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Abstract

Background: Hidden Markov Models power many state-of-the-art tools in the field of protein bioinformatics. While
excelling in their tasks, these methods of protein analysis do not convey directly information on medium- and
long-range residue-residue interactions. This requires an expressive power of at least context-free grammars.
However, application of more powerful grammar formalisms to protein analysis has been surprisingly limited.

Results: In this work, we present a probabilistic grammatical framework for problem-specific protein languages and
apply it to classification of transmembrane helix-helix pairs configurations. The core of the model consists of a
probabilistic context-free grammar, automatically inferred by a genetic algorithm from only a generic set of
expert-based rules and positive training samples. The model was applied to produce sequence based descriptors of
four classes of transmembrane helix-helix contact site configurations. The highest performance of the classifiers
reached AUC ROC of 0.70. The analysis of grammar parse trees revealed the ability of representing structural features
of helix-helix contact sites.

Conclusions: We demonstrated that our probabilistic context-free framework for analysis of protein sequences
outperforms the state of the art in the task of helix-helix contact site classification. However, this is achieved without
necessarily requiring modeling long range dependencies between interacting residues. A significant feature of our
approach is that grammar rules and parse trees are human-readable. Thus they could provide biologically meaningful
information for molecular biologists.

Keywords: Probabilistic context-free grammar, Grammar inference, Genetic algorithm, Helix-helix contact,
Protein structure prediction

Background
Language is a way in which an infinite number of mean-
ings can be expressed by a finite number of symbols
using a finite number of rules. Strikingly, this creativity
is a feature shared by natural languages and languages
of nature [1]. Indeed, numerous sequences and folds of
polymeric biomolecules, such as DNA, RNA and proteins,
are built from just a few types of nucleotides and amino
acids. Moreover, physicochemical laws that drive folding
and determine function of biopolymers can be some-
times confined to rules as simple as Watson-Crick pairing.
Since the 1980s methods of computational linguistics have
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been applied to molecular biology [2-7], gradualy gaining
importance in the field [1,8-11]. For example, probabilistic
context free grammars have become a standard approach
to RNA structure prediction [12-18]. In the realm of pro-
teins, non-probabilistic regular expressions are used to
represent functional patterns in PROSITE [19,20], while
Hidden Markov Models power state-of-the-art homology
search tools such as HHsearch [21,22], HHblits [23] and
HMMER [24-26], and are used to represent Pfam domains
[27,28]. While excelling in their tasks, these methods of
protein analysis do not convey directly information on
medium- and long-range residue-residue interactions. As
these interactions determine protein structure, they are
essential for defining a protein language. This requires
an expressive power of at least context-free grammars.
However, application of more powerful grammar for-
malisms to protein analysis has been surprisingly limited.
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They have mainly been concerned with modeling of β-
sheets [29-34] and α-helical pairs and bundles [35,36]
using context-free and mildly context-sensitive grammars.
Moreover, probabilistic context-free grammars have been
applied to analysis of ligand binding sites [37] and antimi-
crobial peptides [38] showing that produced parse trees
could provide biological insight into the modeled struc-
tures. Finally, whatever their complexity level, grammati-
cal models have proved to be useful for protein structure
annotation [37,39] and prediction [32,35,40-42] and to
designing synthetic peptides [38,43].

In this work, we present a probabilistic grammatical
framework for problem-specific protein languages and
apply it to classification of transmembrane helix-helix
pairs configurations. The model covers the lexical (pri-
mary structure) and syntactical (secondary and tertiary
structure) levels of protein linguistics. Moreover, as pro-
tein function cannot be separated from protein structure,
our model also reaches the semantic level.

Protein structure prediction from intra-protein contacts
Transmembrane (TM) proteins are important targets for
computational modeling methods, as they are - despite
recent progress - significantly underrepresented in the
Protein Data Bank [44]. It has been estimated that around
25-30% of proteins in human body are TM proteins
[45,46]. Unfortunately, since TM proteins are usually very
large water insoluble molecules anchored in the lipid
bilayer, their extraction, crystalization and analysis are dif-
ficult tasks. Currently only 2% of structures stored in PDB
belong to transmembrane proteins, according to PDBTM
service [47], as of April 2012. The lack of experimen-
tal structures cannot be compensated by template-based
modeling (homology and threading), which is estimated
to cover no more than 10% of all human TM proteins [46].

Widely-used de novo approaches to structure predic-
tion usually rely on exploration of protein conformational
space by utilizing existing knowledge (such as database
of fragments), and evaluation of candidate solutions
by minimizing energy functions [45,48-52]. Successful
predictions by these methods are currently limited to
proteins up to 200-300 amino acids long because com-
putational power limits the size of the conformational
phase space that can be searched, typically 20,000-200,000
models per protein [53,54]. It was suggested that predic-
tion of larger protein domains would become possible
upon introduction of additional constraints to the confor-
mational space [55], such as accurately predicted residue
contacts [56,57]. Since contacts between distant residues
tend to determine the overall global protein structure,
prediction of these molecular contacts has been recog-
nized early as a promising strategy in predicting the
three-dimensional structures of proteins [48,58-60]. It was
estimated that as few as one contact in every eight residues

would be sufficient to find the correct fold of a single
domain protein [59,61]. In a recent study, Sathyapriya
et al. [62] have shown that it is possible to reconstruct a
protein model at 4.8 Å resolution based on a partial con-
tact map containing only 8% of all contacts. This research,
which selected key contacts using a graph theory algo-
rithm, suggests that some contacts are structurally more
significant than others. They called them the structural
essence of protein, since they seem crucial for protein
core packing. Interestingly, this structural essence con-
tains mostly inter-secondary structural contacts and con-
tacts from loop regions, while ignoring intra-secondary
structural contacts and contacts on the protein surface.
Moreover, even the prediction of a few contacts is useful
to constrain conformational searches in ab initio pre-
diction [53,63]. Using inter-residue contact information
in the process of protein modeling can be beneficial at
multiple stages, from adding constraints during the fold-
ing process, through refinement of produced models, to
ranking of final models [54,64]. Consequently, the predic-
tion of intramolecular contacts has become an active field
of research. Intramolecular contact prediction methods
can be classified into three non-exclusive categories [65]:
homologous template, machine learning [65-70] and sta-
tistical correlated mutations [71-75] approaches. Recently,
Hopf et al. [46], and Nugent and Jones [76] have shown
that, by applying contact information extracted from evo-
lutionary covariation of amino acids [77,78], the upper
limit of the size of predicted TM protein of unknown
structure could be lifted up to at least 500 residues.
Remarkably, this required only ca. 500 candidate mod-
els per protein and no use of database fragments [46,79].
However, predicted residue contacts required validation
by predicted TM topology [46]. Moreover, these evolu-
tionary covariation methods [77,78] rely on availability of
hundreds of homologous sequences.

Helix-helix contacts in transmembrane proteins
Over 80% of known structures of transmembrane (TM)
proteins are classified as α-helical [47]. Despite a wide
variety of biological functions, they display relatively sim-
ple architecture [80]. In TM proteins, molecular contacts
between helices are crucial as they provide a structural
skeleton. TM helices are typically longer (on average: 26
amino acids) and more tightly packed than helices in sol-
uble proteins [81,82]. A stable interaction between two
helices requires that several residues from each helix are
involved in the helix-helix contact [83]. We call this struc-
ture a helix-helix interface in this manuscript.

