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Reading times on words in a sentence depend on the amount of information the words convey, which can
be estimated by probabilistic language models. We investigate whether event-related potentials (ERPs),
too, are predicted by information measures. Three types of language models estimated four different
information measures on each word of a sample of English sentences. Six different ERP deflections were
extracted from the EEG signal of participants reading the same sentences. A comparison between the
information measures and ERPs revealed a reliable correlation between N400 amplitude and word sur-
prisal. Language models that make no use of syntactic structure fitted the data better than did a
phrase-structure grammar, which did not account for unique variance in N400 amplitude. These findings
suggest that different information measures quantify cognitively different processes and that readers do
not make use of a sentence’s hierarchical structure for generating expectations about the upcoming word.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

Much recent computational work in psycholinguistics has
called upon insights from information theory to bridge between
psycholinguistic experiments and statistical models of language.
Jaeger (2010), for example, argues that information-theoretic con-
siderations can explain speakers’ structural choices in sentence
production. Likewise, in sentence comprehension, each word
conveys a certain amount of information and – to the extent that
language comprehension is information processing – this amount
should be predictive of how much cognitive effort is required to
process the word (Hale, 2006; Levy, 2008). The amount of informa-
tion conveyed by a word (or word information for short) can be
computed from probabilistic models of the language, whereas
the amount of cognitive effort involved in processing a word can
be observed, for example by measuring word reading times.
Comparisons between word-information values and reading times
have indeed revealed that more informative words take longer to
read (e.g., Frank, 2013; Smith & Levy, 2013).

Studies that investigate how word information relates to reading
time are not necessarily concerned with explaining any particular
psycholinguistic phenomenon. Rather, they tend to apply large-
scale regression analyses to uncover the general relation between
quantitative predictions and reading times on each word of a text
corpus. In the current paper, we apply such a parametric (non-fac-
torial) experimental design to investigate the effect of word infor-
mation on the ERP response during sentence reading. That is, we
bridge between computational, probabilistic models of language
processing and the neural computations involved in sentence
comprehension.

1.1. Quantifying word information

The rapid serial visual presentation procedure that is typical for
EEG reading studies (and was also applied in our experiment)
enforces that all words are read in strictly serial order. Hence,
the comprehension process for a k-word sentence can be assumed
to comprise a sequence of comprehension events for k words:
w1;w2; . . . ;wk, or w1...k for short. The different measures of informa-
tion that have been put forth as cognitively relevant to sentence
processing are all rooted in a probabilistic formalization of such
word-by-word comprehension.

After the first t words of the sentence, w1...t , have been pro-
cessed, the identity of the upcoming word, wtþ1, is still unknown
and can therefore be viewed as a random variable. The surprisal
(or ‘self information’) of the outcome of a random variable is
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defined as the negative logarithm of the outcome’s probability,
which in this case is the probability of the actual next word wtþ1

given the sentence so far:

surprisal ðwtþ1Þ ¼ � log Pðwtþ1jw1...tÞ; ð1Þ

where the base of the logarithm forms an arbitrary scaling factor
(we use base-e). Informally, the surprisal of a word can be viewed
as a measure of the extent to which its occurrence was unexpected.

The symbols w in Eq. (1) do not need to stand for actual words.
Instead, they may represent the words’ syntactic categories (i.e.,
their parts-of-speech; PoS), in which case Eq. (1) formalizes the
unexpectedness of the encountered PoS given the PoS-sequence
corresponding to the sentence so far. This does away with any
(lexical) semantics and may thereby reveal purely syntactic effects
(cf. Frank & Bod, 2011).

Several authors have put forth theoretical arguments for surpris-
al as a measure of cognitive processing effort or predictor of word
reading time (Hale, 2001; Levy, 2008; Smith & Levy, 2008; Smith &
Levy, 2013) and it is indeed well established by now that reading
times correlate positively with the surprisal of words (Fernandez
Monsalve, Frank, & Vigliocco, 2012; Fossum & Levy, 2012; Frank,
2014; Frank & Thompson, 2012; Mitchell, Lapata, Demberg, &
Keller, 2010; Roark, Bachrach, Cardenas, & Pallier, 2009; Smith &
Levy, 2013) as well as with the surprisal of parts-of-speech
(Boston, Hale, Patil, Kliegl, & Vasishth, 2008; Boston, Hale,
Vasishth, & Kliegl, 2011; Demberg & Keller, 2008; Frank & Bod,
2011).

A second important concept from information theory is entropy
(Shannon, 1948), a measure of the uncertainty about the outcome
of a random variable. For example, after processing w1...t , the uncer-
tainty about the remainder of the sentence is quantified by the
entropy of the distribution of probabilities over the possible con-
tinuations wtþ1...k (with k > t). This entropy is defined as

HðWtþ1...kÞ ¼ �
X

wtþ1...k

Pðwtþ1...kjw1...tÞ log Pðwtþ1...kjw1...tÞ; ð2Þ

where Wtþ1...k is a random variable with the particular sentence
continuations wtþ1...k as its possible outcomes. When the next word
or part-of-speech, wtþ1, is encountered, this will usually decrease
the uncertainty about the rest of the sentence, that is, HðWtþ2...kÞ
is generally smaller than HðWtþ1...kÞ. The difference between the
two is the entropy reduction, which will be denoted DH. Entropy is
strongly reduced when moving from a situation in which there
exists many possible, low-probability continuations to one in which
there are few, high-probability continuations. Informally, entropy
reduction can be said to quantify how much ambiguity is resolved
by the current word or PoS, at least, to the extent that disambigua-
tion reduces the number of possible sentence continuations.

Hale (2003, 2006, 2011) argues that entropy reduction quanti-
fies the amount of cognitive processing effort during sentence
comprehension. However, DH as defined here is a simplification
of Hale’s original proposal, which relies on syntactic structures
rather than mere word strings (see Frank, 2013). Reading times
are indeed predicted by DH, both when defined over words
(Frank, 2013) and over parts-of-speech (Frank, 2010), even after
factoring out surprisal. Another variation of entropy reduction
has also been shown to correlate with reading times (Wu,
Bachrach, Cardenas, & Schuler, 2010).

To summarize, we use four definitions of the amount of
information conveyed: the surprisal of words or their PoS, and
the entropy reduction due to words or their PoS.

1.2. The present study

Our current objectives are twofold. First, we wish to investigate
whether a relation between word information and ERP amplitude
indeed exists. We looked at six different ERP components, three
of which are generally viewed as indicative of lexical, semantic,
or conceptual processing; these are the N400, and (Early) Post-
N400 Positivity (EPNP and PNP) components. The other three have
been claimed to reflect syntactic processing: (Early) Left Anterior
Negativity (ELAN and LAN) and P600. Because we have defined
information not only for each word in a sentence but also for the
word’s syntactic category, ERP components that are related to
either lexical or syntactic processing can potentially be distin-
guished. Likewise, we compare the surprisal and entropy reduction
measures. In particular, an effect of word surprisal is expected on
the size of the N400, a negative-going deflection with a centro-
parietal distribution, peaking at about 400 ms after word onset.
Previous work (Dambacher, Kliegl, Hofmann, & Jacobs, 2006) has
shown that this component correlates with cloze probability,
which can be taken as an informal estimate of word probability,
based on human judgments rather than statistical models. In
addition, Parviz, Johnson, Johnson, and Brock (2011) estimated
surprisal on sentence-final nouns appearing in either low- or
high-constraining sentence context that made the nouns less or
more predictable. They found that the N400 (as measured by
MEG) was sensitive to surprisal. However, no effect of surprisal
remained after factoring out context constraint.

It is much harder to derive clear predictions for the other ERP
components and alternative notions of word information. We
return to this issue in Section 4.2, which discusses why relations
between particular information measures and ERP components
may be expected on the basis of the current literature.

