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Abstract

Background: Since proteins function by interacting with other molecules, analysis of protein-protein interactions is
essential for comprehending biological processes. Whereas understanding of atomic interactions within a complex
is especially useful for drug design, limitations of experimental techniques have restricted their practical use. Despite
progress in docking predictions, there is still room for improvement. In this study, we contribute to this topic by
proposing T-PioDock, a framework for detection of a native-like docked complex 3D structure. T-PioDock supports the
identification of near-native conformations from 3D models that docking software produced by scoring those models
using binding interfaces predicted by the interface predictor, Template based Protein Interface Prediction (T-PIP).

Results: First, exhaustive evaluation of interface predictors demonstrates that T-PIP, whose predictions are customised to
target complexity, is a state-of-the-art method. Second, comparative study between T-PioDock and other state-of-the-art
scoring methods establishes T-PioDock as the best performing approach. Moreover, there is good correlation between
T-PioDock performance and quality of docking models, which suggests that progress in docking will lead to even better
results at recognising near-native conformations.

Conclusion: Accurate identification of near-native conformations remains a challenging task. Although availability of 3D
complexes will benefit from template-based methods such as T-PioDock, we have identified specific limitations which
need to be addressed. First, docking software are still not able to produce native like models for every target. Second,
current interface predictors do not explicitly consider pairwise residue interactions between proteins and their interacting
partners which leaves ambiguity when assessing quality of complex conformations.

Keywords: Protein-protein interaction, Interface prediction, Homology modelling, Docking, Model scoring, Model
ranking
Background
Since proteins function by interacting with other molecules,
analysis of protein-protein interactions is essential for
comprehending biological processes. Given that alternation
in those interactions can result in diseases, their identifica-
tion is key information for drug design. For example,
discovery that the Von Hippel-Lindau syndrome (VHL), a
disorder characterised by the formation of tumours and
cysts, is caused by a single mutation in the VHL protein
which perturbes binding to the hypoxia-inducible factor
has led to the manufacture of novel cancer drugs [1-3].
Experimental techniques such as Y2H [4], phage display
[5] and affinity purification [6] have played an important
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role in deciphering protein interaction networks. Despite
these efforts only 10% of the human interactome has been
experimentally determined [7]. Moreover, elucidation
of biological processes often requires an understanding of
atomic interactions within a complex. Although such
information may be generated by X-ray crystallography or
nuclear magnetic resonance, high costs in time and
resources, and technical limitations have prevented their
wide spread usage. Since approximately 40,000 protein
complexes are available in the Protein Data Bank (PDB)
[8] and PQS [9], they can be used for computational
modelling of interactions [10]: docking intends to predict
a complex 3D structure from the structures of its compo-
nents. Using energy-based cost functions, it explores the
space of possible conformations and generates a list of
plausible models. Although it often contains near-native
conformations, additional knowledge, such as binding site
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location or interacting residues, is required to identify
them. As a consequence, accurate prediction of protein
interfaces has become an important component of a
docking framework [11-14]. After a review of interface
predictors, we explore how they have been used as
constraint to evaluate docking conformations.

Protein-protein interface prediction
Computational methods which have been proposed for
identifying interface residues of proteins can be broadly
divided into two non-exclusive categories based on their
use of protein information. The first approach is based on
the specific features of sequences and/or structures,
while the second one explores proteins which are
either sequentially or structurally related to the query
protein (QP).
A large variety of intrinsic features have been used for

interface prediction, they include composition and
propensity of interface residues [15], physico-chemical
properties [16,17], predicted structural characteristics
[16], secondary structure [18], solvent-accessible surface
area [19,20], geometrical shape of the protein surface
[19] and crystallographic B-factor [18,21]. One of the first
studies was conducted by Ofran and Rost [15] which used
amino-acid composition to predict interfaces. Since they
had previously shown that residues at interface have a
totally different composition than others [22], this
information was used to train a Neural Network (NN).
They further improved their approach by introducing ISIS
[16,23] which uses both evolutionary profiles and
predicted structural features for NN training. Better
performance, especially in terms of sensitivity, demonstrates
the value of integrating predicted structural information.
ISIS prediction of a few residues (low sensitivity) with high
accuracy suggests the importance of these residues in
binding which have been referred as hot-spots residues.
Other studies have confirmed the intuitive assumption that
inclusion of structural information improves performance
since non-surface residues can be trivially eliminated
[19,24]. A popular approach has been to exploit that infor-
mation, either predicted or actual, using machine learning
methods. Whereas Cons-PPISP relied on consensus predic-
tions from multiple neural networks [25], ProMate, adopted
an approach using a Bayesian network involving 13
different features [26]. Eventually, the usage of additional
structural information in the form of side chain energy
estimation allowed PINUP performing better than both
Cons-PPISP and ProMate [27]. Finally, a meta predictor,
meta-PPISP, which combines the scores of PINUP,
Cons-PPISP and Promate, was shown to outperform each
of these individual methods [24,28].
An alternative research line has exploited the fact that

structurally similar proteins (or structural neighbours)
share similar interaction sites even if they are unrelated
[10,29,30]. PredUs extracts structural neighbours of the
QP, maps interface residues onto the QP and scores
these residues using a SVM based classifier according to
their intrinsic features [29,30]. PrISE follows a similar
approach but using only local structural similarity from a
repository of structural elements [31]. Experiments show
PredUs and PrISE perform similarly and outperform
meta-PPISP [31,32]. Despite homology requirements
potentially reducing the scope of usability of prediction
methods, many approaches have exploited available
homologous structures and/or sequences [33,34]. These
methods use Multiple Sequence Alignment and/or
phylogenetic tree to detect homologues and extract
evolutionary information. HomPPI divides the homologues
of a QP into three zones according to interface conserva-
tion: Safe, Twilight and Dark Zones. Interfaces are then
predicted using an MSA of homologues from the most
reliable available zone [34]. Performance was significantly
improved by using Structure-based-MSA (S-MSA) in IBIS
[35]. IBIS combines sequence and structure conservation
scores to detect potential binding sites. IBIS structurally
aligns QP with its homologues creating an S-MSA which
highlights the interface residues of homologues. Then,
using the S-MSA a binding site similarity matrix is
generated by comparing the structure and sequence of
each homologue against all other homologues. Using the
matrix, similar binding sites are clustered into groups
which are ranked according to a weighted combination of
sequence similarity score and conservation score. The
inferred binding site of the best rank group is then mapped
onto the QP. Recently, we introduced a novel template
based approach, WePIP, which goes further than any
method in exploiting homology [32]: not only continuous
scoring is used to express homology closeness to the QP,
but the nature of interaction partners is also considered.
Initial evaluation has suggested that WePIP outperforms
competitors in terms of precision and accuracy [32].