Despite a relatively small number of experimental struc-
tures, substantial research effort during the last decade
revealed many distinctive features of TM helix-helix inter-
actions. Similarily to water soluble proteins, four residues,
i.e. leucine, alanine, isoleucine and valine, mediate helix
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interactions in a coiled-coil fashion. They form a knobs-
into-holes motif represented by the leucine zipper: a hep-
tad repeat of leucine residues, LxxLxxxLxx [84,85]. In
addition, a second motif GxxxG containing tightly packed
small residues, alanine, glycine, serine and threonine is
characteristic of transmembrane proteins [85,86]. Indeed,
the side chains inside helix-helix interfaces on average
are shorter than those in the non-interface parts of the
helices [87]. Interestingly, the glycine and proline residue
types, normally associated with helix-breaking propen-
sity, are relatively common in transmembrane helices [88].
This suggests that glycine residues serve as molecular
notches for orienting multiple helices in protein com-
plexes [89]. Recently, Marsico et al. [90] developed a
database of sequential motifs in transmembrane proteins
using a structural fragment clustering method. While they
found 213 statistically significant non-redundant motifs
specific to α-helical transmembrane proteins, only 5 of
them were assigned a role in helix-helix packing.

Helices have smaller crossing angles in membrane pro-
teins than in water soluble proteins, which is consistent
with the requirements of structural compactness and
membrane spanning [88]. The helix-helix packing mode
in transmembrane proteins was quantitatively studied by
[83]. They represented the mutual orientations of local
axes by a single parameter. It was showed that a spe-
cific range of parameter values is preferred for helices of
anti-parallel orientation. However, interactions between
helices of parallel orientation appeared to be less con-
strained. Finally, a study by Walters and DeGrado [91] on
helix packing motifs revealed that 90% of known configu-
rations of helix-helix interactions in transmembrane pro-
teins could be accurately represented using only a set of
eight 3D templates [91]. In their research, helix pairs were
clustered according to the 3D similarity (RMSD ≤ 1.5 Å)
of their fragments involved in the helix-helix contact.
Their study also highlighted position-specific sequence
propensities of amino-acids and the occurrence of the
GxxxG motif.

Helix-helix contact prediction in transmembrane proteins
An early approach to helix-helix interaction prediction
was based on a scoring function which rewarded the
formation of contacts between small residues and penal-
ized the burial of large amino acids [92]. A method
relying on co-evolving residues was developed by Fuchs
et al. [73]. Using a consensus approach combining cor-
relations from different algorithms, 53% of predicted
contacts were within one helix turn from the observed
contacts. Moreover, 72% accuracy was reported for helix-
helix contact prediction based on at least 5 correlated
mutations per helix pair. The same group predicted con-
tacts between residues with 26% accuracy using a neural
network approach [69]. This resulted in 78% accuracy

in helix-helix contact prediction. Lo et al. [93] devel-
oped the webserver TMhit, which predicts membrane
protein topology using a support vector machine. Later,
they designed a framework for prediction of helix-helix
interactions in membrane proteins from residue contacts,
which achieved 56% accuracy [68]. Recently, Nugent and
Jones [70] trained a support vector machine classifier that
predicted residue contacts and helix-helix interactions in
TM proteins. They reported an accuracy of up to 70%
per residue-residue contact and up to 65% per helix-helix
interaction, slightly better than a similar method called
SVMcon [67]. In another line of research, Barth et al.
[53] addressed the problem of helix-helix interaction pre-
diction by creating sequence profiles from a library of
helix pairs whose spatial configurations were known. In
their method a helix pair in the query was compared
to helix pairs in the library by calculating profile-profile
scores between the pairs. While the overall accuracy of
helix packing prediction was rather low (17-30% of cor-
rect backbone orientations), it was sufficient to constrain
ab initio prediction of TM protein structures in ROSETTA
[45,49,50]. Significantly, this approach does not model
interactions between contacting residues from the two
helices since this would require a more complex model
than sequence profiles.

In general, the accuracy of methods for helical trans-
membrane proteins topology prediction appears to be
higher than most prediction methods applied on globular
proteins, however it decreases slightly with the increasing
variety of structures [94]. Unfortunately, the most suc-
cessful machine learning techniques do not reveal which
biophysical or biochemical features of interacting helices
are relevant to achieve high level of accuracy [94]. Such
a method would require the ability to represent long
range dependencies between contact residues crucial for
helix-helix interactions. Waldispuehl and Steyaert [35]
proposed a multi-tape S-attributed grammar to represent
helix bundles in TM proteins. In their model, a single
pair of helices in an α-helix bundle is described by a set
of grammar rules of a non-probabilistic context-free lan-
guage capable for accounting of majority of inter-helical
dependencies. At each stage of the sequence processing, a
value (attribute) that reflects folding cost is calculated.

Sequence-based single helix prediction of transmem-
brane proteins has already achieved a very satisfac-
tory level, i.e. 97% accuracy per residue [95]. Moreover,
since the accuracy of helix-helix contact site prediction
based on intra-protein contact prediction has recently
reached 70-80% [67,69,70,73], we propose to extend these
previous studies. In this work, we introduce a probabilis-
tic context-free grammar-based method for sequence-
based prediction of structural classes of transmembrane
helix-helix contact sites. The specific task addressed in
this research is to predict the contact site class of a
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helix-helix pair assuming that the helix pairing is known
(e.g. the i-th helix is in contact with the j-th one). The clas-
sifier predicts whether the pairing belongs to a particular
structural class of helix-helix contact site. Our clustering
of transmembrane helix-helix contact sites into structural
classes is based on the pioneering work of Walters and
DeGrado [91]. According to their research, 67% of inter-
acting helix pairs can be grouped into only 4 main classes.
While their classification was based purely on a geomet-
rical basis, we worked on the hypothesis that there are
sequence level motifs associated to these classes, anal-
ogously to patterns described in [85,86,90], hence our
method is only sequence-based. Since a helix pair repre-
sentative for a structural class can be regarded as a 3D
template, our task can be interpreted as assigning the
appropriate 3D template to a contact site between a pair of
helices of unknown 3D structure. Hence, this is equivalent
to prediction of 3D structure of protein fragments. Such
a method could be valuable to constrain ab initio protein
structure predictions or for threading refinement.

Methods
Probabilistic formal languages
A language L is usually specified by a grammar G, which
is denoted as L = L(G). Classical grammar formalism,
derived from Noam Chomsky’s early research in compu-
tational linguistics [96], defines a grammar G as a tuple:

G =< �, N , P, S >, (1)

where � is a finite set of terminal symbols (alphabet),
N is a finite set of non-terminal symbols, P is a finite
set of production rules, and S ∈ N is a start sym-
bol. N and � are mutually disjoint. Terminal symbols
(or simply terminals) are the only accepted symbols to
appear in a final sentence generated by a grammar, whilst
non-terminal symbols (or non-terminals) are used as tem-
porary symbols by a procedure of sentence derivation. All
production rules are in the form:

(� ∪ N)∗N(� ∪ N)∗ → (� ∪ N)∗, (2)

where ∪ denotes a set union and (� ∪ N)∗ is the set of all
strings over symbols in � ∪N , including the empty string.