Second, the use of model-derived rather than cloze probabilities
allows us to compare the explanatory value of different probabilistic
language models. Any such model can estimate the probabilities
required to compute surprisal and entropy, at least in principle.
However, models differ in their underlying assumptions about the
linguistic structures and mechanisms involved in sentence compre-
hension. A model whose assumptions are closer to cognitive reality
should give rise to information measures that are more predictive of
experimental data. Hence, the most plausible cognitive mechanisms
for sentence processing can be identified by comparing different
models’ abilities to explain the ERPs. This approach to selection
among sentence comprehension models has previously been
applied successfully using reading time data from eye tracking stud-
ies (Frank & Bod, 2011; Frank & Thompson, 2012). Here, we compare
three model types that are based on very different assumption:
n-gram models, which do not embody any cognitive or linguistic
theory; recurrent neural networks, which are domain-general
temporal learning and processing systems; and phrase-structure
grammars, which capture hierarchical syntactic structure.
2. Methods

2.1. EEG data collection

2.1.1. Participants
Twenty-four healthy, adult volunteers (10 female, mean age

28.0 years) from the UCL Psychology subject pool took part in the
reading study. All were right handed and native speakers of
English. They were paid £15 for their participation.
2.1.2. Materials
As the current study aimed at investigating the general relation

between word information and ERP amplitudes, the sentence
stimuli were not intended to manipulate any particular linguistic
construction or psychological factor. Rather, they were sampled
to be representative of written British English. The use of naturally
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occurring materials rather than hand-crafted experimental stimuli
increases the generalizability of results.

We took the 205 sentences (comprising 1931 word tokens)
from the UCL corpus of reading times (Frank, Fernandez
Monsalve, Thompson, & Vigliocco, 2013) for which eye-tracking
data are available. These sentences, which came from three little
known novels, do not contain any syntactic violations, semantic
anomalies, or other unnatural use of language. One hundred and
ten (54%) of the sentences were paired with a yes/no comprehen-
sion question to ensure that participants read attentively. For
further details, including the list of stimuli, see Frank et al. (2013).

2.1.3. Procedure
The sentences were presented in random order. Each sentence’s

presentation was preceded by a centrally located fixation cross. As
soon as the participant pressed a key, the cross was replaced by the
sentence’s first word, which was then automatically replaced by each
subsequent word. Words were always centrally located on the mon-
itor, printed in 24-point Courier New font, in black letters on a 10%
gray background. Word presentation duration (ignoring the variable
delay caused by the screen refresh rate) equalled 190þ 20m ms,
where m is the number of characters in the word, including any
attached punctuation. Such word-length dependent presentation
duration allows for more natural reading compared to a fixed presen-
tation rate (Nieuwland & Van Berkum, 2006). After the word disap-
peared, there was a 390 ms interval before appearance of the next
word, making the theoretically shortest SOA (i.e., following one-letter
words) equal to 390þ 190þ 20 ¼ 600 ms. In reality, the screen-
refresh delay yielded a minimum SOA of 627 ms (mean: 700 ms;
SD: 34 ms). A technical malfunction resulted in much longer than
intended SOA at three occasions. Data on the corresponding sen-
tences (one for each of three subjects) was not analyzed.

The comprehension question (if any) was presented directly
after offset of the sentence-final word. The next sentence’s fixation
cross appeared as soon as the subject answered the question, or
after key press if there was no question. All participants answered
at least 80% of the comprehension questions correctly.

Participants were urged to minimize blinks, eye movements,
and head movements during sentence presentation. They were
encouraged to take a few minutes break after reading 50, 100,
and 150 sentences. A complete session, including fitting of the
EEG cap, took approximately 1.5 h.

2.1.4. EEG recording and preprocessing
The EEG signal was recorded continuously at a rate of 500 Hz

from 32 scalp sites (montage M10, see Fig. 3 and www.easycap.de)
and the two mastoids relative to a midfrontal site using silver/
silver-chloride electrodes with impedances below 5 kX. Vertical
eye movements were recorded bipolarly from electrodes above
and below the right eye, and horizontal eye movements from elec-
trodes at the outer canthi. Signals were band-pass filtered online
between 0.01 and 35 Hz. Offline, signals were filtered between
0.05 and 25 Hz (zero phase shift, 96 dB roll-off), downsampled to
250 Hz, and re-referenced to the average of the two mastoids,
reinstating the frontal electrode site.

The signal was epoched into trials ranging from 100 ms before
until 924 ms after each word onset. Any trial with a peak ampli-
tude of over 100 lV was removed. Further artifacts (mostly due
to eye blinks) were identified by visual inspection and correspond-
ing trials were removed.

2.2. Estimating word information

2.2.1. Training corpus
The conditional probabilities in Eqs. (1) and (2), required to

compute surprisal and entropy, can be accurately estimated by
any probabilistic language model that is trained on a large text cor-
pus. Our corpus consisted of 1.06 million sentences from the writ-
ten-text part of the British National Corpus (BNC), selected by
taking the 10,000 most frequent word types from the full BNC
and then extracting all BNC sentences that contain only those
words. The corresponding parts-of-speech were obtained by apply-
ing the Stanford parser (Klein & Manning, 2003) to the selected
BNC sentences, resulting in syntactic tree structures where each
word token is assigned one of 45 PoS labels (following the Penn
Treebank PoS-tagging guidelines; Santorini, 1991).

2.2.2. Language models
We applied three model types that vary greatly in their under-

lying assumptions: n-gram models (also known as Markov mod-
els), recurrent neural networks (RNNs), and probabilistic phrase-
structure grammars (PSGs). An n-gram model estimates the prob-
ability of a word by taking only the previous n� 1 words into
account. That is, Pðwtþ1jw1...tÞ is reduced to Pðwtþ1jwt�nþ2...tÞ.
Because of this radical simplification, n-gram models are not con-
sidered cognitively or linguistically realistic. Nevertheless, they
can be remarkably accurate because the n-gram probabilities can
be estimated efficiently and accurately by simply counting the fre-
quencies of very short words strings wt�nþ2...t and wt�nþ2...tþ1 in the
training corpus.

The SRILM software (Stolcke, 2002) was used to train three n-
gram models (with n = 2, 3, and 4) on the 1.06 million selected
BNC sentences, using modified Kneser–Ney smoothing (Chen &
Goodman, 1999). Three more models (with n = 2, 3, and 4) were
trained on the sentences’ PoS. The simplicity of n-gram models
makes it feasible to train them on very large data sets, so three
additional models (again with n ¼ 2; 3, and 4) were obtained by
training on the 4.8 million sentences of the full BNC.

The RNN is like an n-gram model in the sense that it is trained
on unanalyzed word sequences rather than syntactic structures.
However, it is sensitive to all of the sentence’s previous words,
and not just the previous n� 1, because it uses an internal layer
of units to integrate over the entire word sequence. It does so by
combining the input representing the current word wt with the
current state of the internal layer, which itself depends on the
entire sequence of previous inputs w1...t�1 (see Elman, 1990). Such
systems have been widely applied to cognitive modeling of tempo-
ral processing, also outside the linguistic domain, because (unlike
the PSG model) they do not rely on any particular linguistic
assumption. For example, they do not assume syntactic categories
or hierarchical structure.

The RNN model was identical in both architecture and training
procedure to the one presented by Fernandez Monsalve et al.
(2012) and Frank (2013), except that the current RNN received a
larger number of word types and sentences for training. Its output
after processing the sentence-so-far w1...t is a probability distribu-
tion Pðwtþ1jw1...tÞ over all word types. That is, at each point in a sen-
tence, the network estimates the probability of each possible
upcoming word.

The number of different parts-of-speech is much smaller than
the number of word types (45 versus 10,000). Consequently, a
much simpler RNN architecture (Elman’s, 1990, simple recurrent
network) suffices for modeling PoS-sequences.

