 when the size of BoWs is 4 K), in terms
of average recognition rates. (a) The size of BoWs; (b) The number of layers of mSDA.



Sensors 2015, 15 17224

Table 1. Comparison of all the methods in this work using IDT descriptor and BoWs or
mSDA on the original IXMAS dataset, where the methods with “N/A” in the FPS column
are offline systems.

Method Actions Actors Views Reg. Rate FPS

Cilla et al. [8] 11 12 5 0.913 N/A
Weiland et al. [6] 11 10 5 0.933 N/A

Cilla et al. [9] 11 10 5 0.940 N/A
Holte et al. [12] 13 12 5 1.000 N/A

Weinland et al. [18] 11 10 5 0.835 500
Chaaraoui et al. [20] 11 12 5 0.859 26
Chaaraoui et al. [21] 11 12 5 0.914 207

SVM-COM (IDT + BoWs) 11 12 5 0.915 45
SVM-SUM (IDT + BoWs) 11 12 5 0.927 45
SVM-PRD (IDT + BoWs) 11 12 5 0.921 45
SVM-MKL (IDT + BoWs) 11 12 5 0.950 45
SVM-COM (IDT + mSDA) 11 12 5 0.922 45
SVM-SUM (IDT + mSDA) 11 12 5 0.936 45
SVM-PRD (IDT + mSDA) 11 12 5 0.930 45
SVM-MKL (IDT + mSDA) 11 12 5 0.965 45

6.2. IXMAS Actions Dataset

Figure 5 displays the evaluation of the codebook size of BoWs and the number of layers of mSDA
on the IXMAS actions dataset. Similar trends can be observed here. On one hand, the increase in the
codebook size results in minor improvements initially, however the recognition performances drop as
the size is close to 20 K. This is due to much more sparse and less discriminative representation when
the size is larger. On the other hand, the increase in the number of layers of mSDA leads to slight
but consistent improvements. This is due to the higher dimensional representation that is denser and
more robust with respect to discrimination between different action classes. The results of all compared
methods on the IXMAS action dataset are displayed in Table 2, the top half the table consists of the
algorithms proposed in [18] using instances that are clean, i.e., the occluded examples that are supposed
to be more difficult to recognise are removed. While the bottom half lists all the methods applied to
the entire dataset with a majority of occluded examples. All the methods described in this paper, even
the basic ones using the IDT descriptor and BoWs representation outperform those in [18]. Similar
trends can be observed on this dataset as well, that is, the MKL algorithm outperforms the simple fusion
strategies and the new representation generated by the mSDA is more discriminative than that generated
by only the BoWs, resulting significant improvements on the recognition rates. The best performance
is achieved by the MKL algorithm using the representation generated by the IDT descriptor and mSDA
algorithm, reaching 0.842 at 40 FPS.



Sensors 2015, 15 17225

4K 8K 12K 16K 20K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

SVM−COM

SVM−SUM

SVM−PRD

SVM−MKL

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

SVM−COM

SVM−SUM

SVM−PRD

SVM−MKL

(b)

Figure 5. Performance comparisons on the IXMAS actions dataset, of proposed methods,
with respect to the size of BoWs (from 4 K to 20 K when the number of layers of mSDA
is 5) and the number of layers of mSDA (from 1 to 5 when the size of BoWs is 4 K), in terms
of average recognition rates. (a) The size of BoWs; (b) The number of layers of mSDA.

Table 2. Comparison of all the methods in this work using IDT descriptor and BoWs or
mSDA on the IXMAS actions dataset.

