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Abstract: An investigation on the nonlinear dynamic response and vibration of the imperfect 

laminated three-phase polymer nanocomposite panel resting on elastic foundations and 

subjected to hydrodynamic loads is presented in this paper. The formulations are based on the 

classical shell theory and stress function taking into account geometrical nonlinearity, initial 

geometrical imperfection and Pasternak type elastic foundation. Numerical results for dynamic 

response and vibration of the three-phase polymer composite panel are obtained by Runge-Kutta 

method. The influences of fibers and particles, material and geometrical properties, foundation 

stiffness, imperfection and hydrodynamic loads on the nonlinear dynamic response and 

nonlinear vibration of the three-phase composite panel are discussed in detail. 

Keywords: Nonlinear dynamic, vibration, laminated three-phase polymer nanocomposite panel, 
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1. Introduction 

Currently, composite materials have become indispensable in several applications, 

such as high-performance structures in many fields of civil, marine and aerospace 

engineering, among others. The mechanical behaviors of composite structures, such as 

bending, vibration, stability, buckling, etc., has attracted attention of many researchers. 

Rango et al. [1] presented the formulation of an enriched macro element suitable to 

analyze the free vibration response of composite plate assemblies. Bodaghi et al. [2] 

investigated thermo-mechanical analysis of rectangular shape adaptive composite plates 

with surface bonded shape memory alloy ribbons. Sahoo and Singh [3] used a new 

trigonometric zigzag theory to research the analysis of laminated composite and 
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sandwich plates. Samadpour et al. [4] studied nonlinear free vibration of thermally 

buckled sandwich plate with embedded pre-strained shape memory alloy fibers in 

temperature dependent laminated composite face sheets. Moleiro et al. [5] provided an 

assessment of layerwise mixed models using least-squares formulation for the coupled 

electromechanical static analysis of multilayered plates. Heydarpour et al. [6] examined 

the influences of centrifugal and Coriolis forces on the free vibration behavior of rotating 

carbon nanotube reinforced composite truncated conical shells. Lopatin and Morozov [7] 

considered free vibrations of a cantilever composite circular cylindrical shell. Burgueño 

et al. [8] presented approaches for modifying and controlling the elastic response of 

axially compressed laminated composite cylindrical shells in the far postbuckling 

regime. The vibration and damping characteristics of free–free composite sandwich 

cylindrical shell with pyramidal truss-like cores have been conducted by Yang et al. [9] 

using the Rayleigh–Ritz model and finite element method. 

Three-phase composite is a material consisted of matrix, the reinforced fibers and 

particles which have been investigated by Vanin and Duc [10]. Shen et al. [11] analyzed 

a coated inclusion of arbitrary shape embedded in a three-phase composite plate 

subjected to anti-plane mechanical and in-plane electrical loadings. Lin et al. [12] 

presented a solution of magnetoelastic stresses on a three-phase composite cylinder 

subjected to a remote uniform magnetic induction. Wu et al. [13] developed an effective 

model to bound the effective magnetic permeability of three-phase composites with 

coated spherical inclusions. There are several claims on the deflection and the creep for 

the three-phase composite laminates in the bending state [14]. These findings have 

shown that optimal three-phase composite can be obtained by controlling the volume 

ratios of fiber and particles. Afonso et al. [15] introduced a new general model to 

calculate the elastic properties of three-phase composites by means of closed-form 

analytical solutions is presented. Andrianov et al. [16] analyzed the three-phase 

composite model from the viewpoint of the asymptotic homogenization method. 

Recently, Duc et al. [17,18] studied nonlinear stability of the three-phase polymer 

composite plate under thermal and mechanical loads.  
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This paper presents an investigation on the nonlinear dynamic response and 

vibration of the imperfect laminated three-phase polymer nanocomposite panels resting 

on elastic foundations and subjected to hydrodynamic loads. These structures have 

similar shape with the hydrofoil currently under investigation and manufacturing in 

Vietnam. The formulations are based on the classical shell theory and stress function 

taking into account geometrical nonlinearity, initial geometrical imperfection and 

Pasternak type elastic foundation. Numerical results for dynamic response and vibration 

of the three-phase polymer composite panel are obtained by Runge-Kutta method.  