To obtain a range of increasingly accurate models, nine training
corpora of different sizes were constructed by taking increasingly
large subsets of the training sentences, such that the smallest sub-
set held just 2000 sentences and largest contained all 1.06 million.
The networks were trained on each of these, as well as on all
1.06 million BNC sentences twice, yielding a total of ten RNN
models trained on words and ten trained on parts-of-speech.

Unlike n-gram and RNN models, PSGs are based on linguistic
insights about the hierarchical syntactic structure of sentences. A

http://www.easycap.de
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probabilistic grammar assigns possible structures to a sentence, as
well as probabilities to the structures. From these follow the prob-
abilities of the sentence’s words.

The training corpus for the PSGs was the set of selected BNC
sentences’ syntactic structures, as assigned by the Stanford par-
ser. A PSG was extracted from each of the nine, incrementally
large subsets of the selected BNC sentences (as explained
above)1 by Roark’s (2001) PSG-induction algorithm. Nine PSGs
defined over PoS-strings were obtained by the same procedure,
except that the words were removed from the training sentences’
syntactic structures, leaving the parts-of-speech to play the role of
words.

2.2.3. Surprisal and linguistic accuracy
After training, the language models were presented with the

same 205 sentences as read by the participants in our EEG study.
Generating surprisal values for these sentences is straightforward
because all three model types directly output a probability esti-
mate for each word.

A particular model’s surprisal estimates also serve to quantify
how well that model has captured the statistical patterns of Eng-
lish sentences: Good language models form accurate expecta-
tions about the upcoming words so generally assign high
probability (i.e., low surprisal) to words that actually appear.
Hence, we take the average log-transformed word probability
over the experimental sentences as a measure of a model’s lin-
guistic accuracy (Frank & Bod, 2011).2 Although this measure says
nothing about the model’s ability to account for ERP data, we
would expect models with higher linguistic accuracy to provide
better fit to the ERP amplitudes because such models more closely
capture the linguistic knowledge of our native English speaking
participants.

2.2.4. Entropy reduction
The word-sequence probabilities required for computing

entropy (Eq. (2)) follow from the next-word probabilities by appli-
cation of the chain rule: Pðwtþ1...kjw1...tÞ ¼

Qk
i¼1Pðwtþijw1...tþi�1Þ.

However, the number of word sequences grows exponentially with
sequence length, resulting in a combinatorial explosion when
attempting to compute all the Pðwtþ1...kjw1...tÞ for anything but very
short sequences wtþ1...k. The RNN model fares better in this respect
than the other two model types because it computes the probabil-
ity distribution Pðwtþ1jw1...tÞ over all word types in parallel. This
distribution can be fed back as input into the network to get the
distribution at t þ 2, etc. For this reason, only the RNN model
was used to estimate entropy. Following Frank (2013), the compu-
tation was simplified by retaining only the 40 most probable word
sequences when feeding back the probability distribution (no such
restriction applied to the computation of PoS entropy). Further-
more, the ‘lookahead distance’ was restricted to k 6 4, that is, no
more than four upcoming words or PoS (i.e., sequences wtþ1...tþ4,
or shorter) are taken into account when computing entropy.

It has been shown that this RNN-based simplified entropy
reduction measure suffices to explain variance in word reading
times over and above what is already explained by surprisal.
However, it strongly depends on the value of k: In an analysis of
DH-values defined over words, Frank (2013) found that larger k
resulted in stronger correlation with reading time, reaching
statistical significance when k > 2.
1 The smallest subset held 3000 rather than 2000 sentences, because not all
experimental sentences could be parsed by a grammar trained on the 2000-sentence
set.

2 To be precise, we take the average over all words in the experimental sentences,
weighted by the number of times the word takes part in the analysis of the ERP data.
The models’ linguistic accuracies are presented in the supplementary materials.
2.3. Data analysis

2.3.1. ERP components
Six ERP components of interest were chosen on the basis of the

literature on ERP studies using visually presented sentences.
Table 1 shows the time window (relative to word onset) and sites
assigned to each component, as well as references to the studies on
which these assignments were based. Because of differences in EEG
cap montage, some of the selected electrode locations only
approximated those from the cited studies. Also, the time window
of the PNP component was reduced to 600–700 ms (from Thornhill
and Van Petten’s 600–900 ms) so that the PNP resulting from the
current word is only minimally (if at all) affected by the upcoming
word that can appear as soon as 627 ms after the current word’s
onset. The ERP amplitude for a particular component, subject,
and word token was defined as the average scalp potential over
the ERP’s time window and electrode sites as listed in Table 1.

Our interest in ERP effects at each word, in combination with
the uncontrolled nature of the stimuli, makes it difficult to prevent
large differences in EEG baselines. Simply subtracting baseline
ERPs from the amplitudes can cause artifacts, in particular for early
components (see, e.g., Steinhauer & Drury, 2012). One safe and effi-
cient method for mitigating the baseline problem is to reduce the
correlation between the ERP baselines and amplitudes by applying
an additional high-pass filter with a sufficiently high cut-off
frequency. We compared the correlations between ERP baselines
(determined by averaging over each component’s electrodes in
the 100 ms leading up to word onset) and amplitudes after
applying 0.25 Hz, 0.33 Hz, or 0.50 Hz high-pass filters,3 or no addi-
tional filter. As can be seen in the online supplementary materials,
the 0.50 Hz filter yielded the weakest correlation overall, so this
filter was used to compute the amplitudes for subsequent data
analysis.

Our statistical analyses assume normally distributed data, but
the distribution of amplitudes was far from normal for the ELAN,
LAN, EPNP, and PNP components: Their excess kurtosis ranged
from +1.33 to +6.21 where values between �1 are generally con-
sidered acceptable. Therefore, the modulus transformation (John
& Draper, 1980) was applied to these components, bringing all
excess kurtosis values below 1. All six ERP amplitude distributions
were nearly symmetrical (skewness was between �0:149 and
þ0:025) so their divergence from normality is negligible.
2.3.2. Quantifying fit to ERP amplitude
Words attached to a comma, clitics, sentence-initial, and sen-

tence-final words were discarded from further analysis, leaving a
grand total of 31,997 analyzed data points per investigated ERP
component.

The ERP amplitudes were not averaged over subjects or items.
Instead, variance among subjects and among items is taken into
account by fitting a linear mixed-effects regression model to each
set of ERP amplitudes (the same approach was applied by
Dambacher et al., 2006). These regression models included as stan-
dardized covariates: log-transformed word frequency, word length
(number of characters), word position in the sentence, sentence
position in the experiment, and all two-way interactions between
these. In addition, there were by-subject and by-item random
intervals, as well as the maximal by-subject random slope struc-
ture (as advocated by Barr, Levy, Scheepers, & Tilly, 2013).
3 The filters were applied to the continuous EEG signal during each sentence
presentation, from 100 ms before the first word onset up to 924 ms after the
sentence-final word onset. The rest of the signal was not included because
participants were encouraged to blink and move between sentence presentations,
causing many artifacts. Since a sentence’s first and last word are not included in the
analysis, there is no risk of edge-effects from filtering each sentence individually.



Table 1
Definitions of ERP components: time windows and electrode site numbers (montage
M10). See Fig. 3 for approximate scalp locations.

Name Time
window
(ms)

Electrode
sites

Reference

ELAN 125–175 8, 21, 22, 33, 34, 37, 49, Gunter et al.
(1999)

LAN 300–400 8, 18, 33, 34, 48, 49 Kaan and Swaab
(2003a)

N400 300–500 1, 14, 24, 25, 26, 29, 30, 31, 41, 42,
44, 45

Dambacher et al.
(2006)

EPNP 400–600 35, 36, 37, 49, 50 Thornhill and Van
Petten (2012)

P600 500–700 1, 12, 14, 16, 24, 25, 26, 29, 30, 31,
39, 40, 41, 42, 44, 45, 46, 47

Van Berkum et al.
(2007)

PNP 600–700 1, 8, 10, 18, 21, 22, 24, 31, 33, 34 Thornhill and Van
Petten (2012)
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As mentioned above, no baseline correction was applied
because of the risk of introducing artifacts. Instead, ERP baseline
is also included as a factor in the regression model. This factors
out any systematic difference in ERP amplitude that is already
present pre-stimulus, whereas no post-stimulus ‘effects’ can be
artificially introduced.