Method Occlusion Reg. Rate FPS

Local SVM [18] × 0.863 500
Local Weighted [18] × 0.851 500

Local Sum [18] × 0.825 500
Local Product [18] × 0.815 500
Local SVM [18]

√
0.767 500

Local Weighted [18]
√

0.767 500
Local Sum [18]

√
0.728 500

Local Product [18]
√

0.689 500
SVM-COM (IDT + BoWs)

√
0.761 40

SVM-SUM (IDT + BoWs)
√

0.778 40
SVM-PRD (IDT + BoWs)

√
0.772 40

SVM-MKL (IDT + BoWs)
√

0.795 40
SVM-COM (IDT + mSDA)

√
0.819 40

SVM-SUM (IDT + mSDA)
√

0.820 40
SVM-PRD (IDT + mSDA)

√
0.815 40

SVM-MKL (IDT + mSDA)
√

0.842 40



Sensors 2015, 15 17226

6.3. ACT42 Dataset

Figure 6 demonstrates the evaluation of the codebook size of BoWs and the number of layers of
mSDA on the ACT42 dataset. Similar trends can be also observed here. On one hand, the increase in
the codebook size results in minor improvements initially, however the recognition performances drop
as the size is close to 20 K. Again more sparse and less discriminative representation, resulted from a
larger codebook size. On the other hand, the increase in the number of layers of mSDA leads to slight
but consistent improvements. The higher dimensional representation is denser and more robust with
respect to discrimination between different action classes. The results of all the compared methods on
the ACT42 datasest are shown in Table 3, where the top half consists of the state-of-the-art algorithms
in the literature, majority of which utilise both the RGB and depth data in the experiments. While the
bottom half lists the methods described in this work, where only the RGB colour data is used in the
experiments. Another significant difference is much increased dimensionality of the systems using the
mSDA representation, due to the deep network structure and concatenated nature of the transformation
process. However, since all the classifiers used are based on SVM models which are known good at
handling high dimensional data, minimum impacts are caused on either the classification performance or
computational complexity. In any case, although our proposed methods merely use the RGB data, thanks
to richer visual features of the IDT descriptor and more robust and useful representation of mSDA, they
outperform the state-of-the-art algorithms. Similarly, the recognition performance of the MKL algorithm
is significantly better than the simple fusion strategies, and the systems with the mSDA representations
noticeably outperform those using only the BoWs representations. The best performance is achieved by
the MKL algorithm using the IDT descriptor and mSDA representation, reaching 0.857 at 33 FPS.

4K 8K 12K 16K 20K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

SVM−COM

SVM−SUM

SVM−PRD

SVM−MKL

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

SVM−COM

SVM−SUM

SVM−PRD

SVM−MKL

(b)

Figure 6. Performance comparisons on the ACT42 dataset, of proposed methods, with
respect to the size of BoWs (from 4 K to 20 K when the number of layers of mSDA is 5)
and the number of layers of mSDA (from 1 to 5 when the size of BoWs is 4 K), in terms of
average recognition rates. (a) The size of BoWs; (b) The number of layers of mSDA.



Sensors 2015, 15 17227

Table 3. Comparison of all the methods in this work using IDT descriptor and BoWs or
mSDA on the ACT42 dataset, where the methods with “N/A” in the FPS column are offline
systems that are not reported by the original authors.

Method Feature Dimensionality Reg. Rate FPS

Color-HOGHOG [39] RGB 2000 0.642 N/A
Depth-HOGHOG [39] RGB + Depth 2000 0.745 N/A

Depth-CCD [39] RGB + Depth 2000 0.762 N/A
DLMC-STIPs (SPM) [41] RGB + Depth 2000 0.663 N/A

SFR [39] RGB + Depth 2000 0.805 N/A
SVM-COM (IDT + BoWs) RGB 4000 0.805 33
SVM-SUM (IDT + BoWs) RGB 4000 0.813 33
SVM-PRD (IDT + BoWs) RGB 4000 0.815 33
SVM-MKL (IDT + BoWs) RGB 4000 0.835 33
SVM-COM (IDT + mSDA) RGB 20,000 0.828 33
SVM-SUM (IDT + mSDA) RGB 20,000 0.845 33
SVM-PRD (IDT + mSDA) RGB 20,000 0.837 33
SVM-MKL (IDT + mSDA) RGB 20,000 0.857 33