Scoring protein-protein docking conformations
Protein-protein docking aims to computationally predict
the 3D structure of a protein complex using the unbound
structures of its components (useful reviews can be found
in [36-39]). Docking algorithms can be divided into two
groups [40], i.e. template-based [10,41,42] and template-
free docking. With the increase in the number of 3D
structures template-based docking has become particularly
popular using experimentally determined structures as
templates to generate new complexes. Template-based
docking is particularly attractive since, unlike template-free
docking, its low computational cost makes it suitable for
interactome scale predictions. Template-free docking still
remains highly important since not all proteins can be
modelled using templates, [43]. In addition, free-docking
approaches with their refinement stage have made it
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possible to generate high resolution structures [43]
which are important for understanding the molecular
mechanism of protein contacts. In this paper we simply
refer to template-free docking as ‘docking’.
Performances of docking algorithms are compared

biannually in the CAPRI (Critical Assessment of Predicted
Interaction) competition [44] and are evaluated against lar-
ger protein docking benchmarks [45-47]. Those algorithms
explore thousands of docking orientations (sampling) that
are assessed using an energy-based scoring function [38]
involving, in the case of ZDOCK [48], measures of shape
complementary, desolvation and electrostatics. In order to
introduce flexibility, ensemble of conformations [39]
have also been used to generate docking conformations.
These ensembles are taken from X-ray or NMR structures
or generated using computational methods such as
(Molecular Dynamic) MD simulations, normal modes and
loop modelling. One way of docking ensembles is to dock
them one by one (cross-docking) but since it is computa-
tionally expensive methods such as mean-field approach
have been used [49]. Two studies of Smith et al. [50] and
Grünberg et al. [51] investigated the use of ensembles
docking by using MD simulations along with 3D-DOCK
and HEX docking methods. Although they discovered an
increase in the number of native like solutions in the pool
of docked conformations, scoring became more difficult
since wrong solutions were given higher ranks. In order to
introduce flexibility and to reduce the size of the sampling
space, some methods have adopted energy minimization
(EM) techniques such as MD [13,52] or Monte Carlo
[53-56] simulated annealing.
These methods still produce a large number of solutions

which require post-processing to detect native-like confor-
mations. One should also be aware that since the present
techniques neglect the presence of water during docking,
the assembly of models can differ from the actual targets
within a soluble environment [57]. In order to refine the
list of putative docking models, an additional step
may be performed by applying energy minimisation,
clustering or knowledge generated from available 3D
structures. Typically, Cluspro [58-60], a state-of-the-art
method, clusters the top 1000 models in terms of energy
to generate a shorter set (hundreds) of model representa-
tives. Although these models are associated with scores,
they have shown to be unreliable to identify near native
configurations [61].
Since docking software produce 100’s to 1000’s of

putative models, their exploitation requires the ability to
score them accurately [62-64]. Intuitively, physical-based
scoring functions are particularly attractive since they can
be applied to any model by exploiting physiochemical
features of the atoms. ZRANK [63] relies on the usage of
a combination of three atom-based terms, i.e. van der
Waal, electrostatics and desolvation. In order to handle
conformational changes upon binding, an extension of
ZRANK, IRAD, integrated residue and atom based
potentials [64]. Experiments showed it outperforms
ZRANK when dealing with complexes of medium
docking difficulty.
Since comparative studies have shown that energy-based

scoring functions are error-prone [65,66], machine learning
and knowledge–based statistical methods seem to be more
promising approaches. Zhoe et al. [67] proposed a super-
vised (SVM) and a semi-supervised (TSVM) feature-based
learning method trained using 3D interface features
generated from interaction interfaces of protein complexes.
Experiments revealed that both approaches can distinguish
between native and non-native structures with accuracy
around 80%. More recently, Othersen et al. [68] conducted
a similar experiment using mutual information to select
discriminative structural features [46]. They identified 11
of them which led to good identification of near-native
models.
Knowledge of interface residues has proved particularly

successful [69] and has been applied to either constrain
the initial search space of docking software [13,14] or
score docking conformations by calculating the similarity
between the interfaces of the docked models and the
predicted ones [69,70]. Since evaluating interfaces can be
applied to models generated by any docking software and
can be combined with other scoring function, it has
proved more popular and practical. Experiments aiming at
gaining insight into the value of using interface knowledge
showed that knowledge of at least 40% of interface
residues is sufficient to significantly improve ZDOCK
rankings [24]. As a consequence standard interface
prediction approaches, such as cons-PPISP [25], Promate
[26] and HomPPI [34], were extended to evaluate the fit
of docked proteins against their predicted binding sites
[69,70]. By combining five interface predictors, i.e.
Promate [26], PPI–Pred [71], PPISP [72], PINUP [27],
and a predictor based on NN [73] into one framework
called metaPPI [12], success rates were improved by 15%
in comparison to the best individual predictors. Finally,
instead of representing interacting interfaces as a two-patch
system, SPIDER [74] evaluates multi-residue interactions
using a library of contacts containing graph representations
of common interfacial patterns. Although SPIDER has
claimed to outperform ZRANK, its usage is limited by the
requirement of accurate and high resolution interfaces.