The regression models so far do not include a factor for word
information. When including as a predictor the estimates of word
surprisal under a particular language model, the regression mod-
el’s deviance decreases. The size of this decrease is the v2-statistic
of a likelihood-ratio test for significance of the surprisal effect and
is taken as the measure of the fit of surprisal to the ERP amplitudes.
This definition equals what Frank and Bod (2011) call ‘psychologi-
cal accuracy’ in an analysis of reading times. The same method is
applied for obtaining measures for quantifying the fit of entropy
reduction and PoS surprisal, with one caveat: The regression mod-
els already include a factor for word surprisal (estimated by the 4-
gram model trained on the full BNC because this model had the
highest linguistic accuracy). Consequently, the v2 measures for
entropy reduction and PoS surprisal quantify their fit over and
above what is already explained by word surprisal.
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Fig. 1. Potential effects arising from exploratory analysis: Fit of word surprisal to
LAN (top left) and N400 (top right) amplitudes; and fit of word entropy reduction to
EPNP (bottom left) and PNP (bottom right) amplitudes, all as a function of the
linguistic accuracy of the model that gave rise to the information measures. Dotted
lines indicate the critical value of the v2-statistic for a ¼ 0:05. This is merely
intended to provide an impression of the scale of v2 and should not be interpreted
as indicating statistical significance, because significance has no meaning in an
exploratory analysis.
2.3.3. Exploratory and confirmatory analyses
We have no strong expectations about which information mea-

sure correlates with which ERP component, apart from the relation
between word surprisal and the N400. Therefore, the current study
is mostly exploratory, which means that it suitable for generating
hypotheses but not for testing them (cf. De Groot, 2014). Strictly
speaking, conclusions can only be drawn after a subsequent confir-
matory study with new data. To be able to draw conclusions from
our data, we divide the full data set into two subsets: the Explor-
atory Data, comprising only the 12 odd-numbered subjects; and
the Confirmatory Data, comprising the 12 even-numbered sub-
jects. The Exploratory Data is used to identify the information mea-
sures and ERP components that are potentially related. Only these
potential effects are then tested on the Confirmatory Data. As
potential effects, we consider only the ones for which all of the fol-
lowing conditions hold:

1. At least one of the language models results in a v2 > 3:84 (the
critical value at the a ¼ :05 level).

2. The direction matches the ERP component, that is, larger infor-
mation value corresponds to more negative-going (E)LAN/N400
and to more positive-going (E)PNP/P600.

3. More accurate language models result in stronger effects, as
apparent in larger v2.

4. For entropy reduction: larger lookahead distance k results in
stronger effects, as apparent in larger v2.
3. Results

3.1. Exploratory and confirmatory analyses

As displayed in Fig. 1, the exploratory analysis identified four
potential effects: Word surprisal seems to predict the amplitude
of N400 and, to a much lesser extent, LAN; Word entropy reduction
may explain EPNP and, to a much lesser extent, PNP. There are no
potential effects of the PoS information measures (see the supple-
mentary materials for all exploratory results).

Of the four potential effects, only the N400 survives in the Con-
firmatory Data (see Fig. 2). All model types reach v2 > 11 for this
component, which corresponds to p < :001. Hence, we have reli-
able evidence for an effect of word surprisal on the N400 but not
for any other relation between word (or PoS) information and
any ERP component.

Having established that a word surprisal effect occurs in both
the Exploratory and Confirmatory Data sets, we now take the full
set of data to investigate whether the effect can indeed be consid-
ered an N400. To this aim, Fig. 3 plots average ERP wave forms at
each electrode, separately for words with low (bottom third) and
high (top third) word surprisal as estimated by the 4-gram model
because this model showed the strongest overall effect on the
N400 (see Fig. 4). The high-surprisal words result in a more nega-
tive deflection than the low-surprisal words, in particular within
the 300–500 ms time window and at central sites, as is typical
for the N400. Hence, word surprisal indeed affects N400 amplitude.
The corresponding regression coefficient ranges from �0:17 (for
the n-gram model) to �0:22 (for RNN), which is to say that one
standard deviation increase in surprisal corresponds to an average
increase in N400 amplitude of between 0.17 and 0.22 lV.
3.2. Comparing word classes

Because nearly all studies that find N400 effects are concerned
with content words only, it is of interest to perform separate
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analyses for content (i.e., open-class) and function (closed-class)
words, constituting 53.2% and 46.8% of the data, respectively. A
word’s class was determined from its PoS tag, where nouns, verbs
(including modal verbs), adjectives, and adverbs were considered
content words, and all others were function words.

As can be seen in Fig. 4, there is no reliable N400 effect on func-
tion words. Nevertheless, the effect is generally weaker when only
content words (as opposed to all words) are included. Most likely,
this is because function words on average have lower surprisal and
elicit a smaller N400 than content words. In other words, part of
the effect over all words is due to the difference between content
and function words.

3.3. Model comparison

Table 2 shows results of pairwise comparisons between the best
models of each type, that is, those whose word surprisal estimates
fit the N400 amplitude best (for a fair comparison with the RNN
and PSG models, n-gram models trained on the full BNC were not
included).

When looking at all words, the n-gram model’s surprisal
explains variance over and above each of the other two models
whereas neither the RNN nor the PSG model significantly outper-
forms the n-gram. The RNN explains variance that the PSG does
not account for, but the reverse is not the case. Taking only content
words, results are similar except that the RNN now outperforms
the n-gram model. Effects on function words are very weak in gen-
eral and, consequently, no one model type accounts for variance
over and above any other.

4. Discussion

If a word (or its part-of-speech) conveys more information, it
takes longer to read the word. The first objective of the current study
was to investigate whether ERP amplitude, too, depends on word
and PoS information. Our expectation that the N400 would be
related to word surprisal was indeed borne out. Other components
and information measures, however, did not show any reliable cor-
relation. Our second objective was to identify the model type whose
information measures best predict the ERP data. Generally speaking,
the n-gram and RNN models outperformed the PSG in this respect.
4.1. The N400 effect of word surprisal

Reading a word with higher surprisal value, under any of the
three language model types, results in increased N400 amplitude.
This finding confirms that the ERP component is sensitive to word
predictability. Whereas previous studies (e.g., Dambacher et al.,
2006; Kutas & Hillyard, 1984; Moreno, Federmeier, & Kutas,
2002; Wlotko & Federmeier, 2013) used subjective human ratings
to quantify predictability, we operationalized (un)predictability as
the information-theoretic concept of surprisal, as estimated by
probabilistic language models that were trained on a large text cor-
pus. Although word surprisal can be viewed as a more formal var-
iant of cloze probability, it was not obvious in advance that the
known effect of cloze probability on N400 size could be replicated
by surprisal. As Smith and Levy (2011) demonstrated, systematic
differences exist between cloze and corpus-based word probabili-
ties, and cloze probabilities appear to predict word reading-times
more accurately.

Across the full range of surprisal values, average N400 ampli-
tudes differed by about 1 lV. Dambacher et al. (2006), too, found
a difference of approximately 1 lV between content words with
lowest and highest cloze probability. Experiments in which only
sentence-final words are varied typically result in much larger
effect sizes, with N400 amplitude varying by about 4 lV between
high- and low-cloze (but not semantically anomalous) words
(Kutas & Hillyard, 1984; Wlotko & Federmeier, 2013). Most likely,
this is because effects are more pronounced on sentence-final
words, or because cloze differences tend to be larger in hand-
crafted experimental sentences than in our (and Dambacher
et al.’s) naturalistic materials.