          It is noted that the present paper is improvement and supplement of the ideas in 

proceeding paper which we presented at the Third International Conference on 

Engineering Mechanics and Automation [22] (ICEMA 3-2014, Hanoi, October- 2014), 

including SEM structures images of two-phase 2D composite (glass fibers, polymer 

matrix) and the three-phase 2Dm composite (glass fibers, titanium oxide particles and 

polymer matrix) in order to improve the paper more convinced.  

2. Determination of the elastic modules of three-phase composite  

In this paper, the algorithm which is successfully applied in Ref. [17,18] to 

determine the elastic modules of three-phase composite has been used. According to this 

algorithm, the elastic modules of 3-phase composites are estimated using two theoretical 

models of the 2-phase composite consecutively: nDm = Om + nD [17,18]. This paper 

considers 3-phase composite reinforced with particles and unidirectional fibers, so the 

problem’s model will be : 1Dm=Om +1D.  Firstly, the modules of the effective matrix Om 

which is called “effective modules” are calculated. In this step, the effective matrix 

consists of the original matrix and added particles. It is considered to be homogeneous, 

isotropic and have two elastic modules. The next step is estimating the elastic modules 

for a composite material consists of the effective matrix and unidirectional reinforced 

fibers.   

Assuming that all the component phases (matrix, fiber and particles) are 

homogeneous and isotropic, we will use ,, ; , , ; , ,m a c m a c m a cE E E ν ν ν ψ ψ ψ  to denote Young’s 

modulus and Poisson ratio and volume fraction for the matrix, fiber and particles, 
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respectively. Following [17,18], the modules for the effective composite can be obtained 

as below 
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The elastic moduli for three-phase composite reinforced with unidirectional fiber 

are chosen to be calculated using Vanin’s formulas [20] 
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in which 

3 4 , 3 4 .a aχ ν χ ν= − = −  (6) 

To verify the validity of these equations, three-phase composite polymer made of 

polyester AKAVINA (made in Vietnam), glass fibers (made in Korea) and titanium 

oxide (made in Australia) with the properties shown in Table 1 was investigated [17,18].     

 

Table 1 

Properties of the component phases for three-phase composite 

Component phase Young modulus E Poisson ratio ν  

Matrix polyester AKAVINA (Vietnam) 1,43 GPa 0.345 

Glass fiber (Korea) 22 GPa 0.24 

Titanium oxide TiO2 

(Australia) 

5,58 GPa 0.20 

By using the SEM instrumentation at the Laboratory for Micro-Nano Technology, 

University of Engineering and Technology, Vietnam National University, Hanoi, Figs. 1 

and 2 show the images of fabricated samples of composite structures which are made in 

the Institute of Ship building, Nha Trang University. Fig. 1 illustrates a SEM image of 

2Dm composite polymer two-phase material (glass fibers volume fraction of 25% 

without particles) and Fig. 2 shows a SEM image of 2Dm composite polymer three-

phase material (glass fibers volume fraction of 25% and Titanium oxide particles volume 

fraction of 3%). Obviously, when the particles are doped, the air cavities significantly 

reduced and the material is finer. In other words, particles enhance the stiffness and the 

penetration resistance of the materials. 
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Fig 1. SEM image of 2Dm composite two-

phase material (fibers volume fraction is 

25% without particles). 

 

Fig. 2. SEM image of 2Dm composite 

three-phase material (fibers volume fraction 

is 25% and particles volume fraction is 

3%). 

3. Governing equations   

Consider a three-phase composite panel subjected to hydrodynamic loads: 

hydrodynamic lift 
1q  and drag 

2q  as shown in Fig. 3. The panel is referred to a Cartesian 

coordinate system x, y, z , where xy  is the mid-plane of the panel and z  is the thickness 

coordinator, -h / 2 z h / 2≤ ≤ . The radii of curvatures, length, width and total thickness of 

the panel are R , a , b  and h , respectively.  

 

Fig. 3. Geometry and coordinate system of three-phase composite panels on elastic 

foundations. 
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In this study, we assumed that the panel is thin, so the classical laminated shell 

theory (CLST) is used to establish governing equations and determine the nonlinear 

response of composite panels. In the case of thick panel, we must use higher-order shear 

deformation theories. By choosing of accurate theories can refer to [23].  

Taking into account the von Karman nonlinearity, the strain-displacement 

relations are 
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in which ,u v  are the displacement components along the ,x y  directions, respectively. 