Overview
As highlighted in the latest edition of CAPRI [75], despite
progress in docking predictions, there is still room for
improvement. In this study, we contribute to this topic by
proposing T-PioDock (Template based Protein Interface
prediction and protein interface Overlap for Docking
model scoring), a framework for detection of a native-like
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docked complex 3D structure. T-PioDock aims at
supporting the identification of near-native conformations
from 3D models produced by docking software by scoring
those models. As supported by the review in the “Scoring
protein-protein docking conformations” section, T-PioDock
exploits template based predictions of complexes’ binding
interfaces to evaluate docking configurations.
T-PioDock’s pipeline is described in Figure 1. The

input to the system is the 3D structures of the query
proteins. First, the T-PIP module (Template based
Protein Interface Prediction) evaluates the complexity
of the protein targets –i.e. ‘trivial’, ‘homologous’ or
‘unknown’- in terms of homologue availability in the
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These interfaces are then passed to the PioDock module
(Protein Interface Overlap for Docking model scoring)
which exploits them to score conformation models
produced by docking software. Finally, those scores can be
used to help at the identification of near-native conforma-
tions by ranking available conformation models.
In this paper, we first conduct an exhaustive evaluation

of interface predictors on a set of standard benchmark
datasets and demonstrate that the T-PIP methodology
whose predictions are customised to target complexity
lexity 

n

iction 

Method

Docking

...

Sn...

cts their interfaces using the most relevant method; PioDock exploits



Esmaielbeiki and Nebel BMC Bioinformatics 2014, 15:171 Page 5 of 16
http://www.biomedcentral.com/1471-2105/15/171
performs best. Second, we provide a comparative study
between T-PioDock and other state-of-the-art scoring
methods on the most complete docking benchmark
dataset. This establishes T-PioDock as the best perform-
ing approach. Then, we discuss those results in the
context of identification of the best conformations.
Finally, we present the methodology behind T-PIP
and T-PioDock.
Results
Datasets and tools
Interface predictors and docking model ranking approaches
are evaluated using three standard benchmark datasets:
Ds56unbound [44], Docking Benchmark 3.0 (DBMK3.0)
[47] and Docking Benchmark 4.0 (DBMK4.0) [76]. These
datasets contain high-resolution protein structures both in
their unbound and bound forms.
Ds56unbound is comprised of 56 unbound chains

generated from 27 CAPRI targets, T01 ~ T27 [44]. In
total, it contains 12173 residues including 2112 interacting
ones. This dataset is used to perform evaluation of all
interface prediction methods of interest.
DBMK3.0 and DBMK4.0 were originally introduced for

the evaluation of protein docking methods. DBMK3.0
contains 124 unbound-unbound targets and 309 protein
chains, whereas DBMK4.0 is an extension with 53 new
targets. Targets are classified into three main groups, i.e.
enzyme/inhibitor, antibody/antigen and other categories,
and three categories, i.e. rigid body, medium difficulty and
difficult - based on their degree of conformational change
between the bound and unbound forms. These datasets
contain contains two-body (hetero-dimeric) targets where
the individual elements can consist of dimers, trimmers
and tetramers rather than monomers. Since there is
no agreed methodology for the evaluation of predicted
interfaces when dealing with complexes involving more
than two chains, those oligomers were excluded from our
experiments to ensure fair and consistent comparisons.
Moreover, in order to allow comparison with PredUs, we
only considered a subset of DBMK3.0, where the chains
share at most 40% sequence similarity and their lengths
are above 50 amino acids. As a consequence, we produced
two subsets of DBMK3.0 and DBMK4.0, i.e. DS120 and
DS236 (See Additional files 1 and 2 for details), with
120 and 236 chains respectively. The most promising
interface prediction methods were further evaluated
on those datasets and docking experiments were con-
ducted on DS236. In this paper, these datasets are
further divided into ‘trivial’, ‘homologous’ or ‘un-
known’ categories (see ‘T-PIP: Template based Protein
Interface Prediction’ in Methods section) to allow compar-
isons between methods (see Figure 2). For example, DS93
is a subset of DS236 which contains 93 protein chains
which belong to the ‘homologous’ category. Similarly,
DS128 comprises 128 chains from the ‘trivial category’.
In this study, initial docking predictions were produced

using the ClusPro 2.0 docking server [60], which
performed best at CAPRI 2009 [58]. For a pair of proteins,
Cluspro generates hundreds of conformational models
usually containing at least one near native model. These
models are generated by minimising their energy and are
then clustered. Clusters are ranked based on their size.
Unfortunately, these rankings have proved unable to
detect the near-native models [61,70].

Evaluation of interface prediction methods
In the first set of experiments, performance of state-of-
the-art methods was performed using the Ds56unbound
dataset. According to T-PIP, 27 chains were classified as
‘trivial’, 24 as ‘homologous’ and 5 as ‘unknown’ based on
homologues availability in the PDB (see ‘T-PIP: Template
based Protein Interface Prediction’ in Methods section). In
addition, to evaluate interface prediction without
knowledge of the QP structure, we also produced results
where the QP sequence, instead of its structure, was aligned
with a Structure-based-MSA (S-MSA) of its homologues.
Those results are labelled as T-PIPQPseq+S-MSA. Since the
IBIS server may provide several interfaces for a given
protein, performance is calculated here by selecting
the interface with the highest score. Note that two
targets could not have their interface predicted using
IBIS (5HMG-A and 5HMG-B). It should be stressed
that, although T-PIPQPseq+S-MSA does not requires the
actual QP structure, it relies on the availability of the
3D structure of QP homologues.
Based on results on Ds56unbound in Table 1 template

based approaches, i.e. IBIS, PrISE, PredUs and T-PIP,
perform better than feature based methods. Comparison
between these two classes of approaches is also available
on DS120 in Table 2. In general, template-based methods
show a better recall score, while feature-based methods
display a better precision score. This suggests that feature-
based methods predict a smaller set of the ground truth
interfaces, but are more accurate in that prediction. This is
especially important for mutagenesis studies.
Moreover in Table 1, T-PIP displays either best or

second best results competing with PrISE [31] and
PredUs [29,30] depending on the metric considered. Com-
parison between standard T-PIP and T-PIPQPseq+S-MSA

suggests that availability of the QP structure only margin-
ally increases performance and is, therefore, not required
for interface prediction. Nevertheless standard T-PIP is
used in all remaining experiments.
Further tests were conducted on the best performing

approaches, i.e. IBIS, PrISE, PredUs and T-PIP, using the
DS120 and DS236 datasets. Note that for DS120 PredUs
and IBIS failed to process 1 (1ZK0-B) and 9 proteins,



Figure 2 Creation of DS120 and DS236. Processing of DBMK3.0 and DBMK4.0 to create relevant evaluation datasets.