Grammars can be classified on the basis of restric-
tions imposed on their production rules, which determine
expressive power of the generated language. A context-
free grammar is able to generate sentences with nested
dependencies. Context-free languages are generated using
rules with only one Left Hand Site (LHS) non-terminal
and any combination of terminal and non-terminal sym-
bols on the Right Hand Site (RHS):

N → (� ∪ N)∗, (3)

This formal definition of a non-probabilistic context-
free grammar G =< �, N , P, S > restricts each rule from
the set P to the following form:

A → α, (4)

where A ∈ N and α ∈ (� ∪ N)∗ [97]. The com-
putational complexity of recognition whether a certain
sentence belongs to a given context-free language is poly-
nomial (O(n2.81) [97,98]) in time in respect to the length
of the sentence [99-103].

Probabilistic formal language L is a generalisation of the
non-probabilistic formal language concept in the prob-
abilistic domain [104]. A probabilistic language can be
viewed as a probability distribution, P(X|L), over a set of
sentences X. Consequently, P(x|L) is the conditional prob-
ability of drawing a sentence x given language L. Proba-
bilistic formal grammar G is a description of P(X|L(G)),
which is usually abbreviated to P(X|G).

A probabilistic context-free grammar (PCFG) is defined
similarly to a non-probabilistic CFG, where probabilities
Pr are attributed to each rule:

A → α, Pr(A → α). (5)

A probabilistic context-free grammar is proper if∑
A→α, α∈(�∪N)∗

Pr(A → α) = 1. (6)

A probabilistic grammar is consistent if a sum of proba-
bilities of generation for all strings belonging to a given
language is equal to one:∑

x∈�∗
Pr(S ∗⇒ x) = 1, (7)

where S ∗⇒ x denotes all possible derivations starting
from S and resulting in a finite string x. In other words, all
the probability mass of the grammar is used for the finite
strings it derives [105]

A parser algorithm can be used to calculate the prob-
ability P(x|G) that a given sequence x was generated by
a certain grammar G (i.e. the sequence x belongs to the
language L(G)) and find the single most likely derivation
for x. The probability P(x|G) is defined as the prod-
uct of probabilities of all grammar rules involved in the
construction of the corresponding parse tree. Parsing of
PCFG is efficient since its computational complexity is
polynomial (less than O(n3)) regarding the string length
[104,106,107].

Grammar parameters inference by maximum likelihood
consists on assigning rule probabilities to maximize the
probability P(X′|G′) over a training set of strings X′. Given
a complete fixed data X, P(X|G′) is a likelihood function
of grammatical model G′, i.e. the higher the likelihood, the
more G′ fits the data. Closeness of a model to the data can
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be measured by relative enthropy (also called Kullback-
Leibler distance) between two distributions p = P(X|G)

and q = P(X|G′) [104]:

D(p‖q) = −
∑

x
p(x) · log

q(x)

p(x)
, (8)

D(p‖q) = −
∑

x
p(x) · log q(x) +

∑
x

p(x) · log p(x).

(9)

In case of model optimization, the term
∑

x p(x)logp(x)

remains constant, therefore minimization of D(p‖q) is
equivalent to minimization of the cross-enthropy Hp(q),
which is an expected value of −log(q) under the true
distribution p:

Hp(q) = −
∑

x
p(x) · log q(x), (10)

It can be estimated by averaging over the fixed training
sample X′ [104]:

Hp(q) ≈ − 1
|X′|

∑
x∈X′

log q(x)), (11)

where |X′| is a size of the training sample X′. The RHS
expression of Eq. 11 is proportional to the logarithm of the
likelihood by a factor of − 1

|X′| [104].
Every proper PCFG is consistent if it minimizes the

cross-entropy function between probability distributions
of the sample and the model [105]. Since a consistent
grammar distributes a unit probability over a spectrum
of possible sequences, maximization of probabilities of
the positive sample is always coupled with minimiza-
tion of probabilities of the negative sample. Consequently,
unlike non-probabilistic grammars, a probabilistic gram-
mar does not require a negative sample for successful
induction.

Practically, two main approaches are used for
learning probabilities of grammar rules: Expectation-
Maximization algorithms (EM) [12,13,15,108] and
evolutionary methods (e.g. Genetic Algorithms (GA)
[37,42,109-115] or Genetic Programming (GP) [116,117]).
A standard EM-based approach using the Inside-Outside
algorithm [118] is highly sensitive to the choice of initial
parameters and usually results in complex grammars,
which are difficult to interpret [113]. Instead, we chose a
GA-based approach, which allows customizing the objec-
tive function and genomic operators in order to facilitate
escaping local optima (see Inference rule weights below).

Probabilistic model of protein languages
We present an original probabilistic grammatical model of
protein languages (see [1,9,119] for use of the term). The
model covers the lexical (primary structure) and syntac-
tical (secondary and tertiary structure) levels of protein
linguistics. Our probabilistic grammatical model can be

divided into 3 layers, reflecting steps in the associated
grammar induction framework (Figure 1). The first layer
is a probabilistic model of a general protein sequence. At
this level, experimental quantitative properties of amino
acids are assigned to their identities using a fuzzy map-
ping. In the second layer, a generic set of grammar rules
is provided. Preferably, the rules are constrained based
on expert knowledge of general dependencies between
residues in protein sequences of interest [37,42]. The main
purpose of this step is to limit the GA search space in
the next layer. In principle, this step could be omitted
and an unconstrained grammar could be passed to the
next step [37,120]. The final layer narrows the grammati-
cal description down to certain classes of proteins, which
are defined in terms of rule probabilities assigned by a
machine learning method.

Probabilistic model of general protein sequences
Since a protein is generally defined by a string composed
of 20 different characters (amino acids), a protein gram-
mar is expected to rely on a large set of terminals. We
proposed to utilize physico-chemical properties of amino
acids, collected from the Amino Acid index database
(AAindex) [121-124], to reduce significantly the number
of possible combinations of the Right-Hand Side symbols
in production rules [37,115]. Relations expressed by these
rules refer to 3 levels of a quantitative property instead of
20 amino acid types, e.g. small, medium or large van der
Waals volume. In this way, a number of rules, which is
maintainable in the learning process, is kept.

For each given property, our method relies on defining
all the rules of the form A → a (called terminal rules)
and associating them with proper probabilities, which are
calculated using the known quantitative values pval asso-
ciated with the amino acid identities. Three non-terminal
symbols (Low, Medium and High) are created to represent
low, medium and high level of the property of interest:

∀ai Low → ai, Pr(Low → ai)
∀ai Medium → ai, Pr(Medium → ai)
∀ai High → ai, Pr(High → ai)

, (12)

where ai is the ith amino acid type. These non-terminals
are later called property non-terminals (pNT). Symbol
Single will be used to refer to a pNT unspecifically:

Single ∈ {
Low, Medium, High

}
. (13)

Each amino acid identity ai is associated with Single
non-terminals with a probability Pr(Single → ai). For
a given property, probabilities are calculated using the
known quantitative values pval. First, each pval is scaled
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Figure 1 3-Layer probabilistic grammatical model of protein languages.

to pval′′ ∈[ −1, 1]. Our original scaling procedure from
pval to pval′′ [37,115] has been refined in order to account
for the residue composition bias found in helices. This
problem-based scaling scheme is defined as follows:

pval′(ai) = pval(ai) − ∑
j pval(aj) · prop(aj),

pval′′L(ai) = pval′(ai)
minjpval′(aj)

,

pval′′H(ai) = pval′(ai)
maxjpval′(aj)

,

(14)

where prop(aj) is the proportion of amino acid aj in the
problem of interest. In practice, prop(aj) are estimated
from amino acid composition of combined positive and
negative learning sets.