7. Conclusions and Future Work

In this paper, we extend the work of [5] by incorporating deep learning based mSDA to further
improve the BoWs representation in terms of robustness and usefulness for multi-view action
recognition. The resulting representations are fed into the simple fusion strategies and a MKL algorithm
introduced in [5] at the classification stage. This leads to a novel framework for the application of
real-time multi-view action recognition. In order to evaluate the new framework, three benchmark
multi-view action datasets are used. Based on the internal evaluation, increases in the codebook size of
BoWs or the number of layers of mSDA may not significantly improve recognition performance. In some
cases, they even decrease the performance, because more sparse and less discriminative representations
are generated. According to results, the proposed framework improves recognition performance across
all three datasets, due to the incorporation of the mSDA representation, particularly the MKL algorithm
using the IDT descriptor and mSDA representation outputs record recognition performance, beating the
state-of-art algorithms in the literature. It is also capable of performing real-time action recognition at a
frame rate ranging from 33 to 45, depending on the dataset. Since videos of the three benchmark datasets
are collected at 23 FPS, 24 FPS and 30 FPS respectively, our proposed framework can still be considered
real-time capable. The frame rates can be further improved by using more powerful machines in future
applications. In conclusion, we have introduced a practical framework that is easy to implement and
produces great performance in terms of both recognition accuracy and speed.

For future work, we want to apply the proposed framework to other vision problems with a
similar setup. For instance, as depth cameras have become more and more popular and common in
computer vision applications, we need to figure out a way of incorporating depth data into our existing
framework. This could potentially give more flexibility to the future applications and lead to a better



Sensors 2015, 15 17228

overall performance. In addition, it would also be beneficial to study alternative feature representation
and fusion techniques, e.g., some more structure oriented fusion techniques, to further improve the
recognition performance.

Acknowledgments

This work has been supported by the Ambient Assisted Living Joint Programme and Innovate
UK under project “BREATHE—Platform for self-assessment and efficient management for informal
caregivers” (AAL-JP-2012-5-045). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Author Contributions

Feng Gu proposed the initial idea which was then discussed and revised with the coauthors throughout
the development of this work. He mainly contributed to coding of the framework, conducting all the
experiments, and writing Section 3 to Section 6. Francisco Flórez-Revuelta contributed to the writing of
Section 2: Related Work, Dorothy Monekosso contributed to the writing of Section 7: Conclusions and
Future Work, and Paolo Remagnino contributed to the writing of Section 1: Introduction.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Laptev, I.; Marszalek, M.; Schmid, C.; Rozenfeld, B. Learning realistic human actions from
movies. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

2. MacKay, D. Information Theory, Inference, and Learning Algorithms; Cambridge University Press:
Cambridge, UK, 2003.

3. Xu, Z.; Chen, M.; Weinberger, K.; Sha, F. From sBoW to dCoT: Marginalized Encoders for Text
Representationn. In Proceedings of the 21st ACM Conference on Information and Knowledge
Management (CIKM), Maui, HI, USA, 29 October–2 November 2012.

4. Linsker, R. An application of the principle of maximum information preservation to linear systems.
Advances in Neural Information Processing Systems (NIPS); Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 2008.

5. Gu, F.; Florez-Revuelta, F.; Monekosso, D.; Remagnino, P. A Multiple Kernel Learning Based
Fusion Framework for Real-Time Multi-View Action Recognition. In Proceedings of the 6th
International Work-Conference on Ambient Assisted Living (IWAAL), Belfast, UK, 2–5 December
2014; Volume LNCS8868, pp. 26–33.

6. Weinland, D.; Ronfard, R.; Boyer, E. Free viewpoint action recognition using motion history
volumes. Comput. Vis. Image Underst. 2006, 104, 249–257.