Table 2 Comparison of interface predictors’ performance
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respectively. For DS236, while IBIS failed to make
predictions for 32 proteins which did not have ‘close’
homologues, i.e. at least 30% sequence similarity to
the QP and 75% binding site overlap with the QP
structure, T-PIP, which investigates remote homologues,
was only unable to process 2 proteins (1H20-A and
1QFD-A) that do not have any structural neighbour. Since
PredUs used DS120 chains for training, its performance
on an independent dataset is likely to be lower (results on
DS236 were not available). When using the PrISE server,
query chains were removed from the database used for
computation of similar structures.
As shown in Table 2, T-PIP also displays the best

performance on DS120 and DS236. Interestingly, T-PIP
displays similar performance on Ds56unbound, DS120
and DS236 even though DS236 contains more structures
from the difficult and medium-difficulty categories.
Table S1 and Table S2 of Additional file 3 provide
comparisons between T-PIP, PredUs and PrISE on
enzyme-inhibitor, antibody-antigen and others categories
of the DBMK datasets. Based on those tables, T-PIP
performs better in enzyme-inhibitor and others categories.
Table 1 Evaluation of interface prediction methods using
the Ds56unbound dataset

Predictor (DS56unbound) Precision Recall F1 Accuracy MCC

Promate 28.7 27.3 28.0 76.6 14.0

PINUP 30.4 30.1 30.2 76.9 16.4

Cons-PPISP 37.4 34.5 35.9 79.5 23.8

Meta-PPISP 38.9 24.0 29.7 81.1 20.2

IBIS 48.2 29.3 34.4 82.5 27.9

PrISE 43.7 44.0 43.8 81.2 32.6

PredUs 43.3 53.6 47.9 73.2 30.4

T-PIP 53.8 48.5 49.6 84.0 41.1

T-PIPQPseq+S-MSA 53.4 48.1 49.2 83.9 40.7

Best results are shown in bold.
Although no definite conclusion can be drawn for the
antibody-antigen category, since there are very few chains,
the T-PIP method is unlikely to perform well since it relies
on creating MSA of homologues, whereas formation of
anti-body–antigen complexes makes difficult the creation
of meaningful MSAs [77]. Table 3 displays T-PIP results
in each of those categories. As expected, better perform-
ance is achieved when targets have fewer conformation
changes upon binding.
Experiments also confirm that homology information

benefits interface prediction. As seen in Table 4, interfaces
for the ‘homologous’ category display higher quality
than those for the ‘unknown’ category: although recall
performance remains stable (the method used for process-
ing the ‘unknown’ category, PredUs, has a particularly
good recall, see Table 2), F1 and accuracy measures are
better by around 10%, precision by 15% and MCC by a
third. Prediction performance of the ‘trivial’ category is
also provided in Table 4 for the sake of being exhaustive.
However, that category is not the target of this paper.
on DS120 and DS236

Predictor & dataset Precision Recall F1 Accuracy MCC

T-PIP DS120 52.6 56.1 52.5 85.4 45.1

PredUs DS120 47.3 58.2 48.5 69.4 24.4

PrISE DS120 38.5 48.9 40.9 80.7 31.2

PINUP DS120 40.7 34.7 37.5 78.3 24.6

IBIS DS120 42.6 37.4 37.4 83.8 29.9

Cons-PPISP DS120 46.5 30.6 36.9 80.4 26.7

Meta-PPISP DS120 49.0 26.7 34.6 81.1 26.2

Promate DS120 36.5 30.3 33.1 77.1 19.5

T-PIP DS236 53.2 55.3 52.1 85.3 44.8

PrISE DS236 41.2 47.5 41.5 81.0 32.0

IBIS DS236 40.9 36.9 36.2 83.6 28.8

Best results are shown in bold.



Table 3 T-PIP performance on DS120 and DS236 according to DBMK categories

Predictor & Categories Precision Recall F1 Accuracy MCC

T-PIP DS120 52.6 56.1 52.5 85.4 45.1

Rigid Body (86chains) 57.1 61.3 57.3 86.7 50.7

Medium-Difficulty (18 chains) 42.0 50.8 44.5 84.5 35.9

Difficult (16 chains) 42.9 34.0 35.8 79.2 26.2

T-PIP DS236 53.2 55.3 52.1 85.3 44.8

Rigid Body (156 chains) 56.8 59.4 56.2 86.7 49.5

Medium-Difficulty (44 chains) 45.1 52.2 47.0 85.6 39.3

Difficult (34 chains) 46.9 37.6 38.5 78.4 28.6
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Since the ‘homologous’ category is our main target, and
we have selected WePIP instead of PredUs to make
prediction for this category, we have compared WePIP
performance with PredUs on ‘homologous’ category of
DS120 (As shown in Table 3 and Figure 1, this dataset is
named DS48). Results showed in Table 5 show a mixed
picture where WePIP performs better on DS48 in terms
of accuracy and MCC, while PredUs displays higher
precision, recall and F1. Moreover, in 50% of cases,
WePIP performance based on F1 score is equivalent
or better than PredUs. As consequence, we cannot
conclude about the superiority of a method above the
other for the ‘homologous’ category. However, one
should be aware that, since PredUs was trained with
a dataset including DS48 targets, its performance may
be overestimated. Moreover, while PredUs require the
3D structure of the QP WePIP can predict interfaces
using only the QP sequence which makes WePIP more
applicable. WePIP is clearly an important state-of-the-art
approach for protein interface prediction.
Processing of ‘homologous’ targets by WePIP relies on

extracting the relevant interacting residues from the
interfaces of homologous proteins. In order to evaluate
this process, for each protein from the 93 ‘homologous’
targets defined in Table 2 (DS93- See Additional file 4),
the precision that would have been obtained using
Table 4 T-PIP performance on DS120 and DS236
according to target complexity