The main rationale behind this scheme is that an average
value of property in the environment of interest is often
very specific. For instance, alpha-helices consist of small
and accessible residues (see Additional file 1: Figure S1).
This bias should be taken into account in the process of
design of terminal rules in order to use property space
efficiently.

Terminal rule probabilities are calculated for each
amino acid type ai, using the following formulæ:

Pr(Low → ai) =
{ pval′′L(ai)∑

j pval′′L(aj),
if pval′L < 0

0 if pval′L ≥ 0

Pr(High → ai) =
{ pval′′H (ai)∑

j pval′′H (aj),
if pval′H > 0

0 if pval′H ≤ 0

Pr(Medium → ai) = 1 − (Pr(Low → ai) + Pr(High → ai))

.

(15)

Note that these probabilities are proper.
Based on our preliminary study [42] the properties of

normalized van der Waals volume [125] and information
value for accessibility with average fraction of 35% (called
later accessibility) [126] were chosen as the basis for
the grammars. They are representatives of physiochemi-
cal properties and hydrophobicity categories in AAindex,
respectively [122].

Problem-specific dependencies
The next layer of our probabilistic grammatical model is
dedicated to formalize dependencies between amino acids
in the form of non-terminal grammar rules. Whereas one
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could use a non-constrained set of rules and attempt to
learn their associated probabilities (top-down arrow in
Figure 1), the complexity of the machine learning prob-
lem is such that this would not be practical. Therefore,
we decided to use a grammatical model specially designed
according to expert knowledge to represent helix-helix
contacts [35]. An advantage of problem-specific rules
is that the number of non-terminal symbols can be
increased, while keeping the same number of rules in
a grammar, since the number of non-terminal symbols
defines the degree of complexity of the dependencies
which could be modeled by a grammar.

Moreover, we found previously [37,115] that, to avoid
trivial solutions of the learning, the grammar model
should not allow usage of the same LHS NT symbols in
the terminal and non-terminal rules.

Grammatical model of helix-helix contact sites
Since helix-helix contact site motifs should represent
direct dependencies between sequences of two helices,
a linear sequence pattern or profile cannot be used as
descriptor. A more expressive representation is required.
Given that probabilistic context-free grammars or their
associated parse trees are able to represent pairwise
nested dependencies between residues from two helices,
they appear as suitable descriptor candidates. The major
difficulty is, however, that the specific amino acid com-
position and periodicity of α-helices create a strong heli-
cal signal in the sequence, which can dominate a subtle
helix-helix contact signal during learning process. There-
fore, the weak contact class-specific signal needs to be
extracted from the strong helical noise, in order to allow
modeling of the contact sites. We address this by con-
straining grammar structures so that they reflect general
helix-helix contact site features, such as the helix period-
icity and residue pairing.

Helix interface is defined as a set of residues that are in
contact with residues from the other helix. The residues
of the inner or contact face (interface) of a helix are sepa-
rated by either 1 or 2 residues of the outerface so that an
average helix periodicity of 3.6 residues is preserved. Two
helices are separated by a string of amino acids (turn). The
anti-parallel configuration of a helix pair can be described
schematically by context-free grammar rules, such as [35]:

Interface → InsideRes1 Outerface InsideRes2 | Turn
Outerface → OutsideRes1 Interface OutsideRes2 | Turn ,

(16)

where InsideRes1 means one or two residue(s) of the inter-
face of helix 1; | separates alternative right hand side
symbols.

Now, we present a grammar G, capable of modeling a
helix pair, which imposes helix periodicity (3-4 residues)
and keeps the computational cost of inference low enough

(e.g. not extending ca. 200 rules [37]). This grammar G
is a modified version of the non-probabilistic context-free
grammar Gpair proposed in [35].

The basic alphabet �AA consists of a set of 20 symbols
representing 20 standard amino acid identities:

ai=1..20 ∈ �AA =
{

A, R, N , D, C, E, Q, G, H , I
L, K , M, F , P, S, T , W , Y , V

}
. (17)

Moreover, an empty word ε and four additional symbols:
[, ], { and } are added, which denote boundaries of helix 1
and helix 2, respectively:

� = �AA ∪ {[ , ] , {, }} . (18)

The set of non-terminal symbols N is defined as follows:

N =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Low, Medium, High,
DoubleA, DoubleB, DoubleC ,
InterfaceDD, InterfaceSD, InterfaceDS, InterfaceSS ,
OuterfaceP , OuterfaceSD, OuterfaceDS, OuterfaceSS ,
Turn, Whatever, Any,
Start

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(19)

Low, Medium and High are three property level non-
terminals, as defined in Eq. 12- 15. DoubleA, DoubleB and
DoubleC are three non-terminals to represent two con-
secutive amino acids in a helix. They facilitate expression
of helix periodicity with a limited number of rules. (Note
that, in principle, an arbitrary number of DoubleX symbols
could be used in order to adjust the expressive capability
of the grammar). Symbol Double will be used to refer to
any of them unspecifically:

Double ∈ {DoubleA, DoubleB, DoubleC} . (20)

Four Outerface and four Interface NT symbols are in
the core of the model. Subscripts DD, SD, DS, SS denote
singular or double length of the context of interface or
outerface fragments. Outer − Interface rules ensure that
each complete helix turn is 3 or 4 amino acids long. For
example, OuterfaceSS, which is surrounded by two sin-
gle residues, can only be followed in the derivation by
InterfaceDD which is surrounded by two double residues
(see Eq. 22). The non-terminal Turn covers the part of a
protein sequence which is between fragments of helices
in contact. Whatever refers to a random string of amino
acids. It increases flexibility of the grammar and could
account for weakly constrained residues in the ends of the
contact region. Any non-terminal means any amino acid.
Finally, Start is the starting symbol of the grammar.

The set of rules P is defined in the following way:

∀ai

Low → ai
Medium → ai
High → ai
Any → ai

, (21)
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Double → Low Low | Low Medium | Low High
| Medium Low | Medium Medium | Medium High
| High Low | High Medium | High High

Whatever → Any Whatever | ε

Turn → Whatever ] { Whatever

OuterfaceDD → Double InterfaceDD Double | Single InterfaceSD Double
| Double InterfaceDS Single | Single InterfaceSS Single
| Turn

OuterfaceSD → Double InterfaceDD Double | Double InterfaceDS Single
| Turn

OuterfaceDS → Double InterfaceDD Double | Single InterfaceSD Double
| Turn

OuterfaceSS → Double InterfaceDD Double | Turn

InterfaceDD → Double OuterfaceDD Double | Single OuterfaceSD Double
| Double OuterfaceDS Single | Single OuterfaceSS Single
| Turn

InterfaceSD → Double OuterfaceDD Double | Double OuterfaceDS Single
| Turn

InterfaceDS → Double OuterfaceDD Double | Single OuterfaceSD Double
| Turn

InterfaceSS → Double OuterfaceDD Double | Turn

Start → [ Whatever OuterfaceDD Whatever }
| [ Whatever InterfaceDD Whatever }

. (22)

It is important to note that, strictly speaking, the
grammar structure, described above, allows representing
dependencies between types of residues from two helices
rather than actual residue-residue contacts. However, it
is a reasonable assumption that spatial residue-residue
contacts are likely to imply some constraints on residues
and thus define the dependencies. However, there is no
implication that a dependency indicates a spatial contact.