Hooke law for a laminated composite panel is defined as  
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in which k  is the number of layers and 
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where θ  is the angle between the fiber direction and the coordinate system. The force 

and moment resultants of the laminated composite panels are determined by 
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Substitution of Eq. (7) into Eq. (9) and the result into Eq. (12) give the 

constitutive relations as 
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The nonlinear motion equation of the composite panels based on CLST with the 

Volmir’s assumption [19], 
2
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where 1 hρ ρ=  with ρ
 

is the mass density of composite panels and 1 2,q q
 

are 

hydrodynamic lift and drag forces which are experimentally determined and they depend 

on the velocities according to the Matveev’s formulas. These forces for the ship with 

length of 16.4 m, width of 3.4 m and volume of occupied water 12000 kg are tabulated in 

Table 2 [21].
 

Table 2  

The dependency of hydrodynamic lift and drag on the velocities 

Velocity  (m/s) Lift (N) Drag (N) 

10 110537 5550.8 

10.2 112730 5380.6 

10.4 114204 5165.6 

10.6 117836 5243.2 

10.9 121090 5130.6 

12 129529 4416.1 

Calculated from Eq. (13) 
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Substituting once again Eq. (16) into the expression of 
ij

M  in (13), then 
ij

M  into 

the Eq. (15c) leads to 
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( , )f x y  is stress function defined by 
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For an imperfect laminated composite panel, Eq. (18) are modified to        
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in which *( , )w x y  is a known function representing initial small imperfection of the 

panel.  

The geometrical compatibility equation for an imperfect composite panel is 

written as 

,0 0 0 2 * * *
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From the constitutive relations (16) in conjunction with Eq. (20) one can write 
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Setting Eq. (23) into Eq. (22) gives the compatibility equation of an imperfect 

composite panel as  
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Eqs. (21) and (24) are nonlinear equations in terms of variables w  and f  and they 

can be used to investigate the stability of  thin composite panels on elastic foundations 

subjected to hydrodynamic loads. 

4.  Nonlinear dynamical analysis 

A three-phase composite panel considered in this paper is assumed to be simply 

supported and subjected to lift 
1q , drag 

2q  forces and axial compression of intensities 
xP  

and 
y

P  respectively at its cross section. Thus the boundary conditions are  

0
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w N M= = = , 
x x
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0
xy y
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y y
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The approximate solutions of 
*,w w  and f  satisfying boundary condition (26) are 

assumed to be [17,18] 
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w w W h x yµ λ δ=  (27a) 

1 2 3

2 2

4 0 0

cos 2 cos2 sin sin

1 1
os os ,

2 2

m n m n

m n x y

f A x A y A x y

A c xc y N y N x

λ δ λ δ

λ δ

= + +

+ + +
 (27b) 

/
m

m aλ π= , / ,
n

n bδ π=  W  is amplitude of the deflection and µ  is imperfection 

parameter. The coefficients ( 1 4)
i

A i = ÷  are determined by substitution of Eqs. (27a),  

(27b) into Eq. (24) as 

2 2

1 2* 2 * 2

22 11

2 4 1 3 2 3 1 4

3 42 2 2 2

2 1 2 1

1 1
( 2 ), ( 2 ),

32 32

( ) ( )
, ,

n m

m n

A W W h A W W h
A A

F F F F F F F F
A W A W

F F F F

δ λ
µ µ

λ δ
= + = +

− −
= =

− −

                                                       (28) 

where ( 1 4)iF i = ÷  are given in Appendix A.  

Subsequently, substitution of Eqs. (27a), (27b) into Eq. (21) and applying the 

Galerkin procedure for the resulting equation yield 

4 4 2 22 4 1 3 2 4 1 3 2 4 1 3 2 3 1 4

1 2 3 42 2 2 2 2 2 2 2

2 1 2 1 2 1 2 1

2

4 4 2 2 2 22 3 1 4 2 4 1 3

5 6 7 8 1 22 2 2 2

2 1 2 1

1 2*

22

( ) ( ) ( ) ( )
[

4

( ) ( )
( )]

2 1 1

3

m n m n

m

m n m n m n

m n

F F F F F F F F F F F F F F F Fab
P P P P

F F F F F F F F

F F F F F F F F
P P P P k k W

F F F F R

P P
A A

λ δ λ δ

λ
λ δ λ δ λ δ

λ δ

− − − −
+ + −

− − − −

− −
− + + + − − − +

− −

− + ( )