Predictor & Categories Precision Recall F1 Accuracy MCC

T-PIP DS120 52.6 56.1 52.5 85.4 45.1

Trivial DS63 64.9 67.5 66.0 89.1 60.5

Homologous DS48 36.5 43.7 38.2 82.9 29.6

Unknown DS9 31.6 41.8 34.5 73.3 19.2

T-PIP DS236 53.2 55.3 52.1 85.3 44.8

Trivial DS128 65.2 63.8 62.3 88.6 57.0

Homologous DS93 39.7 44.9 40.3 82.5 31.1

Unknown DS13 32.3 46.3 36.6 74.1 22.1

In DSx, x in the number of chains in the category.
T-PIP results are shown in bold.
simply the interface of a homologue is computed. This
shows how much the interface of a given homologue
complex is representative of the solution binding site. In
addition, for a given target, the average of its homologues
precisions and its T-PIP precision is calculated. Figure 3
shows the quality of T-PIP predictions with respect to
target homologues. Note that query proteins are identified
using their association to their target employing the
following notation: ABCD:WXYZ-E, where ABCD is the
PDB code of the complex target and WXYZ-E is the query
protein PDB code-chain, e.g. 1ZM4:1XK9-A.
In most cases the quality of T-PIP predictions is above

average which confirms its ability to extract relevant
information from a homologue set. However, the figure
also reveals that T-PIP is unable to improve on the
best homologue interface. We analyse some of the
targets in more detail. First, we detail a successful case,
1AVX:1BA7-B, where T-PIP extracts binding information
from a set of 14 homologous complexes – only 3 repre-
sentatives are illustrated in Figure 4A. Using appropriate
ligand and QP weighting (see ‘T-PIP: Template based
Protein Interface Prediction’ in Methods section), T-PIP
manages to predict quite accurately the interface of
the target. Second we focus on a couple of cases
where T-PIP performed extremely badly. Figures 4B
and 4.C explain prediction failures for 1ZM4:1XK9-A
and 2FJU:2ZKM-X, respectively. In the first case, as
illustrated in Figure 4B with two representatives of
the interacting partners of proteins homologous to
the QP, the target has two distinct interfaces one of
which corresponds to the interface involved in the
complex of interest. Unfortunately, T-PIP selected the
other one in its prediction. In the second case, Figure 4C,
the actual interface of interest does not have a single
representative among homologous complexes. As a
Table 5 WePIP performance compared to PredUs on DS48

Predictor & Categories Precision Recall F1 Accuracy MCC

T-PIP DS48 37.2 43.8 38.3 82.7 29.9

PredUs DS48 38.1 55.5 42.1 68.8 20.6



Figure 3 Interface precision of ‘homologous’ targets in respect to available homologues. Horizontal line connects the maximum and
minimum precisions calculated for homologues of a given target. Average homologue precision and T-PIP precision are shown by yellow
diamonds and red squares, respectively.
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consequence, T-PIP is not able to make any relevant
prediction and suggests the most consensual binding site.

Ranking Docking Conformations
After generation of possible docking conformations,
model scoring allows identifying the most plausible
conformation(s). Evaluation of model scoring procedures
relies on comparing their ranking of a set of docking
Figure 4 Examples of successful and failed interfaces predicted by T-
chains are displayed in grey using solid surface representation. Representative
cartoons. Red, yellow and dark blue patches on solid surfaces represent corre
respectively. In A) cyan, green and pink patches correspond to the actual bind
conformations with an ‘ideal’ ranking or ‘ground truth’
(GT) generated according to the configuration of the
native complex. Since two Capri criteria [78], interface
(i-rmsd) and ligand (l-rmsd) rmsds, are appropriate to
generate ground truth rankings, here, both were used to
produce alternative ground truths for DS93 and DS128 as
defined in Table 4 and Figure 2 (See Additional file 5).
l-rmsd measures the RMSD between the backbones of
PIP. A) 1AVX:1BA7-B, B) 1ZM4:1XK9-A and C) 2FJU:2ZKM-X. Query
s of interacting partners of proteins homologous to QPs are displayed as
ctly (TP), missed (FN) and wrongly (FP) predicted surface residues,
ing sites of the interacting partners of 1BA7-B‘s homologues.



Table 6 Performance of docking model rankings according to ground truth criterion (DS93 dataset) based on average
normalizedχ2

Ground truth
criterion

Ranking method applied to DS93

x-rmsd Interfaces + PioDock PrISE +PioDock T-PioDock IBIS +PioDock IRAD ZRANK SPIDER SVM TSVM MI

i-rmsd 5.2 11.6 27.5 30.0 30.2 39.5 43.3 49.1 60.7 61.4 67.8

l-rmsd 6.0 12.5 27.0 29.7 33.5 39.5 44.2 50.6 63.9 64.5 70.9

In row denoted by i-rmsd and l-rmsd, rankings are compared against ground truth rankings generated by interface rmsd and backbone rmsd, respectively. x-rmsd
refers to l-rmsd ranking for the first row and i-rmsd for the second row.

Esmaielbeiki and Nebel BMC Bioinformatics 2014, 15:171 Page 9 of 16
http://www.biomedcentral.com/1471-2105/15/171
the ligand of the predicted complex and the ligand of the
actual complex, while i-rmsd restricts its evaluation to
interface residues. Comparisons between the GT ranking
based on l-rmsd and i-rmsd are shown in Tables 6 and 7.
The figures in Tables 6 and 7 are generated by calcu-
lating the normalised Pearson's chi-squared statistic
(normalizedχ2) between two different ranking lists.
This metric proposed by [70] gives a higher weights
to the models that are ranked higher (for details see
Methods section); normalizedχ2 =0 means that the two
lists are identical. In the ‘x-rmsd’ column of Tables 6 and 7,
ranking generated by one GT criterion (e.g. l-rmsd) is
evaluated against the other criterion’s ranking (e.g. i-rmsd).
Although normalizedχ2 values are not 0, they are quite low
which means ranking established by the two GT criteria
agree quite well with each other. Those values are used as
reference scores in further evaluations.
In a first set of experiments, T-PioDock was compared

to other state-of-the-art methods using DS93. In addition,
we evaluate the PioDock module by applying it on
the ground truth interfaces of the target complexes
(Interfaces + PioDock) instead of their T-PIP predictions.
We have used two different metrics to perform this
comparison which are (i) normalizedχ2 and (ii) mean log
rank metric (MLR) (for details see Methods section).
Table 6 displays the average normalizedχ2 between the GT
and rankings produced by each method. First, although
Interfaces + PioDock is not based on interface prediction,
but actual interfaces, its normalizedχ2 is worse than the
reference scores (here, it is the double). This can be
explained by the fact that since docking interfaces are
treated as two set of interface residues without any
pairwise knowledge (patches), which is the output of
current interface predictors, they could perfectly overlap
even if the position of a binding partner was rotated around
the centre of the patches. Second, we have investigated
Table 7 Performance of docking model rankings
according to ground truth criterion (DS128 dataset)
based on average normalizedχ2