Inference of rule weights
A positive training set containing examples of sequences
of the protein structure of interest was used to infer rule
weights. A single individual in GA represented the rule
probabilities of a whole grammar. The general principle
was to start the learning process with the complete set of
rules expressing prior general knowledge of the protein
domain. Although this approach leads to quite large sets
of rules (approximately 200) even for moderate alphabets,
it avoids bias which would be introduced by additional

constraints. Goodness of each individual in the population
was evaluated by parsing the entire positive training set
in every epoch of GA. During training, rule probabilities
were inferred to express class-specific dependencies. Only
one best grammar in a single run of GA was recorded. As
convergence of the genetic algorithm to the global opti-
mum cannot be guaranteed, for each grammar generation
setup, we typically performed several runs.

The genotype consisted of a single chromosome coded
with a string of real numbers (< 0, 1 >) linked to gram-
mar rule probabilities. Gene values were normalized in
order to obtain proper probabilities. Only probabilities of
non-terminal rules were evolved. The original population
of 200 individuals, representing grammars, was initial-
ized randomly and then iteratively subjected to evaluation,
selection, reproduction and genomic operators [37]. A
non-linear genotype to phenotype function was used to
facilitate rapid convergence and enhance exploring capa-
bilities of the genetic algorithm [42].
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The objective function of the GA (the function to
be maximized) was defined as an arithmetic average of
logarithms of probabilities returned by the parsing algo-
rithm for all positive training samples. In our frame-
work, an implementation of the Earley algorithm for
probabilistic parsing [103,104,107], where a probability
for a certain node is calculated as a sum of proba-
bilities of all sub trees, was used for training during
grammar induction. The arithmetic average of logarithms
of a sum of probabilities of all sub trees, given by
the parser, is an estimator of cross-enthropy between
the model and sample distributions (Eq. 11), as dis-
cussed in [104]. Therefore, the grammar induction in our
framework was a cross-entropy minimization. Since all
evolved grammars were proper, and, therefore, consistent
[105], negative samples were not necessary for successful
induction.

The fitness score (the measure of goodness of an
individual) was calculated from the objective function
by accomodating the diversity pressure. This improves
exploratory abilities of the GA - settling in local extremes
of the fitness landscape is less likely [109,110]. This
was done by using a triangular sharing function that
decreased fitness score of individuals on the basis of
their similarity to other individuals in the population
[110,127]. The cutoff value of the sharing function, ini-
tially 10.0, was multiplied by 2 adaptatively when improve-
ment of fitness scores slowed down. This shifted a
focus from exploration of entire space towards inspec-
tion of local optima neighborhoods in the late stages
of the evolution. The similarity between chromosomes
was measured using distance DistWH introduced in
[37].

The reproduction step relied on the tournament
method with 2 competitors [37,42,128]. A steady-state
GA with 50% overlap was used. Offsprings were pro-
duced by averaging genetic information of two indi-
viduals with a random distortion in order to enhance
exploratory capabilities of the algorithm. Subsequently,
a classical one point mutation operator was used to
mutate randomly chosen genes. The probabilities of
crossover and mutation were 0.9 and 0.01, respectively.
We found that the simultanous use of 50% overlap
between populations and the random distortion ensured
stable evolution of a reasonably diverse population. Sub-
sequent tests of an alternative approach, utilizing elitism,
showed deteriorated performance. Indeed, the setup of
our GA represented the optimum achieved in empirical
tests.

The algorithm stopped when there was no fur-
ther significant improvement in the best scores (ratio
1.001 over 100 iterations). After grammar induction,
the fraction of rules with near-zero probability is typ-
ically high, because assigning non-zero probabilities to

rules which are never used in any derivation would
decrease grammar fitness to the sample (note that the
grammar is proper). The final set of rules could be
pruned from these low probability rules, which have
a limited impact on the overall score of a scanned
sequence. Therefore, our inference of rule weights could
be seen also as a selection of rules from a generic
set.

The implementation of our grammar induction
algorithm was based on M. Wall’s GAlib library,
which provides a set of C++ genetic algorithm objects
[127].

Scanning of protein sequence
Viterbi style Earley algorithm was used for scanning,
where a probability for any node in the parse tree was cal-
culated as a maximal probability from all sub trees. Not
only the Viterbi algorithm produces good discrimination
between positive and negative samples, but the most likely
parse tree may reflect structural features of a molecule
[12,37].

The aim of this work is a sequence-based classifica-
tion of transmembrane helix-helix contact sites within 4
main structural classes [91]. Two approaches to the clas-
sification problem are tested. In the first case, a grammar
descriptor is trained for each class. Then, it assigns a
score that reflects probability of belonging to the class
to every helix pair sequence in the test set. To increase
robustness of the classification to local minima of the
inference process, scores obtained for the same sequence
from several grammars trained for the same class could
be averaged in order to produce a combined grammar
classifier.

In the second approach, grammar descriptors trained
for different classes are combined into a multiple gram-
mar classifier, as described in detail in the next section. In
this case, the classification problem is treated as a 4-way
classification.

Multiple grammar classifier
Multiple grammar classifier was designed for 4-way clas-
sification problem by combining predictions from gram-
mars trained separately for the four contact classes. The
rational behind this scheme is that a sequence wi of class
q is expected to obtain a high score from the gram-
mar trained for this class and low scores from grammars
trained for other 3 classes. The new score returned by the
multiple grammar classifier, called multiscore, is defined
by the following equation:

multiscoreq(wi) = logPrq(wi) − 1
3

∑
p=1..4,p =q

logPrp(wi),

(23)
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where wi is a sequence of interest, and q is a contact
site class. logPrq(wi) is the log probability of a sequence
wi obtained by the Viterbi style parser using a grammar
trained for class q.

Averaged parse tree
We propose a novel averaged a priori parse tree represen-
tation which conveys additional information allowing the
analysis of grammar descriptors. First, one may observe
that each parse tree of a grammar in the form expressed
by Eq. 22 has exactly one stem defined by the interleav-
ing symbols Interface/Outerface of different types. The
types, denoted by the subscripts DD|SD|DS|SS, deter-
mine whether the Interface/Outerfaceis surrounded by
one or two residues on each side (each side represents a
helix). Therefore, given a sequence of Interface/Outerface
symbols used in the derivation between Start and
Turn, the number of residues originating from each
helix at each step of the derivation is known, e.g.
Start ⇒ OuterfaceDD ⇒ Double InterfaceDS Single ⇒
Single OuterfaceSD Double ⇒ Turn.

Now, let us assign numerical values to property level
non-terminals (see Eq. 21), such that:

val(Low) = 0, val(Medium) = 1, val(High) = 2. (24)

Then, for every non-terminal Double, average level of
property at position 1 and 2 can be calculated according to
grammar rule probabilities. The values would reflect the
preferred level of property, in the range of 〈0, 2〉, at a given
position in the derivation starting with a certain Double
symbol.

E.g. let us consider the surrounding of InterfaceDS
derived from OuterfaceDD providing the subset of rules
and their probabilities given in Eq. 25.