( )( ) ( )

( )( )

* *

11 22

4 4 2 4 1 3

* * 2 2

22 11 2 1

2

2 2 1 2 1

2

1
2

6

( )1 1 8
2 W

64 3

4( ) 4
,

4 4

n

m

n m m n

y

x m y n

m n m n

W W h
RA

F F F Fab
W W h W h W h

A A F F

Pabh q q h ab W
P P W h

R t

δ
µ

λ

δ λ µ µ λ δ µ

ρ
λ δ µ

λ δ λ δ

  
− +  

  

  −
− + + + + + 

− 

+ ∂
+ + + + − =

∂

  (29) 

where ,m n  are odd numbers. This basic equation is used to investigate the nonlinear 

dynamic response of three-phase polymer composite panels under hydrodynamic loads. 

The initial conditions are assumed as (0) 0, (0) 0W W
•

= = . The nonlinear equation (29) 

can be solved by the Runge-Kutta method. 
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From Eq. (29), the fundamental frequencies of a perfect panel can be determined 

approximately by an explicit expression 

1 2

1

( )
,

mn

b b
ω

ρ

+
= −     (30) 

where ( 1,2)ib i =  are given in Appendix A.  

5. Results and Discussions 

The results presented in this section from Eq. (29) correspond to deformation 

mode with half-wave numbers 1m n= = . 

To determine the influences of fibers and particles, material and geometrical 

properties, foundation stiffness, imperfection and hydrodynamic loads on the nonlinear 

dynamic response of the three-phase composite panel, we consider the five-layers 

symmetric panel with stacking sequence of [45/-45/0/-45/45]. The mass density of the 

panel is 
3

1550 / .kg mρ =  

Table 3 shows the effects of particles volume fraction, fiber volume fraction and 

elastic foundations on natural frequencies of the three-phase composite polymer panel. It 

can be seen that the value of the natural oscillation frequency increases when the values 

1
k  and 

2
k  increase. Furthermore, the Pasternak elastic foundation influences on the 

natural oscillation frequency larger than the Winkler foundation. The natural frequencies 

of the panels observed to be dependent on the particles volume fraction, fiber volume 

fraction, they decreases when increasing the particles volume fraction 
c

ψ  and fiber 

volume fraction 
a

ψ   and the effect of fiber to natural frequency is stronger than particle.  

Table 3 

Effects of particles volume fraction, fiber volume fraction and elastic foundations on 

natural frequencies of the three-phase composite polymer panel 

a
ψ  

c
ψ  

( / )L rad sω  

( )1 2
, (0,0)k k =  ( )1 2

, (0.01,0.002)k k =  

0.2 0 3.3258e3 4.8564e3 

0.2 0.1 3.3038e3 4.8414e3 
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0.2 0.2 3.2981e3 4.8375e3 

0.2 0.3 3.2763e3 4.8255e3 

0 0.2 3.4884e3 5.1195e3 

0.1 0.2 3.3975e3 4.9695e3 

0.3 0.2 3.1015e3 4.7057e3 

Figs. 4 and 5 represent the effect of the particles and the fibers volume fraction on 

dynamic response of three-phase polymer composite panel. We can realize that the 

increase of the particles and fibers density will decrease the amplitude of the panel. 

However, the effects of the fibers are stronger.  

Figs. 6, 7 and 8 illustrate the effect of geometric factors / , / , /b a b h R h  on 

nonlinear dynamic response of three-phase laminated polymer composite panel. From 

these figures, the amplitude of the panel increases when increasing the ratio /b a  and 

decreasing the ratios / , /b h R h .  

Fig. 4. Effects of particles volume fraction 

cψ  on the dynamic response of three-phase 

polymer composite panel. 

Fig. 5. Effects of fiber volume fraction aψ  

on the dynamic response of three-phase 

polymer composite panel. 
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Fig. 6. Effect of /b a  ratio on nonlinear 

dynamic response of three-phase polymer 

composite panel. 

Fig. 7. Effect of /b h  ratio on nonlinear 

dynamic response of three-phase 

polymer composite panel. 

