Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models

Eisank, Clemens, Smith, Michael and Hillier, John (2014) Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models. Geomorphology, 214, pp. 452-464. ISSN (print) 0169-555X

Full text available as:
[img]
Preview
Text
Smith-M-28593-VoR.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (2MB) | Preview

Abstract

Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter (SP), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the reliability, validity and applicability of results.

Item Type: Article
Additional Information: This research was supported by the Austrian Science Fund through the project "KnowLand - Knowledge and Semantics in Landform Classification" [grant number FWF-P23818-N23) and through the "Doctoral College GIScience" [grant number FWF-DK1237-N23).
Uncontrolled Keywords: land-surface segmentation, object-based image analysis (obia), synthetic drumlins, geomorphometry, supervised, region-growing
Research Area: Earth systems and environmental sciences
Faculty, School or Research Centre: Faculty of Science, Engineering and Computing (until 2017)
Faculty of Science, Engineering and Computing (until 2017) > School of Geography, Geology and the Environment
Related URLs:
Depositing User: Automatic Import Agent
Date Deposited: 29 Aug 2014 14:12
Last Modified: 18 Apr 2016 10:03
DOI: https://doi.org/10.1016/j.geomorph.2014.02.028
URI: http://eprints.kingston.ac.uk/id/eprint/28593

Actions (Repository Editors)

Item Control Page Item Control Page