Sensors 2015, 15 17229

7. Bobick, A.; Davis, J. The recognition of human movement using temporal templates. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI 2001, 23, 257–267.

8. Cilla, R.; Patricio, M.A.; Berlanga, A. A probabilistic, discriminative and distributed system for
the recognition of human actions from multiple views. Neurocomputing 2012, 75, 78–87.

9. Cilla, R.; Patricio, M.A.; Berlanga, A.; Molina, J.M. Human action recognition with sparse
classification and multiple-view learning. Expert Syst. 2013, 31, 354–364.

10. Adeli, M.E.; Raahemifar, K.; Fathy, M. Multi-View Human Activity Recognition in Distributed
Camera Sensor Networks. Sensors 2013, 13, 8750–8770.

11. Burghouts, G.; Eendebak, P.; Bouma, H.; ten Hove, J.M. Improved action recognition by
combining multiple 2D views in the bag-of-words model. In Proceedings of the 2013 10th IEEE
International Conference on Advanced Video and Signal Based Surveillance (AVSS), Krakow,
Poland, 27–30 August 2013; pp. 250–255.

12. Holte, M.; Chakraborty, B.; Gonzalez, J.; Moeslund, T. A local 3-D motion descriptor for
mult-view human action recognition from 4-D spatio-temporal interest points. IEEE J. Sel. Top.
Signal Process. 2012, 6, 553–565.

13. Yan, P.; Khan, S.; Shah, M. Learning 4D action feature models for arbitrary view action recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Anchorage, AK, USA, 23–28 June 2008; pp. 1–7.

14. Iosifidis, A.; Tefasa, A.; Nikolaidisa, N.; Pitas, I. Multi-view human movement recognition
based on fuzzy distances and linear discriminant analysis. Comput. Vis. Image Underst. 2012,
116, 347–360.

15. Hashemi, S.; Rahmati, M. View-independent action recognition: A hybrid approach.
Multimed. Tools Appl. 2015, doi:10.1007/s11042-015-2606-5.

16. Zhu, F.; Shao, L.; Lin, M. Multi-view action recognition using local similarity random forests and
sensor fusion (Extracting Semantics from Multi-Spectrum Video). Pattern Recognit. Lett. 2013,
34, 20–24.

17. Iosifidis, A.; Tefas, A.; Pitas, I. Neural representation and learning for multi-view human action
recognition. In Proceedings of the 2012 International Joint Conference on Neural Networks
(IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–6.

18. Weinland, D.; Özuysal, M.; Fua, P. Making Action Recognition Robust to Occlusions and
Viewpoint Changes. In Proceedings of the European Conference on Computer Vision, Crete,
Greece, 5–11 September 2010.

19. Cherla, S.; Kulkarni, K.; Kale, A.; Ramasubramanian, V. Towards fast, view-invariant human
action recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW ’08), Anchorage, AK, USA, 23–28 June 2008;
pp. 1–8.

20. Chaaraoui, A.A.; Climent-Perez, P.; Florez-Revuelta, F. Silhouette-based human action recognition
using sequences of key poses. Pattern Recognit. Lett. 2013, 34, 1799–1807.

21. Chaaraoui, A.A.; Padilla-Lopez, J.R.; Ferrandez-Pastor, F.J.; Nieto-Hidalgo, M.;
Florez-Revuelta, F. A vision-based system for intelligent monitoring: Human behaviour
analysis and Privacy by context. Sensors 2014, 14, 8895–8925.



Sensors 2015, 15 17230

22. Wang, H.; Schmid, C. Action Recognition with Improved Trajectories. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013.

23. Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
24. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising

Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising
Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.

25. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layerwise training of deep networks.
Advances in Neural Information Processing Systems (NIPS); MIT Press: Cambridge, MA, USA,
2007; pp. 153–160.

26. Hinton, G.E.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science
2006, 313, 504–507.

27. Larochelle, H.; Bengio, Y.; Louradour, J.; Lamblin, P. Exploring strategies for training deep neural
networks. J. Mach. Learn. Res. 2009, 10, 1–40.