All model types could account for the N400 effect as long as
their linguistic accuracy was sufficient. Importantly, the strength
of the surprisal effect grows nearly monotonically with linguistic
accuracy, that is, models that more accurately embody the statisti-
cal patterns of English generate surprisal values that more accu-
rately predict the N400. This finding validates our approach of
extracting formal measures from corpus-based language models.
Moreover, the relation between linguistic accuracy and amount
of explained variance makes it very unlikely that the effect on
the N400 is in fact due to a confounding variable rather than to sur-
prisal per se. This is because such a confound would need to
explain not only the effect of surprisal but also the effect of linguis-
tic accuracy. The relation between N400 and word surprisal is fur-
ther confirmed by the results of a recent fMRI study in which
participants listened to spoken narratives (Willems, Frank, Nijhof,
Hagoort, & Van den Bosch, 2014). Words with higher surprisal
resulted in increased activation of the left temporal lobe, an area
that has repeatedly been identified as an important source for
the N400 (Service, Helenius, Maury, & Salmelin, 2007; Simos,
Basile, & Papanicolaou, 1997; Van Petten & Luka, 2006).

N400 effects are usually investigated on content words only;
Dambacher et al. (2006), too, excluded function words in their
study of the relation between cloze probability and the N400.
However, several studies have found that less predictable function
words also result in increased N400 size (DeLong, Urbach, & Kutas,
2005; Martin et al., 2013; Wicha, Moreno, & Kutas, 2003). Separate
analyses on content and function words revealed that, in our data,
the effect is mostly (if not exclusively) present on content words.
One reason why we failed to find a reliable N400 effect on function
words might simply be that natural language (as captured in our
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sample of sentences) does not display much variance in function-
word surprisal.

The question remains why word surprisal would be predictive of
N400 size. Two functional interpretations of the N400 that have
been proposed are that it reflects semantic integration (e.g.,
Hagoort, Baggio, & Willems, 2009; Kuperberg, 2007) or the retrieval
of lexical information from memory (e.g., Brouwer, Fitz, & Hoeks,
2012; Kutas & Federmeier, 2000), with increased integration or
retrieval difficulty resulting in a larger N400. We do not propose a
third account but take the effect of surprisal to be subsumed by
the memory-retrieval account: More predictable words can be
pre-activated, thereby making it easier to retrieve their lexical infor-
mation. In contrast, it is less clear why a more surprising word
would be harder to semantically integrate into its sentence context,
in particular when surprisal is estimated by language models that
are only minimally (if at all) sensitive to semantics, as was the case



Table 2
Pairwise comparisons between word surprisal estimates by the best models of each type. Shown are the results of likelihood-ratio tests for the effect of one set
of surprisal estimates (rows) over and above the other (columns). These tests are performed separately on the full data set, data on content words only, and
data on function words only.

Words Model n-gram RNN PSG

All n-gram v2 ¼ 6:01; p < :02 v2 ¼ 8:65; p < :01
RNN v2 ¼ 3:25; p < :08 v2 ¼ 4:44; p < :04
PSG v2 ¼ 1:80; p > :15 v2 ¼ 2:44; p > :1

Content n-gram v2 ¼ 2:34; p > :1 v2 ¼ 3:68; p < :06
RNN v2 ¼ 6:98; p < :01 v2 ¼ 6:29; p < :02
PSG v2 ¼ 2:55; p > :1 v2 ¼ 0:52; p > :4

Function n-gram v2 ¼ 1:97; p > :15 v2 ¼ 0:80; p > :3
RNN v2 ¼ 0:45; p > :5 v2 ¼ 0:22; p > :6
PSG v2 ¼ 1:65; p > :15 v2 ¼ 2:59; p > :1

8 S.L. Frank et al. / Brain & Language 140 (2015) 1–11
here. The word probabilities estimated by our models arise from
statistical word-order patterns, which depend much more on syn-
tactic than on semantic factors.
4.2. Other ERP components and information measures

Gouvea, Phillips, Kazanina, and Poeppel (2010) argue that sur-
prisal and entropy reduction, being ‘one dimensional measures of
syntactic processing cost’ (p. 182), are unable to account for the
variety in ERP components that can be extracted from the EEG sig-
nal. As we have seen, however, there are in fact many dimensions to
these information-theoretic measures. Not only can each be esti-
mated by many different probabilistic language models, we can also
distinguish the dimensions of surprisal and entropy reduction, and
of word and part-of-speech information. However, we did not find
reliable ERP effects of entropy reduction, nor of the PoS-based mea-
sures. This null finding may be interesting in its own right, consid-
ering that all four information measures have been shown to
account for word reading times. Frank (2013) attempted (and
failed) to tease apart the individual reading-time contributions of
word surprisal and entropy reduction and concluded that the two
measures may not correspond to cognitively distinct processes.
Instead, they would merely be alternative quantifications of one
and the same cognitive factor. In that case, however, one would
expect both of them to predict N400 amplitude. Our results suggest
otherwise: Only word surprisal showed an effect, so this informa-
tion measure appears to quantify neurally (and, most likely, cogni-
tively) different processes than entropy reduction does.

Of course, we would have been able to draw stronger conclusions
about the cognitive relevance of different information measures if
they had accounted for different ERP components. Crucially, the
absence of other effects is not due to problems with the EEG data
(since an N400 effect was found) or the information measures (since
these can explain reading times). This raises the question: Was
there any reason to expect more than the N400 effect to begin with?
4.2.1. Left anterior negativities
It has been claimed that an ELAN effect occurs when the

construction of a syntactic phrase structure fails (Friederici,
Steinhauer, & Frisch, 1999; Gunter, Friederici, & Hahne, 1999;
Neville, Nicol, Barss, Forster, & Garrett, 1991). More specifically,
Lau, Stroud, Plesch, and Philips (2006) present evidence that an
ELAN is elicited by the mismatch between the structural prediction
based on the sentence so far and the syntactic category of the word
currently being processed. This suggests that we may have found
ELAN effects of PoS surprisal because this measure can be viewed
as the extent to which a predicted syntactic category did not
appear.
However, there are also several reasons why an ELAN effect was
unlikely to arise. For one, it has been claimed that an ELAN only
appears in cases of outright syntactic violations (Friederici, 2002;
Friederici & Weissenborn, 2007), whereas all our experimental sen-
tences are grammatically correct. Moreover, in a recent review of
ERP studies on stimuli with local syntactic violations, Steinhauer
and Drury (2012) concluded that an ELAN is more often absent
than present in experiments that use visually presented sentences.
They also argued that many of the studies that do find ELAN effects
are methodologically flawed.

The LAN component is much less controversial than the ELAN. It
appears to be elicited by a range of syntactic violations beyond the
local phrase structure, such as subject-verb number disagreement
and incorrect case marking (for a review, see Friederici &
Weissenborn, 2007). However, LAN effects are not restricted to
syntactic violations (Kaan & Swaab, 2003a) so, to the extent that
syntactic difficulty is captured by word information, we could have
observed a LAN effect in our data.
4.2.2. Late positivities
In a review of the literature, Van Petten and Luka (2012) write

that most ERP studies that compare higher- and lower-cloze (but
semantically congruent) words find not only the N400 but also
an (E)PNP in response to the lower-cloze word. Hence, there was
every reason for our word surprisal measure to predict the
(E)PNP as well. In fact, results by Thornhill and Van Petten
(2012) suggest that surprisal should be more predictive of the
(E)PNP than of the N400: They found that presenting a low-cloze
(i.e., high surprisal) synonym of a highly expected word elicits an
(E)PNP but no N400.