Fig. 8. Effect of /R h  ratio on nonlinear 

dynamic response of three-phase 

polymer composite panel. 

Fig. 9. Effect of the linear Winkler 

foundation on nonlinear dynamic response 

of three-phase polymer composite panel. 
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Figs. 9 and 10 show the effect of elastic foundation stiffness on the nonlinear 

dynamic response of three-phase polymer composite panel. It is clear that the panel 

fluctuation amplitude decreases when the stiffnesses 
1

k  and 
2

k  increase, namely, the 

amplitude of the panel decreases when it rests on elastic foundations, and the beneficial 

effect of the Pasternak foundation is better than the Winkler one. 

Fig. 11 shows the effect of velocity on nonlinear dynamic response of three-phase 

polymer composite panel. It can be seen that the three-phase polymer composite panel 

fluctuation amplitudes increase when velocity increases. Fig. 12 shows the effect of pre-

loaded axial compression 
y

P  on the nonlinear dynamic response of the panel. This figure 

also indicates that the nonlinear dynamic response amplitude of the panel increases when 

the value of the pre-loaded axial compressive force 
y

P  increases. 

Fig. 10. Effect of the Pasternak foundation 

on nonlinear dynamic response of three-

phase polymer composite panel. 

Fig. 11. Nonlinear dynamic responses of 

three-phase polymer composite panel with 

different velocities. 
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Fig. 12. Effect of pre-loaded axial 

compression 
y

P  on nonlinear response of 

three-phase polymer composite panel. 

Fig. 13. Effect of imperfection parameter 

µ  on nonlinear dynamic response of three-

phase polymer composite panel. 

Fig. 13 shows the effect of initial imperfection on the dynamic response of three-

phase polymer composite panel. Obviously, the amplitude of the panel will increase and 

lose the stability if the initial imperfection increases.  

Fig. 14 compares the nonlinear dynamic response of three-phase polymer 

composite panel in two cases: five-layers asymmetric panel with the stacking sequence 

of [0/45/45/-45/-45] and five-layers symmetric panel with the stacking sequence of 

[45/-45/0/-45/45]. This comparison is performed on panels with the same plies 

orientations and the same thickness. Clearly, the amplitude of asymmetric panel is 

higher than symmetric panel. 
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Fig. 14. Nonlinear dynamic response of three-phase polymer composite panel with 

different fiber angles. 

6. Conclusions  

This paper presented an analytical approach to investigate the nonlinear dynamic 

response and vibration of the imperfect laminated three-phase polymer nanocomposite 

panel resting on elastic foundations and subjected to hydrodynamic loads. The 

formulations are based on the classical laminated shell theory (CLST) and stress function 

taking into account geometrical nonlinearity, initial geometrical imperfection and 

Pasternak type elastic foundation. Numerical results for dynamic response and vibration 

of the three-phase polymer composite panel are obtained by Runge-Kutta method. The 

influence of fibers and particles volume fraction, material and geometrical properties, 

foundation stiffness, imperfection and hydrodynamic loads on the nonlinear dynamic 

response and nonlinear vibration of the three-phase composite panel are discussed in 

detail. 

Appendix A 

* 4 * 4 2 2 * 3 * 3

1 22 11 1 2 26 16

2

* 4 * 4 2 2 3 3

3 21 12 2 4 3 4

, 2 2 ,

, ,

m n m n m n m n

m

m n m n m n m n

F A A E F A A

F B B E F E E
R

λ δ λ δ λ δ λ δ

λ
λ δ λ δ λ δ λ δ

= + + = +

= − − − = +
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( )

4 4 2 22 4 1 3 2 4 1 3 2 4 1 3 2 3 1 4

1 1 2 3 42 2 2 2 2 2 2 2

2 1 2 1 2 1 2 1

2

4 4 2 2 2 22 3 1 4 2 4 1 3

5 6 7 8 1 22 2 2 2

2 1 2 1

2 2

2

( ) ( ) ( ) ( )

( ) ( )
( ),

.

m n m n

m

m n m n m n

x m y n

F F F F F F F F F F F F F F F F
b P P P P

F F F F F F F F

F F F F F F F F
P P P P k k

F F F F R

b h P P

λ δ λ δ

λ
λ δ λ δ λ δ

λ δ

− − − −
= + + −

− − − −

− −
− + + + − − − +

− −

= +
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