Ground truth
criterion

Ranking method applied to DS128

x-rmsd Interfaces + PioDock T-PioDock

i-rmsd 5.9 13.6 23.3

l-rmsd 6.4 15.0 23.4
usage of other interface predictors (here PrISE and IBIS)
along with PioDock (shown as PrISE + PioDock and
IBIS + PioDock, respectively) in ranking docking confor-
mations. As demonstrates in the table PioDock based
rankings are superior to all other methods whatever the
criterion used to generate the GT rankings. Results of
PioDock with 3 state-of-the-art template based interface
predictors show very similar results (large standard
deviations show that differences are not significant).
Although those methods generate interfaces with different
amino acid compositions, this does not affect PioDock
much since it relies implicitly on comparing interface
‘patches’ to see if a complex is compatible or not. These
results highlight the robustness of PioDock to small
variations in interface predictions. Moreover, relative
performances between other methods are in agreement
with previously reported results [63,64,67,74].
Analysis of T-PioDock according to its ability to highly

rank near-native conformation is performed using the mean
log rank metric (MLR) (see Methods section for details).
This measures the rank of the first conformation with an
RMSD < 10 Å from the actual model. Table 8 displays
these results for l-rmsd. Note that since MLR is based
on backbone comparison, ranking comparison based
on i-rmsd is not possible. Similarly to previous results
T-PioDock performs well and all PioDock based rankings
of first native conformation improve on other state-of-
the-art methods (comparisons using alternative metrics
are available in Additional file 6).
In a second set of experiments, T-PioDock is evaluated

on DS128, see Table 7. As expected, better interface
predictions for this ‘trivial’ dataset leads to better quality
of rankings for T-Piodock compared to DS93.
In order to have further insight regarding ranking as a

mean of identifying near native configurations, Figure 5
displays the i-rmsd of the best produced docking model
versus the i-rmsd of the model ranked number one by
T-PioDock and Interfaces + PioDock on DS93 and DS128.
First, the figure reveals the heterogeneous quality of the
best docking model generated for a given target. On this
set, the i-rmsd varies between an excellent 0.6 Å to a very
poor 17.0 Å with a 4.9 Å average and a large standard
deviation of 3.7 Å. Moreover, 13 targets (red squares/blue
crosses on the right hand side of the vertical dashed
line on Figure 5) did not have a single model below a



Table 8 Performance of docking model rankings according to ground truth criterion (DS93 dataset) based on mean
log rank metric

Ground
truth
criterion

Ranking method applied to DS93

Interfaces + PioDock PrISE +PioDock T-PioDock IBIS +PioDock IRAD SPIDER ZRANK MI TSVM SVM

l-rmsd 1.3 3.1 5.1 5.2 6.5 7.6 8.2 12.3 12.7 13.3
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10 Å i-rmsd. Second, this figure shows good correlation
between the quality of the best docking model and the
ability of both T-PioDock and Interfaces + PioDock to
detect that model, correlations of 0.65 and 0.81 respect-
ively. A similar pattern is obtained using l-rmsd as GT
(See Additional file 7).
Since the quality of the best docking model is very

unequal, it is interesting to quantify how it affects model
ranking by T-PioDock. In order to study this, best
models from the ‘homologous’ target set were clustered
using K-means clustering into three groups, i.e. good,
average and bad, after normalisation. In Table 9, the
average normalizedχ2 per group shows that T-PioDock
produces significant better ranking when a better quality
model is available. This suggests that progress in docking
would lead to better performance by T-PioDock.
Finally, since one of the goals of T-PioDock is to

recognise near native models among all predictions,
we conducted an experiment where the actual target
structure was included in the list of possible models.
After ranking, for each target, the relative rank of the
native pose among all produced models was extracted.
The histogram in Figure 6 shows that the native pose
tends to be present in the top of the ranking lists.
For example, 16% of the native models are within the
5 first positions.

Discussion
This study has confirmed that despite sustained activity
in the field, the prediction of a complex 3D structure
remains a challenge. First, docking software may not be
Figure 5 Correlation between the best model produced by docking a
and T-PioDock.
able to produce any near native conformation among the
generated set of putative models. Second, identification of
the best conformations remains a difficult task. In this
work, we have contributed to this topic by offering a
pipeline, T-PioDock, for scoring docking models according
to the overlap of their components’ predicted interfaces.
Experiments evaluating the proposed scoring process,

PioDock, on actual interfaces (Interfaces + PioDock system)
showed that the treatment of docking interfaces as patches
instead of sets of residue interactions affects the quality of
the model selection process: two patches can perfectly
overlap even if all binary residue interactions are incorrect.
Unfortunately, there is currently no promising alternative
since current state of the art in interface prediction is not
able to work at such a level of details even if this has started
to be explored [61,74]. Although this is an important issue,
the study has revealed that the main source of scoring
inaccuracy resides with the quality of predicted interfaces,
see Table 7. Exhaustive evaluation of interface prediction
methods demonstrated that T-PIP is a state-of-the-art
method; moreover comprehensive comparison of state-of-
the-art methods for ranking docking models supported its
integration within the T-PioDock framework. However,
as Tables 1 and 2 showed, performance of interface predic-
tions remains unsatisfactory: most metrics returns values
within the 40-60% range, with the notable exception
of ‘accuracy’, ~85%, which benefits from the low ratio
between interface and non-interface residues. Although
there is no doubt that the sustained growth of the PDB
[8] will benefit template based methods and T-PIP in par-
ticular, Figure 3 also highlighted that T-PIP prediction
nd the best ranked model according to Interfaces + PioDock



Table 9 T-PioDock ranking performance (average
normalizedχ2 based on the quality of the best model

Ground truth
criterion

Quality of the best model

All Good Average Bad

i-rmsd 30.0 23.7 35.7 39.4

l-rmsd 29.7 21.5 37.1 47.6
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could not outperform the best available homologue inter-
face. This may be explained by the fact that residues
are selected independently without considering pair-
wise interactions, whereas homologues present inter-
faces where residues belong to a consistent interaction
network. While experiments reported in Table 1 have dem-
onstrated the superiority of template based methods over
feature based ones, one would expect than analysis of local
features could complement initial template based predic-
tion by bringing local contextual information.