28. Blitzer, J.; McDonald, R.; Pereira, F. Domain adaptation with structural correspondence learning.
In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing,
Sydney, Australia, 22–23 July 2006; pp. 120–128.

29. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th International Conference on Machine
Learning (ICML), Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

30. Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.;
Warde-Farley, D.; Bengio, Y. Theano: A CPU and GPU Math Expression Compiler. In Proceedings
of the 9th Python in Science Conference (SciPy 2010), Austin, TX, USA, 28 June–3 July 2010.

31. Dauphin, Y.; Glorot, X.; Bengio, Y. Large-Scale Learning of Embeddings with Reconstruction
Sampling. In Proceedings of the 28th International Conference on Machine Learning (ICML),
Bellevue, WA, USA, 28 June–2 July 2011.

32. Chen, M.; Xu, Z.; Weinberger, K.; Sha, F. Marginalized Stacked Denoising Autoencoders.
In Proceedings of the Learning Workshop, Utah, UT, USA, 3–6 April 2012.

33. Chen, M.; Xu, Z.; Weinberger, K.; Sha, F. Marginalized Stacked Denoising Autoencoders for
Domain Adaptation. In Proceedings of the 29th International Conference on Machine Learning
(ICML), Edinburgh, Scotland, UK, 26 June–1 July 2012.

34. Glorot, X.; Bordes, A.; Bengio, Y. Domain adaptation for large-scale sentiment classification:
A deep learning approach. In Proceedings of the 28th International Conference on Machine
Learning (ICML), Bellevue, Washington, WA, USA, 28 June–2 July 2011.

35. Kittler, J.; Hatef, M.; Duin, R.P.W.; Matas, J. On combining classifiers. IEEE Trans Pattern Anal.
Mach. Intell. 1998, 20, 226–239.

36. Gonen, M.; Alpaydm, E. Multiple Kernel Learning Algorithms. J. Mach. Learn. Res. 2011,
12, 2211–2268.

37. Vedaldi, A.; Gulshan, V.; Varma, M.; Zisserman, A. Multiple Kernels for Object Detection.
In Proceedings of the International Conference on Computer Vision (ICCV), Kyoto, Japan,
27 September–4 October 2009.



Sensors 2015, 15 17231

38. Varma, M.; Babu, B.R. More generality in efficient multiple kernel learning. In Proceedings of the
International Conference on Machine Learning (ICML), Montreal, QC, Canada, 14–18 June 2009.

39. Cheng, Z.; Qin, L.; Ye, Y.; Huang, Q.; Tian, Q. Human Daily Action Analysis with Multi-view and
Color-Depth Data. In Proceedings of the ECCV 2012 Workshop on Consumer Depth Cameras for
Computer Vision, Firenze, Italy, 7–13 October 2012.

40. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2011, 2, 1–27.

41. Ni, B.; Wang, G.; Moulin, P. RGBD-HUDAAC: A color-depth video database for human daily
activity recognition. In Proceedings of the IEEE Workshop on Consumer Depth Cameras for
Computer Vision in Conjunction with ICCV, Barcelona, Spain, 12 November 2011.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	Feature Representation for Action Recognition
	Stacked Denoising Autoencoders
	Marginalised SDA for Multi-View Representation via Domain Adaptation

	Fusion of Multiple Camera Views
	Simple Fusion Strategies
	Concatenation of Features
	Sum of Classification Scores
	Product of Classification Scores

	Multiple Kernel Learning

	Experimental Conditions
	Benchmark Multi-View Datasets
	IXMAS Dataset
	IXMAS Actions Dataset
	ACT42 Dataset

	Implementation Details
	Real-Time Capacity of the Framework

	Results and Analysis
	IXMAS Dataset
	IXMAS Actions Dataset
	ACT42 Dataset

	Conclusions and Future Work