Kaan and Swaab (2003b) found an anterior post-N400 positiv-
ity, much like the (E)PNP, in response to syntactic disambiguation.
Be reminded from the Introduction that entropy reduction can be
viewed as the amount of ambiguity resolved by a word or PoS.
Therefore, entropy reduction might predict the (E)PNP. Indeed,
our exploratory analysis did reveal a potential (E)PNP effect of
word entropy reduction, which closely followed findings on read-
ing time in that the effect grew stronger with higher linguistic
accuracy and larger lookahead distance. Somewhat disappoint-
ingly, no such effect remained in the confirmatory analysis.
Although this striking difference between the two data sets may
well be a statistical fluke, it raises the question if there was any
relevant difference between the subject groups of the two analy-
ses. There were no large differences in either mean age or gender
(Exploratory: 29.5 years, 6 females; Confirmatory: 26.4 years, 4
females) but the groups might have differed in other properties.
In any case, the possible effect of entropy reduction on (E)PNP
deserves further study.
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The P600, which is a more posterior component than the (E)PNP,
is well known to occur when there is a syntactic garden path (e.g.,
Kaan & Swaab, 2003b; Osterhout & Holcomb, 1992; Osterhout,
Holcomb, & Swinney, 1994). This has given rise to claims that it
reflects a process of syntactic reanalysis that takes place when an
initial sentence interpretation turns out to be incorrect (Friederici,
2002; Osterhout et al., 1994). A garden-path effect is necessarily
triggered by the appearance of a word with an unexpected syntactic
category. As such, syntactic reanalysis should co-occur with high
surprisal and, indeed, surprisal has been shown to account for par-
ticular garden path phenomena (Brouwer, Fitz, & Hoeks, 2010; Hale,
2001). Levy (2008) proves that surprisal equals the extent to which
the current input forces reallocation of the probability assigned to
possible sentence interpretations. In other words, surprisal is large
if a highly probable interpretation turns out to be incorrect (i.e., a
garden path is encountered) and the associated probability must
be reallocated to other (previously unlikely) interpretations. If the
P600 indeed reflects syntactic reanalysis, we could therefore have
seen surprisal effects on the P600. Even an entropy-reduction effect
could not have been excluded in advance, considering that Hale
(2003) and Linzen and Jaeger (2014) demonstrate that some garden
paths can be viewed as effects of entropy reduction rather then sur-
prisal. However, the P600 has also been found in cases that do not
involve increased syntactic processing difficulty (e.g., Hoeks,
Stowe, & Doedens, 2004; Kuperberg, Kreher, Sitnikova, Caplan, &
Holcomb, 2007; Regel, Gunter, & Friederici, 2011; Van Berkum,
Koornneef, Otten, & Nieuwland, 2007). This led to alternative inter-
pretations of the P600 effect (e.g., Brouwer et al., 2012; Kuperberg,
2007) in which syntactic processing plays no central role and there
is no reason to expect any effect of information quantities (at least,
not as captured by our language models).

4.3. Implications for models of sentence comprehension

Cloze probabilities depend not only on participants’ knowledge
of language but also on non-linguistic factors, such as world
knowledge and metacognitive strategies. Our model-derived prob-
abilities are very different in this respect, because they are solely
based on the statistical language patterns extracted from the train-
ing corpus. Consequently, the use of computational models (as
opposed to cloze probabilities) allows us to isolate purely linguistic
effects on the EEG signal. More importantly, evaluating and com-
paring the predictions by structurally different models against
the same set of experimental data provides insight into the cogni-
tively most plausible sentence comprehension processes.

Model comparisons revealed significant differences between
model types with respect to the N400 effect. In particular, the n-
gram and RNN model accounted for variance in N400 size over
and above the PSG whereas the reverse was not the case. In short,
the more parsimonious models, which do not rely on assumptions
specific to language, outperform the hierarchical grammar based
system. This mirrors results from reading time studies (Frank &
Bod, 2011; Frank & Thompson, 2012; but see Fossum & Levy,
2012), suggesting that the assumptions underlying the PSG model
are not efficacious for generating expectations about the upcoming
word. Such a conclusion is consistent with claims that a non-hierar-
chical, RNN-like architecture forms a more plausible cognitive
model of language processing than systems that are based on hier-
archical syntactic structure (e.g., Bybee & McClelland, 2005;
Christiansen & MacDonald, 2009; Frank, Bod, & Christiansen, 2012).

Likewise, it is noticeable that there was no effect on ERP compo-
nents that are traditionally considered to reflect syntactic process-
ing effort. Although no strong conclusions should be drawn from
such a null effect, an effect of PSG-based surprisal (perhaps partic-
ularly for parts-of-speech) would be expected if the construction of
a syntactic structure is fundamental to sentence comprehension.
5. Conclusion

This work connected information-theoretical notions to their
neural implementations, revealing a strong relation between the
surprisal of a word and the amplitude of the N400 component in
response to reading that word. Evidently, information quantities
derived from statistical language models can be used to make sense
of EEG data from large-scale, non-factorial studies that use naturally
occurring sentences as stimuli. This offers a novel technique for set-
ting-up and analyzing EEG studies, one that does not rely on the
careful construction of stimuli and manipulation of factors.

Any probabilistic language model can be used to estimate word
information values, allowing for a very flexible approach to model
evaluation and comparison which can be instrumental in uncover-
ing the representations and processes that underlie human sen-
tence processing. The three types of models we used here are
relatively simple; more sophisticated systems are likely to be bet-
ter capable at simulating cognitive processes. Future modeling
efforts may therefore result in more appropriate information esti-
mates to evaluate against EEG data, possibly revealing novel corre-
spondences between information values and ERP responses. To
facilitate such future endeavors, we make our data available as
online supplementary materials to the research community. We
hope and expect that formal modeling can help shed light on the
oftentimes contradictory-seeming ERP findings.

Acknowledgments

We would like to thank Elisabet Service and an anonymous
reviewer for their helpful comments on an earlier version of this
paper.

The current article is an extended and improved version of a
paper presented at the 51st Annual Meeting of the Association
for Computational Linguistics (Frank, Otten, Galli, & Vigliocco,
2013). The research presented here was funded by the European
Union Seventh Framework Programme (FP7/2007–2013) under a
Marie Curie Intra-European Fellowship (Grant No. 253803) and a
Career Integration Grant (Grant No. 334028), both awarded to
the first author. The authors acknowledge the use of the UCL Legion
High Performance Computing Facility, and associated support ser-
vices, in the completion of this work.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.bandl.2014.10.
006.

References

Barr, D. J., Levy, R., Scheepers, C., & Tilly, H. J. (2013). Random effects structure for
confirmatory hypothesis testing: Keep it maximal. Journal of Memory and
Language, 68, 255–278.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society
B, 57, 289–300.

Boston, M. F., Hale, J., Patil, U., Kliegl, R., & Vasishth, S. (2008). Parsing costs as
predictors of reading difficulty: An evaluation using the Potsdam Sentence
Corpus. Journal of Eye Movement Research, 2, 1–12.

Boston, M. F., Hale, J. T., Vasishth, S., & Kliegl, R. (2011). Parallel processing and
sentence comprehension difficulty. Language and Cognitive Processes, 26,
301–349.

Brouwer, H., Fitz, H., & Hoeks, J. C. J. (2010). Modeling the noun phrase versus
sentence coordination ambiguity in Dutch: Evidence from surprisal theory. In
Proceedings of the 2010 Workshop on Cognitive Modeling and Computational
Linguistics (pp. 72–80). Uppsala, Sweden: Association for Computational
Linguistics.