Conclusion
In this study, we have presented a novel framework,
T-PioDock, for prediction of a complex 3D configuration
from the structures of its components. It aims to support
the identification of near-native conformations by scoring
models produced by any docking software. This is achieved
by exploiting predictions of complexes’ binding interfaces.
Exhaustive evaluation of interface predictors on standard

benchmark datasets has confirmed the superiority of
template based approaches and has shown that the T-PIP
methodology is a state-of-the-art method. Moreover,
comparison between PioDock and other state-of-the-art
scoring methods has revealed that the proposed approach
outperforms all its competitors.
Despite the fact that detection of native-like models is

an active field of research, accurate identification of
near-native conformations remains a challenging task.
Although availability of 3D complexes will be of benefit to
template based methods such as T-PioDock, we have
identified specific limitations which need to be addressed.
Figure 6 Histogram of the relative T-PioDock rank of the native confi
First, docking software are still not able to produce
native-like models for every target. Second, current
interface predictors do not explicitly refer to binary
residue interactions which leaves ambiguity when
assessing quality of complex conformations.

Methods
T-PIP: Template based Protein Interface Prediction
As described in Figure 1, the T-PIP module, first, evaluates
the complexity of a protein target in terms of availability
of 3D structures of homologous proteins and, second,
applies the most relevant template based interface
predictor. In this study, an interface residue is defined
according to CAPRI’s definition [44], i.e. an amino
acid whose heavy atoms are within 5 Å from those of
a residue in a separate chain.
Initially, protein targets are categorised into three

categories: ‘trivial’, ‘homologous’ and ‘unknown’. This is
achieved by, first, searching homologues of the query
proteins in PDB [8] using Blast [79]. Since the aim is to
learn from the interaction pattern of these homologues,
only those involved in a complex are further considered.
The original target complex under study is purposely
removed from the homologue list. In this study, proteins
are defined as homologous if their sequence similarity is
associated with an Evalue ≤ 10− 2. Since predictions are
not limited to close homologues as IBIS is [35], interface of
more targets can be predicted. If among their homologous
complexes both QPs share at least one complex, the target
is considered to be ‘trivial’, since at least a homologue of
the complete complex is available. If each QP possesses a
set of homologous complexes, but none of them belongs
to both sets, the target is classified as ‘homologous’. Finally,
if no homologous complex is found for at least one of the
QP, the target is judged to be ‘unknown’.
Interfaces of ‘trivial’ targets are simply inferred by

aligning the sequence of each QP with the corresponding
chain from the ‘best’ common homologous complex and
mapping their interface residues on the query chains. In
guration among all docked models.
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order to select the ‘best’ template among all common
complexes, we score them by multiplying the E-values of
both components according to their respective QP. The
common complex with the lower score is selected as the
template from which interfaces are inferred.
‘Homologous’ targets are processed using the WePIP

approach that we proposed recently [32]. For the sake of
completeness, it is briefly summarised here. Based on
the observation that interface residues are usually
structurally conserved between evolutionary related
proteins [30], each QP is structurally aligned to its
homologous complexes – here we only use the top
30 homologous complexes. Multiple 3D alignment is
used to produce a structure-based multiple sequence
alignment (S-MSA) in which each residue of the
homologue complexes is given a score according to
two weights: 1) the query weight is calculated using
the homologue E-value against the QP and 2) the lig-
and weight considers the diversity of the ligand of the
homologues. Diversity of ligands is rewarded given that
they increase generalisation of interaction patterns. The
ligand weight score is designed so that the presence of
complex duplicates does not bias predictions towards their
configuration. This is done by penalising homologous
proteins, whose ligands are similar to each other. Score is
calculated as the average sequence identity between the
sequence of a ligand and all the others as expressed by the
arithmetic mean of the pair wise E-values. Using the
scores in the S-MSA, a combined interaction score is
calculated for each residues of the QP. Finally, residues
with the highest scores are selected as interaction interface
(see Figure 7).
Although WePIP was initially designed for predicting

interface residues for query proteins whose 3D structure
is known, it can also be applied when only the sequence
of the query is available. In this case, an initial S-MSA is
created using only homologous complexes of the QP.
Then, the QP sequence is integrated into that S-MSA
using the ClustalW Profile Alignment command [80] to
create a complete MSA.
At last, interfaces of ‘unknown’ targets are predicted

using a method not relying on homology. As seen in the re-
sult section, fewer than 10% of protein targets of the main
standard datasets could not benefit from homology based
predictions. In this study, we selected a third party template
based interface prediction method, PredUs, which has dem-
onstrated good performance [30,32]. Figure 8, summarises
the interface prediction pipelines mentioned above.

PioDock: Protein Interface Overlap for Docking model
scoring
PioDock scores docking conformations according to
their consistency with interfaces predicted by T-PIP.
Given the putative docking conformation of a complex
A-B, the model is assigned a score on the basis of the
overlap between its interface residues and those predicted
for each of its components, i.e. A and B. We define the
complex overlap score of A-B complexOverlapA − B, as the
average between two overlap scores (overlap) calculated
for A and B separately:

complexOverlapA−B ¼ overlapA þ overlapB
2

where the overlap score for A, overlapA, is calculated using
the following formula proposed by Kuo et al. [81]:

overlapA ¼ interface ADocked ∩interface AT−PIPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
interfaces ADockedð Þ: interfaces AT−PIPð Þp

where interface ADocked and interface AT − PIP in the
numerator of the formula represent , respectively, the
sets of the residue in the interfaces of docked model and
the ones predicted by T-PIP. While interface ADocked

and interface AT − PIP in the denominator represent the
number of residues in the interface of docked model and
the ones predicted by T-PIP, respectively.
complexOverlap scores of native complexes should

equal to 1, whereas completely incorrect interfaces should
be assigned a value of zero. In this study, complexOverlap
score was used to rank all conformational models
generated by docking software for a given complex.
When experiment was conducted to evaluate the PioDock
module on its own, actual target interfaces were used
instead of their predictions.
Note that when no interface prediction could be

performed for one of the two docking partners, the
overlap score for that protein is equal to zero and
complexOverlap score is calculated using only the
overlap score of the other protein.