The right hand site context of InterfaceDS is a single
residue, whose level is expected to be on average 0 × 0.5 +
1 × (0.3 + 0.2) = 0.5. In the left hand site context, there
are two residues. The average a priori property level of
the first residue can be calculated as follows: (0.5 + 0.3) ×
(0 × 0.6 + 1 × 0.4) + 0.2 × (1 × 1.0) = 0.52. Similarly,
the second residue is expected to have an average level of

(0.5+0.3)×(0×0.1+1×0.9)+0.2×(1×0.4+2×0.6) =
1.04.

The procedure could be extended for the rules that elon-
gate helix-helix interfaceto generate a unique average a
priori parse tree. In the paper, the preferred property lev-
els of the average a priori parse tree are represented by the
branch lengths (rounded to the nearest integer).

Measures of performance
The performance of grammar classifiers was evaluated
using the Leave-One-Out and 4-fold Cross-Validation
schemes (LOOCV and 4-fold CV, respectively) and on an
independent test set. The LOOCV procedure consisted
of training on all but one positive samples, and then test-
ing efficiency of recognition of that one sample among
all negative samples. Similarly, the 4-fold CV consisted of
training on 3/4 of positive samples, and then testing effi-
ciency of classification on the remaining 1/4 of positive
samples and all negative samples.

To measure quality of grammars, we use the ROC curves
[129,130], defined in terms of False Positive (FP) and
True Positive (TP) rates. TP rate is also called Sensitiv-
ity or Recall, while FP rate equals to 1 − Specificity. The
measures have an advantage of being independent of rela-
tive sizes of positive and negative samples. The area under
ROC curve or AUC ROC is used for general assessment of
classifier quality and selection of the best grammar. The
cumulative character of AUC ROC parameter makes it
convenient for evaluation of the performance of automat-
ically induced classifiers. AUC ROC is a good indicator
of a learning method efficiency [129,130]. In this paper,
we always report the average of AUC ROCs calculated
from ROC curves obtained for different cross-validation
subsets.

Note that in the case of LOOCV, the value of AUC ROC
is equal to Specificity (or True Negative rate) at the thresh-
old value equal to the score of the only positive sample.
Indeed, at this point, since the Sensitivity (or TP rate)
increases from 0 to 1, the ROC curve climbs up (ROC
curve in the LOOCV can be written as a Heaviside
function: H [ 1−Specificity(scorethepositivesample)]). In other
words, the value of AUC ROC is equal to the fraction

DoubleA → Low Low (0.10) | Low Medium (0.50) | Medium Medium (0.40)

DoubleC → Medium Medium (0.40) | Medium High (0.60)

OuterfaceDD → DoubleA InterfaceDS Low (0.50)

| DoubleA InterfaceDS Medium (0.30)

| DoubleC InterfaceDS Medium (0.20)

. (25)
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of the negative set which obtained worse score than the
positive helix pair.

In addition, the ROC curves produced using the verti-
cal averaging method [130] for band length 0.1 are pro-
vided for LOOCV and 4-fold CV. In the case of LOOCV,
approximate confidence bars based on normal approxi-
mation intervals [131,132] are shown (see [132,133] for
critical assessment of the method). Based on the aver-
aged ROC curves, Precision, Recall, their harmonic mean
F1, and Accuracy are provided for selected FP rate
thresholds.

For the multiple grammar classifiers, a ROC curve is
computed using multiscores.

Datasets
Overview
The Walters and DeGrado dataset of transmembrane
helix-helix contacts [91], referred as WDG, contains 445
interacting transmembrane helix-helix pairs whose length
varies from 10 to 14 residues per helix. In this study, we
only considered the 4 most populous (67% of all cases)
types of contact sites out of 14 created by the authors.
Those 4 classes, that are referred as c1-c4, contain 300
pairs (130, 71, 57, 42 in classes 1-4, respectively). The
other classes were omitted because they do not include
sufficient number of members for automated training of
classifiers.

We define a helix pair as anti-parallel if residues in the
N-terminus of the first helix interact with residues in the
C-terminus of the other helix. Analogically, if residues in
the N-terminus of the first helix interact with residues in
the N-terminus of the other helix, we call such a helix pair
parallel. In the most populous class 1 (29% of the helix
pairs in the WDG set), the helices are arranged antiparal-
lelly. The crossing angle is relatively small (24◦±10), while
the average geometrical distance between two helices is
8.6±0.9 Å. The distinctive feature of the class is a heptad
repeat of small residues (glycine (G), alanine (A), serine
(S)). Small amino acids are also frequent in the middle of
the heptad. Class 2, which covers 16% of the helix pairs, is
another example of antiparallel packing. While the aver-
age geometrical distance between two helices is similar to
the one found in class 1 (8.6±1.0 Å), the crossing angle
is on average greater than in class 1 (34◦±14). At the
sequence level, the small residues spaced at four-residue
intervals (i.e. GxxxG motif ) form a flat surface approached
by larger residues in the opposite helix, spaced at the
same interval. Class 3 (13% of the dataset) is the paral-
lel version of class 2. It has the largest average crossing
angle (38◦±8), while the average geometrical distance is
the shortest (7.9±0.9 Å) among the four classes. Similar-
ily to class 2, GxxxG motif is typically present on one of
the two helices. Finally, class 4, which accounts for 9%
of the helix pairs, has a parallel configuration resembling

class 1. Reversely to class 3, it has the smallest average
crossing angle (14◦±17) and the largest average geometri-
cal distance (9.8±1.2 Å). Interestingly, no position specific
propensities for small residues were found in this class by
[91].

The number of transmembrane protein structures in the
PDB database [44] has increased significantly since mid
2006, when [91] research was completed. Therefore, we
created a new PDBTM dataset based on the PDBTM
database [47]. To avoid closely homologous structures,
only 285 non-redundant (at 40% identity) alpha-helical
chains were extracted from the PDBTM database (as of
30th November 2009). Note that contacts between helices
from two chains in homo-oligomeric proteins are not rep-
resented in this dataset. Helix pairs with at least 1 residue
in contact, according to Promotif3 [134] definition, were
searched. This procedure resulted in the dataset, referred
as PDBTM, containing 641 whole helices involved in
contacts.

Construction of datasets
For each of the four main classes c1-c4, the helix-helix
pair acting as centroid (3D template) in the WDG dataset
was selected as class representative. Since processing helix
pair sequences of varying lengths introduces an extra level
of complexity, which may lead to a decrease in perfor-
mance, we first truncated those templates to the length
of 10-10 residues using a criterion of the most concise
geometrical representation (least sum of inter-helical spa-
tial distances between Cα atoms), see Additional file 2:
Figure S2. Then we aligned all WDG and PDBTM pairs to
the WDG class centroids and the best match over 10-10
residue length was calculated according to RMSD. Then
the fragments were assigned to the four classes according
to a RMSD cutoff threshold of 1.50 Å, as in [91], in order to
keep only the best pairs. While helical pairs in the PDBTM
datasetwere assigned to Walters and DeGrado classes,
the acceptance rate of helix pairs to a given WDG con-
tact site class, in function of the RMSD cutoff, appeared
to be almost linear for the range of thresholds from 1
to 2.5 Å(see Additional file 3: Figure S3). We surmise
that the conformation space of transmembrane helix-helix
contact sites may be continuous with classes c1 and c2,
respectively c3 and c4, merging into a unique anti-parallel,
respectively parallel, class. Therefore, the WDG classes
could be seen as a way of quantitizing the space of helical
pair configurations.