Brouwer, H., Fitz, H., & Hoeks, J. C. J. (2012). Getting real about semantic illusions:
Rethinking the functional role of the P600 in language comprehension. Brain
Research, 1446, 127–143.

http://dx.doi.org/10.1016/j.bandl.2014.10.006
http://dx.doi.org/10.1016/j.bandl.2014.10.006
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0005
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0005
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0005
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0010
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0010
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0010
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0015
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0015
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0015
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0020
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0020
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0020
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0025
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0025
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0025
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0025
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0025
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0030
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0030
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0030


10 S.L. Frank et al. / Brain & Language 140 (2015) 1–11
Bybee, J., & McClelland, J. L. (2005). Alternatives to the combinatorial paradigm of
linguistic theory based on domain general principles of human cognition. The
Linguistic Review, 22, 381–410.

Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for
language modeling. Computer Speech and Language, 13, 359–394.

Christiansen, M. H., & MacDonald, M. C. (2009). A usage-based approach to
recursion in sentence processing. Language Learning, 59, 126–161.

Dambacher, M., Kliegl, R., Hofmann, M., & Jacobs, A. M. (2006). Frequency and
predictability effect on event-related potentials during reading. Brain Research,
1084, 89–103.

De Groot, A. D. (2014). The meaning of significance for different types of research
[translated and annotated by Eric-Jan Wagenmakers, Denny Borsboom, Josine
Verhagen, Rogier Kievit, Marjan Bakker, Angelique Cramer, Dora Matzke, Don
Mellenbergh, Han L.J. van der Maas]. Acta Psychologica, 148, 188–194.

DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation
during language comprehension inferred from electrical brain activity. Nature
Neuroscience, 8, 1117–1121.

Demberg, V., & Keller, F. (2008). Data from eye-tracking corpora as evidence for
theories of syntactic processing complexity. Cognition, 109, 193–210.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.
Fernandez Monsalve, I., Frank, S. L, & Vigliocco, G. (2012). Lexical surprisal as a

general predictor of reading time. In Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics (pp. 398–408).
Avignon, France: Association for Computational Linguistics.

Fossum, V., & Levy, R. (2012). Sequential vs. hierarchical syntactic models of human
incremental sentence processing. In Proceedings of the 3rd Workshop on
Cognitive Modeling and Computational Linguistics (pp. 61–69). Montréal,
Canada: Association for Computational Linguistics.

Frank, S. L (2010). Uncertainty reduction as a measure of cognitive processing effort.
In Proceedings of the 2010 Workshop on Cognitive Modeling and Computational
Linguistics (pp. 81–89). Uppsala, Sweden: Association for Computational
Linguistics.

Frank, S. L. (2013). Uncertainty reduction as a measure of cognitive processing load
in sentence comprehension. Topics in Cognitive Science, 5, 475–494.

Frank, S. L. (2014). Modelling reading times in bilingual sentence comprehension. In
P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th
Annual Conference of the Cognitive Science Society (pp. 1860–1861). Austin, TX:
Cognitive Science Society.

Frank, S. L., & Bod, R. (2011). Insensitivity of the human sentence-processing system
to hierarchical structure. Psychological Science, 22, 829–834.

Frank, S. L., Bod, R., & Christiansen, M. H. (2012). How hierarchical is language use?
Proceedings of the Royal Society B: Biological Sciences, 279, 4522–4531.

Frank, S. L., Fernandez Monsalve, I., Thompson, R. L., & Vigliocco, G. (2013). Reading
time data for evaluating broad-coverage models of English sentence processing.
Behavior Research Methods, 45, 1182–1190.

Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2013). Word surprisal predicts N400
amplitude during reading. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (pp. 878–883). Sofia, Bulgaria:
Association for Computational Linguistics.

Frank, S. L., & Thompson, R. L. (2012). Early effects of word surprisal on pupil size
during reading. In Proceedings of the 34th Annual Conference of the Cognitive
Science Society (pp. 1554–1559). Austin, TX: Cognitive Science Society.

Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing.
Trends in Cognitive Sciences, 6, 78–84.

Friederici, A. D., Steinhauer, K., & Frisch, S. (1999). Lexical integration: Sequential
effects of syntactic and semantic information. Memory & Cognition, 27,
438–453.

Friederici, A. D., & Weissenborn, J. (2007). Mapping sentence form onto meaning:
The syntax-semantics interface. Brain Research, 1146, 50–58.

Gouvea, A. C., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes
underlying the P600. Language and Cognitive Processes, 25, 149–188.

Gunter, T. C., Friederici, A. D., & Hahne, A. (1999). Brain responses during sentence
reading: Visual input affects central processes. NeuroReport, 10, 3175–3178.

Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S.
Gazzaniga (Ed.), The cognitive neurosciences (4th ed., pp. 819–836). Cambridge,
MA: MIT Press.

Hale, J. T. (2001). A probabilistic early parser as a psycholinguistic model.
Proceedings of the 2nd Conference of the North American Chapter of the
Association for Computational Linguistics (Vol. 2, pp. 159–166). Pittsburgh, PA:
Association for Computational Linguistics.

Hale, J. T. (2003). The information conveyed by words. Journal of Psycholinguistic
Research, 32, 101–123.

Hale, J. T. (2006). Uncertainty about the rest of the sentence. Cognitive Science, 30,
643–672.

Hale, J. T. (2011). What a rational parser would do. Cognitive Science, 35, 399–443.
Hoeks, J. C. J., Stowe, L. A., & Doedens, G. (2004). Seeing words in context: The

interaction of lexical and sentence level information during reading. Cognitive
Brain Research, 19, 59–73.

Jaeger, T. F. (2010). Redundancy and reduction: Speakers manage syntactic
information density. Cognitive Psychology, 61, 23–62.

John, J. A., & Draper, N. R. (1980). An alternative family of transformations. Applied
Statistics, 29, 190–197.

Kaan, E., & Swaab, T. Y. (2003a). Electrophysiological evidence for serial sentence
processing: A comparison between non-preferred and ungrammatical
continuations. Cognitive Brain Research, 17, 621–635.
Kaan, E., & Swaab, T. Y. (2003b). Repair, revision, and complexity in syntactic
analysis: An electrophysiological differentiation. Journal of Cognitive
Neuroscience, 15, 98–110.

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting of the Association for Computational Linguistics
(pp. 423–430). Sapporo, Japan: Association for Computational Linguistics.

Kuperberg, G. R. (2007). Neural mechanisms of language comprehension:
Challenges to syntax. Brain Research, 1146, 23–49.

Kuperberg, G. R., Kreher, D. A., Sitnikova, T., Caplan, D. N., & Holcomb, P. J. (2007).
The role of animacy and thematic relationships in processing active English
sentences: Evidence from event-related potentials. Brain and Language, 100,
223–237.

Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory
use in language comprehension. Trends in Cognitive Sciences, 4, 463–470.

Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word
expectancy and semantic association. Nature, 307, 161–163.

Lau, E., Stroud, C., Plesch, S., & Philips, C. (2006). The role of structural prediction in
rapid syntactic analysis. Brain and Language, 98, 74–88.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106,
1126–1177.

Linzen, T., & Jaeger, F. (2014). Investigating the role of entropy in sentence
processing. In Proceedings of the Fifth Workshop on Cognitive Modeling and
Computational Linguistics (pp. 10–18). Baltimore, MD: Association for
Computational Linguistics.

Martin, C. D., Thierry, G., Kuipers, J., Boutonnet, B., Foucart, A., & Costa, A. (2013).
Bilinguals reading in their second language do not predict upcoming words as
native readers do. Journal of Memory and Language, 69, 574–588.

Mitchell, J., Lapata, M., Demberg, V., & Keller, F. (2010). Syntactic and semantic
factors in processing difficulty: An integrated measure. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics (pp. 196–206).
Uppsala, Sweden: Association for Computational Linguistics.

Moreno, E. M., Federmeier, K. D., & Kutas, M. (2002). Switching languages, switching
palabras (words): An electrophysiological study of code switching. Brain and
Language, 80, 188–207.