Evaluation of docking model scorings
In order to allow any evaluation it is necessary to have
some gold standard or ground truth. However, comparison
of two docked models is far from being a straightforward
task since CAPRI uses three differences measures to
assess the docking model quality [78]: l-rmsd measures the
RMSD between the backbones of the two complexes
ligands, i-rmsd restricts its evaluation to interface residues,
whereas fnat is the fraction of native contacts within
the interface. Since fnat can only discriminate between
relatively good configurations – all models failing to
predict a single interface residue receive a score of 0,
only i-rmsd and l-rmsd are used in this study.
As it was proposed by [70], different model scoring

methods can be evaluated by calculating the Pearson's
chi-squared statistic between a gold standard ranking of



Figure 7 Example of interface prediction for a ‘homologous’ target. Red, yellow and blue highlights identify residues which are correctly,
missed and wrongly predicted as surface residues. 3D representation of this interface is provided in Figure 4A).
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models and rankings generated by those methods. The
chi-squared statistic (x2) determines the goodness of
relationship between a set of observed and a set of
expected values:

χ2 ¼
Xn
k¼1

observedk−expectedkð Þ2
expectedk

Here, expectedk is the rank of the model κ in the gold
standard and observedk is the rank assigned to model κ
by a ranking method. Since the number of docked models
may differ between protein pairs, the chi-squared statistic
Figure 8 T-PIP Pipeline. For a pair of proteins, depending on the existenc
‘trivial’, ‘homologous’ or ‘unknown’. The interface of ‘trivial’ is simply predict
and ‘unknown’ categories, WePIP and PredUs are used, respectively.
is normalized using the total number of docked models
produced for that protein pair, m:

normalizedχ2 ¼ χ2

m

normalizedχ2 represents the similarity between two
ranking lists by giving higher weights to the models that
are ranked higher based on the gold standard: correct
ranking is more important for top-ranking models than
lower-ranking models. Perfect ranking would return a
value of 0.
e of homologous complexes, interfaces are categorised as either
ed using the ‘best’ available complex template. For the ‘homologous’
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In order to evaluate if T-PioDock improves the rank of
near-native models, we have used mean log rank metric
(MLR) introduced in [82]. MLR calculates the mean
rank of the first near-native conformation in ranking
lists. For each target under study, the rank of the first
conformation within 10 Å RMSD deviation of the GT
complex (‘hit’) is recorded. Then, the MLR of all targets
is calculated as below:

MLR ¼ exp
1
Nc

XNc

i¼1

ln Rankið Þ
( )

Where Nc is the number of targets and Ranki is the
rank of the ‘hit’ for target i. In the best case, if, for all
targets, the ‘hit’ is placed in rank 1 then MLR equals to 1.

Interface prediction evaluation
In order to compare the performance of interface predic-
tors, their True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN) rates need to be
calculated [83]. Correctness and wrongness of predictions
are calculated in respect to the ground truth (GT), which is
defined as the X-ray structure of the target protein in its
complex form. To summarise these four figures into a
single performance measure, a few metrics have been
proposed. Below we describe the measures we use in
this paper:
To study the quality of predicted interface residues in

respect to GT interfaces, recall is used:

recall ¼ TP
TP þ FN

Recall (also called sensitivity) evaluates the percentage
of correctly predicted interfaces. A complement measure
to recall is precision which evaluates how many of the
predicted interfaces do actually belong to the GT interface:

precision ¼ TP
TP þ FP

To combine the previous measure, F1 score calculates
the harmonic mean of precision and recall:

F1 ¼ 2� precision� recall
precisionþ recall

None of the above mentioned metrics consider the
four figures of (TP, TN, FP and FN) at the same time
which can bias performance comparison. Therefore,
metrics which integrate all the four figures were
introduced [84]. Accuracy has been one of the widely
used metrics which express the ration of correctly
predicted interface and non-interface residues to the
total number of cases:

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

An alternative has been the Matthews correlation coef-
ficient (MCC):

MCC ¼ TP � TNð Þ− FP� FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TPþ FPð Þ � TNþ FPð Þ � TNþ FNð Þp

MCC has shown to be effective especially for predictors
which are biased because of the imbalances in their
training set.
While receiving operator characteristic (ROC) plots

[85] have also been widely used to evaluate classification
predictors, they have not been used in this study since
very few of our competitors have reported them in their
publications.
Since the above mentioned metrics capture different

aspects of a predictor’s performance, all of them are
required for evaluation.

Availability and requirements
T-PIP and T-PioDock software are available from
http://manorey.net/bioinformatics/wepip/.
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chains. It provides all the pdb codes of protein targets and their
corresponding unbound chains.

Additional file 2: Complete list of DS236 targets and their unbound
chains. It provides all the pdb codes of protein targets and their
corresponding unbound chains.

Additional file 3: Comparisons between T-PIP, PredUs and PrISE on
enzyme-inhibitor, antibody-antigen and others categories of DBMK.

Additional file 4: Complete list of DS93 targets and their unbound
chains. It provides all the pdb codes of protein targets and their
corresponding unbound chains.

Additional file 5: Complete list of DS128 targets and their unbound
chains. It provides all the pdb codes of protein targets and their
corresponding unbound chains.

Additional file 6: Performance of docking model rankings methods
according to ground truth criterion based on Weighted Average
Spearman's rank correlation coefficient and Weighted Average Rank of
the first solution. It provides performance comparison (on DS93 dataset)
between different ranking methods.

Additional file 7: Correlation between the l-rmsd of best model
produced by docking and the best ranked model according to
Interfaces + PioDock and T-PioDock. It displays the l-rmsd of the
best produced docking model versus the l-rmsd of the model ranked
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