This resulted in two datasets:

• WDG150NR: A set of 140 helix pair fragments (67,
35, 23 and 15 in classes 1-4, respectively) based on the
Walters and DeGrado dataset. The set represents
31% of all helix pairs in the original Walters and
DeGrado dataset (47% of pairs from classes 1-4).
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• PDBTM150NR: A set of 227 helix pair fragments
(100, 60, 25 and 42 in classes 1-4, respectively) based
on the PDBTM dataset. The set represents 35% of all
helix contact sites and 45% of helix contact sites
involving at least 3 residues found in the PDBTM dataset.

The sets were made not-redundant and thus mutually
independent by applying the Decrease redundancy ap-
plication (http://web.expasy.org/decrease_redundancy/)
with 40% maximum identity level. A lower similarity
threshold would significantly reduce the number of
sequences, e.g. to less than 50 in the entire WDG150NR
in the case of 20% identity. Moreover, any identity thresh-
old below 50% could result in an undesirable exclusion
of helix pairs, in which one helix is involved in another
pairing in the same class. However, at the 40% identity
level, some extent of intra-class weak homology is likely.
In order to evaluate this, we counted the number of
sequences in WDG150NR having at least one intra-class
or inter-class neighbor whose identity was between 20%
and 40%. We found that 70% of sequences have an intra-
class neighbor, while 86% have an inter-class neighbor
in that identity range. This shows that sequence identity
with the 20-40% range does not implicate contact class
membership, although we observed that shared sequence
identity increased grammar performance (see Analysis
and discussion).

The datasets are summarized in Table 1. Note that
percentages of helix-helix contact sites from WDG and
PDBTM datasets assigned to the four classes were similar
for the most populous classes 1 and 2. Class 4 was over-
represented in the PDBTM at the expense of class 3 (see
Additional file 2: Figure S2).

Results
Cross-validation of grammar classifiers
Leave-one-out cross-validation
Performance of single grammar classifiers was analysed
in the Leave-One-Out Cross-Validation scheme with the

Table 1 Datasets summary

Dataset/Class Centroid (PDB) Size Fraction

WDG150NR 140 100%

c1 1Q90 B119-128 B194-203 67 48%

c2 1OKC A114-123 A180-189 35 25%

c3 1J4N A18-27 A101-110 23 16%

c4 1RH5 A29-38 C34-42 15 11%

PDBTM150NR 227 100%

c1 1Q90 B119-128 B194-203 100 44%

c2 1OKC A114-123 A180-189 60 26%

c3 1J4N A18-27 A101-110 25 11%

c4 1RH5 A29-38 C34-42 42 19%

WDG150NR dataset. The correctness of the leave-one-
out procedure was assured by the non-redundant design
of the set. Only one grammar was trained for each subset
and amino acid property using all but one positive sample
of a given class of helix pairs. The performance of the clas-
sifiers was tested on the one remaining positive sequence
from that class and all negative sequences from the 3 other
classes (class-vs-3 classification). The classifiers were eval-
uated on the basis of their average AUC ROC which
in the case of LOOCV is equal to Specificity at the
threshold equal to the score of the only positive sample
(Table 2).

The best average AUC ROC in the WDG150NR ranged
from 0.54±0.04 for accessibility-based grammar of class 1
to 0.70±0.04 for van der Waals-based grammar of class 2.
The highest AUC ROC values were achieved by van der
Waals volume based grammars for classes 3 and 2 whereas
the best results for classes 1 and 4 were obtained using
accessibility based grammars (Table 2). Besides the best
performing grammars, classifiers trained for properties,
which were not the most informative for a given class, e.g.
van der Waals volume for classes 1 and 4, and accessibility
for classes 2 and 3 obtained average AUC ROC below 0.50.

ROC curves (with approximate 95% confidence inter-
vals) produced using the vertical averaging method are
provided in the Additional file 4: Figure S4. Precision,
Recall, F1 and Accuracy are provided at selected FP rates
in the Additional file 5: Figure S5.

Interestingly, sequences left out such that subclasses
of AUC ROC equal or higher than 0.75 could be dis-
tinguished (Additional file 6: Table S1). For instance, for
van der Waals-based grammar of class 2, the high speci-
ficity subclass consisted of 51% of samples. The average
AUC ROC in the subclass was 0.89 in comparison to 0.70
in the whole class 2. Most notably, for accessibility-based
grammar of class 4, 47% of samples (7 out of 15) where
classified with AUC ROC equal or higher than 0.75. The
average AUC ROC in this subclass reached 0.90 in com-
parison to just 0.58 in the whole class 4. A statistically
significant correlation between AUC ROCs and average
sequence alignment distances (see Analysis and discus-
sion) suggests that the high specificity subclasses originate

Table 2 Leave-one-out cross-validation

Trained for Accessibility vdW volume

c1 0.54±0.04 0.41

c2 0.46 0.70±0.04

c3 0.50 0.56±0.07

c4 0.58±0.09 0.33

Average AUC ROC of class-vs-3 classification of helix-helix contact fragments in
theWDG150NR dataset. Standard deviation of the mean is given for AUC ROC
greater than 0.50.

http://web.expasy.org/decrease_redundancy/
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Table 3 Four-fold cross-validation

Trained for
Using property

Accessibility vdW volume

c1 0.55 (0.58) 0.41 (0.46)

c2 0.46 (0.50) 0.68 (0.69)

c3 0.50 (0.55) 0.61 (0.71)

c4 0.57 (0.71) 0.44 (0.55)

Average AUC ROC of combined grammars in 4-fold CV of helix-helix contact
fragments classification in WDG150NR. Average AUC ROC of the best single
grammars out of 3 trained grammars for each class-property case is shown in
parentheses. Bold fonts indicate the best performance for a given helix contact
site class.

from the presence of closer neighbors in the training
set.

Four-fold cross-validation
(4-fold CV) was carried out on the same dataset. The divi-
sion was made according to alphabetical order of helix
pair identifiers derived from the PDB codes. For each of
the 4 helix-helix contact site classes and 2 selected amino
acid properties (8 cases in total), 3 grammars were gen-
erated using 3/4 of positive samples (Note that, despite
using the same set of parameters, GA usually produces
different solutions in each run). Moreover, combined

grammar classifiers were created by averaging scores
(log probabilities) assigned to helix pairs by 3 grammars
trained for the same class and amino acid property. Per-
formance of the single and combined classifiers was tested
on the remaining 1/4 positive sequences and all nega-
tive sequences in the dataset. The predictive power was
assessed in class-vs-3-other-classes classification. Then,
AUC ROC scores achieved by the combined classifiers
were averaged over the 4 subsets of the WDG150NR. In
addition, the best single grammars, in terms of AUC ROC,
were selected out of the 3 grammars per each class-
property-subset case. Their AUC ROC scores, also aver-
aged over the 4 subsets, represent potential performance
of the method (see the Limitations section of the Analysis
and Discussion). The averaged classification performance
of the combined grammars and best single grammars is
shown in Table 3. ROC curves produced using the vertical
averaging method are shown in Figure 2. Precision, Recall,
F1 and Accuracy are provided at selected FP rates in the
Additional file 7: Table S2.