Neville, H., Nicol, J. L., Barss, A., Forster, K. I., & Garrett, M. F. (1991). Syntactically
based sentence processing classes: Evidence from event-related brain
potentials. Journal of Cognitive Neuroscience, 3, 151–165.

Nieuwland, M. S., & Van Berkum, J. J. A. (2006). Individual differences and
contextual bias in pronoun resolution: Evidence from ERPs. Brain Research,
1118, 155–167.

Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by
syntactic anomaly. Journal of Memory and Language, 31, 785–806.

Osterhout, L., Holcomb, P. J., & Swinney, D. A. (1994). Brain potentials elicited by
garden-path sentences: Evidence of the application of verb information during
parsing. Journal of Experimental Psychology: Learning, Memory and Cognition, 20,
786–803.

Parviz, M., Johnson, M., Johnson, B., & Brock, J. (2011). Using language models and
Latent Semantic Analysis to characterise the N400m neural response. In
Proceedings of the Australasian Language Technology Association Workshop 2011
(pp. 38–46). Canberra, Australia.

Regel, S., Gunter, T. C., & Friederici, A. D. (2011). Isn’t it ironic? An
electrophysiological exploration of figurative language processing. Journal of
Cognitive Neuroscience, 23, 277–293.

Roark, B. (2001). Probabilistic top-down parsing and language modeling.
Computational Linguistics, 27, 249–276.

Roark, B., Bachrach, A., Cardenas, C., & Pallier, C. (2009). Deriving lexical and
syntactic expectation based measures for psycholinguistic modeling via
incremental top-down parsing. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing (pp. 324–333). Association
for Computational Linguistics.

Santorini, B. (1991). Part-of-speech tagging guidelines for the Penn Treebank project
(Tech. Rep.). Philadelphia, PA: University of Pennsylvania.

Service, E., Helenius, P., Maury, S., & Salmelin, R. (2007). Localization of syntactic
and semantic brain responses using magnetoencephalography. Journal of
Cognitive Neuroscience, 19, 1193–1205.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System
Technical Journal, 27, 379–423. 623–656.

Simos, P. G., Basile, L. F. H., & Papanicolaou, A. C. (1997). Source localization of the
N400 response in a sentence-reading paradigm using evoked magnetic fields
and magnetic resonance imaging. Brain Research, 762, 29–39.

Smith, N. J., & Levy, R. (2008). Optimal processing times in reading: A formal model
and empirical investigation. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.),
Proceedings of the 30th Annual Conference of the Cognitive Science Society
(pp. 595–600). Austin, TX: Cognitive Science Society.

Smith, N. J., & Levy, R. (2011). Cloze but no cigar: The complex relationship between
cloze, corpus, and subjective probabilities in language processing. In Proceedings
of the 33rd Annual Conference of the Cognitive Science Society (pp. 1637–1642).
Austin, TX: Cognitive Science Society.

Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is
logarithmic. Cognition, 128, 302–319.

Steinhauer, K., & Drury, J. E. (2012). On the early left-anterior negativity (ELAN) in
syntax studies. Brain and Language, 120, 135–162.

Stolcke, A. (2002). SRILM – An extensible language modeling toolkit. In Proceedings
of the International Conference on Spoken Language Processing (pp. 901–904).
Denver, Colorado.

http://refhub.elsevier.com/S0093-934X(14)00151-5/h0035
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0035
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0035
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0040
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0040
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0045
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0045
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0050
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0050
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0050
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0055
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0055
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0055
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0055
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0060
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0060
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0060
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0065
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0065
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0070
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0075
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0075
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0075
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0075
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0080
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0080
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0080
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0080
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0085
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0085
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0085
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0085
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0090
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0090
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0095
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0095
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0095
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0095
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0100
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0100
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0105
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0105
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0110
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0110
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0110
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0115
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0115
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0115
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0115
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0120
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0120
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0120
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0125
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0125
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0130
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0130
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0130
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0135
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0135
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0140
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0140
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0145
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0145
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0150
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0150
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0150
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0155
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0155
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0155
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0155
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0160
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0160
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0165
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0165
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0170
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0175
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0175
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0175
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0180
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0180
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0185
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0185
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0190
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0190
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0190
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0195
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0195
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0195
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0200
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0200
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0200
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0205
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0205
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0210
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0210
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0210
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0210
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0215
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0215
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0220
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0220
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0225
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0225
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0230
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0230
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0235
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0235
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0235
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0235
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0240
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0240
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0240
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0245
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0245
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0245
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0245
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0250
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0250
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0250
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0255
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0255
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0255
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0260
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0260
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0260
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0265
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0265
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0270
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0270
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0270
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0270
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0280
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0280
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0280
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0285
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0285
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0290
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0290
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0290
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0290
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0290
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0300
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0300
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0300
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0305
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0305
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0310
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0310
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0310
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0315
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0315
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0315
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0315
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0320
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0320
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0320
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0320
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0325
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0325
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0330
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0330


S.L. Frank et al. / Brain & Language 140 (2015) 1–11 11
Thornhill, D. E., & Van Petten, C. (2012). Lexical versus conceptual anticipation
during sentence processing: Frontal positivity and N400 ERP components.
International Journal of Psychophysiology, 83, 382–392.

Van Berkum, J. J. A., Koornneef, A. W., Otten, M., & Nieuwland, M. S. (2007).
Establishing reference in language comprehension: An electrophysiological
perspective. Brain Research, 1146, 158–171.

Van Petten, C., & Luka, B. J. (2006). Neural localization of semantic context effects
in electromagnetic and hemodynamic studies. Brain and Language, 97,
279–293.

Van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension:
Benefits, costs, and ERP components. International Journal of Psychophysiology,
83, 176–190.
Wicha, N. Y., Moreno, E. M., & Kutas, M. (2003). Expecting gender: An event related
brain potential study on the role of grammatical gender in comprehending a
line drawing within a written sentence in Spanish. Cortex, 39, 483–508.

Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Van den Bosch, A. (2014).
Prediction during natural language comprehension (submitted for publication).

Wlotko, E. W., & Federmeier, K. D. (2013). Two sides of meaning: The scalp-recorded
N400 reflects distinct contributions from the cerebral hemispheres. Frontiers in
Psychology, 4(181).

Wu, S., Bachrach, A., Cardenas, C., & Schuler, W. (2010). Complexity metrics in an
incremental right-corner parser. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (pp. 1189–1198). Uppsala, Sweden:
Association for Computational Linguistics.

http://refhub.elsevier.com/S0093-934X(14)00151-5/h0340
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0340
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0340
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0345
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0345
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0345
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0350
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0350
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0350
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0355
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0355
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0355
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0360
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0360
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0360
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0370
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0370
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0370
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0375
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0375
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0375
http://refhub.elsevier.com/S0093-934X(14)00151-5/h0375

	The ERP response to the amount of information conveyed by words  in sentences
	1 Introduction
	1.1 Quantifying word information
	1.2 The present study

	2 Methods
	2.1 EEG data collection
	2.1.1 Participants
	2.1.2 Materials
	2.1.3 Procedure
	2.1.4 EEG recording and preprocessing

	2.2 Estimating word information
	2.2.1 Training corpus
	2.2.2 Language models
	2.2.3 Surprisal and linguistic accuracy
	2.2.4 Entropy reduction

	2.3 Data analysis
	2.3.1 ERP components
	2.3.2 Quantifying fit to ERP amplitude
	2.3.3 Exploratory and confirmatory analyses


	3 Results
	3.1 Exploratory and confirmatory analyses
	3.2 Comparing word classes
	3.3 Model comparison

	4 Discussion
	4.1 The N400 effect of word surprisal
	4.2 Other ERP components and information measures
	4.2.1 Left anterior negativities
	4.2.2 Late positivities

	4.3 Implications for models of sentence comprehension

	5 Conclusion
	Acknowledgments
	Appendix A Supplementary material
	References