The performance of combined grammars trained for the
amino acid property most useful for a given class (bold in
Table 3) varied from 0.55 to 0.68 (average 0.60) in terms of
AUC ROC. These values are similar to AUC ROCs in the
LOOCV. The average AUC ROCs of best single grammars

Figure 2 ROC Curves in the Four-fold Cross-Validation. ROC curves of combined (solid line) and best (dashed line) grammars in 4-fold CV of
helix-helix contact fragments classification in WDG150NR.The ROC curves were produced using the vertical averaging method for band length 0.1.
Notation: acc - accessibility Aaindex:BIOV880101;vol - van der Waals volume Aaindex:FAUJ880103).
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for given class (bold in parentheses in Table 3) varied from
0.58 to 0.71. Significantly, the best single grammars were
14-25% better than combined grammars for classes 3-4.
Notably, van der Waals volume based grammars for class 3
recognized over 20% of positive samples without an error
(Figure 2). Eventually, selecting the best grammars and
most appropriate properties, the average AUC ROC over
4 classes was 0.67 (average weighted by relative numbers
of samples in each class was 0.64).

Multiple grammar classifiers
The helix pair classification problem can be treated
explicitely as a 4-way classification problem. For this pur-
pose, multiple grammar classifiers were build on the basis
of the best combined grammars trained in the 4-fold Cross
Validation procedure (c1, c4 - accessibility grammars, c2,
c3 - van der Waals volume grammars). The performance
of the multiple grammars classifiers and the combined
grammar is compared in Table 4. For a given contact site
class q, 3/4 of its positive and negative sets were used
to calculate multiscore (Eq. 23). Thus only the remaining
1/4 of the positive and negative sets were used for test-
ing in the multiple grammar classifier scheme. Therefore,
for performance comparison, AUC ROCs of the combined
grammars were recalculated using only this remaining 1/4
of the negative set. The lower cardinality of the nega-
tive sample did not affect AUC ROCs of the combined
grammars by more than 0.03.

The average AUC ROC increased from 0.60 to 0.65 for
the multiple grammar classifiers in comparison to the
combined grammars. The largest improvement (up to 16-
17%) was obtained for classes 1 and 4. Only performance
of class 2 grammars recognition decreased by 8%. All mul-
tiple grammar classifiers obtained AUC ROC above 0.6.
The performance of the multiple grammars classifiers was
similar for all the classes, as this type of classifier utilized
scores generated by combined grammars trained for each
class. Overall, the multiple grammars classifiers benefited
from combining positive and negative information.

Table 4 Multiple grammar classifiers

Class
WDG150NR PDBTM150NR

Combined Multi Combined Multi

c1 0.56 (0.59) 0.66 0.47 (0.48) 0.50

c2 0.67 (0.68) 0.62 0.54 (0.53) 0.54

c3 0.64 (0.71) 0.65 0.60 (0.59) 0.57

c4 0.57 (0.70) 0.66 0.57 (0.55) 0.61

avg 0.60 0.65 0.52 0.54

Average AUC ROC of the combined and multiple grammar classifiers in
WDG150NR (4-CV) and PDBTM150NR datasets. All results refer to grammars
trained using WDG150NR in the 4-CV experiment. Test performance of the single
grammars, which were the best in 4-fold CV in WDG150NR, is shown in
parentheses. avg is an average weighted by relative numbers of samples in each
class.

Test on independent dataset
Grammars infered in 4-fold CV using the WDG150NR
dataset were applied to classification of helix-helix
contact fragments in the PDBTM150NRdataset,
created by us independently (Table 1). Multiple gram-
mar classifiers, combined single grammars and best
single grammars according to 4-fold CV were evaluated
(Table 4).

The best results were obtained by the combined van
der Waals-based grammar of class 3 (AUC ROC of 0.60)
and the combined accessibility-based grammar of class 4
(AUC ROC of 0.57). In these cases performance in the
PDBTM150NR matched performance in the WDG150NR.
Single grammars which performed best inWDG150NR
achieved ca. 20% worse results in the PDBTM150NR.
All grammar classifiers trained for class 1 and 2 per-
formed poorly in the PDBTM150NR. There was no signif-
icant benefit when the multiple grammar classifiers were
applied.

Training on PDBTM dataset
Noticeably worse results, when the PDBTM150NR was
used for testing, could indicate some incoherence
between the WDG150NR and PDBTM150NR datasets.
The hypothesis was investigated in the opposite scenario,
where the whole PDBTM150NR was used for training and
the whole WDG150NR was used for testing (Table 5, left).
If PDBTM150NR’s sequence patterns coverage is wider
than WDG150NR’s, performance similar to 4-fold CV
(Table 3) is expected.

Indeed, the classifiers obtained in this way showed
better performance in the WDG150NR than combined
grammars trained in the WDG150NR and tested in the
PDBTM150NR datasets for classes 1 and 2 (10-20%,
Table 4). Performance of grammars for classes 3 and 4 was
similiar. In general, these results support the hypothesis
that PDBTM150NR, while coherent with WDG150NR in
terms of spatial similarity (RMSD), covers a wider space of
sequence patterns.

Table 5 PDBTM training

Trained for
Using property

Accessibility vdW volume

c1 0.56 (0.58) 0.44 (0.47)

c2 0.45 (0.49) 0.60 (0.62)

c3 0.44 (0.48) 0.59 (0.65)

c4 0.56 (0.63) 0.32 (0.45)

Average AUC ROC of combined grammars trained in PDBTM150NR in helix-helix
contact fragments classification in WDG150NR. Average AUC ROC of the best
performing single grammars out of 3 trained grammars for each class-property
case is shown in parentheses. Bold fonts indicate the best performance for a
given helix contact site class.
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Comparison with standard methods
In this section, we compare our PCFG-based method with
other approaches, namely simple BLAST search, closest
neighbor search in the training set, and Profile HMM.

Classifiers
BLASTP [135] is a standard tool for protein sequence sim-
ilarity searches (we use the recent NCBI version 2.2.28+).
The idea behind this test was to demonstrate that the
helix-helix contact site classification could not be solved
trivially by applying BLASTP to find similar sequences.
For each helix-helix contact site class, its training set was
used as a query and respective test set as a subject (or
database). Subject sequences belonging to the same con-
tact site class as the query sequences were considered
as positive, while the others were considered as negative.
For each subject sequence (positive or negative), the high-
est scoring hit (in terms of bit score [136]) to a query
sequence was recorded. Where BLASTP did not find
any hit (despite practically unlimited E-value), a bit score
equal to zero was assigned. Subject sequences were ranked
according to bit scores so that ROC curves could be calcu-
lated analogously to usage of grammar scores in the case
of PCFGs.

Our PCFGs and Profile HMMs can be regarded as rep-
resentations of a Multiple Sequence Alignment (MSA)
augmented by the ability to generalize. Thus, it is inter-
esting to compare their performance with an MSA-
based strategy, even though the latter is computationally
inefficient and difficult to apply in a real world set-
ting. Nevertheless, in our test setting such approach
could be used as a reference method since all sequences
in each contact site class were (gaplessly) aligned to
their class centroid on the basis of 3-d coordinates. The
method designed for the test consisted on finding the
closest neighbor in the training set, in terms of pair-
wise sequence distance. For all subject sequences, their
distance to each query sequence was calculated using
EMBOSS’ (version 6.3.1) [137] implementation of Phylip’s
[138,139] PROTDIST application (PHYLIPNEW 3.69)
and Hennikof/Tyler PMB matrix [140]. For each subject
sequence, the closest hit (in terms of distance) to a query
sequence was recorded. Rankings according to distances
were used to calculate ROC curves.

Note that we intentionally use terms “query” and “sub-
ject” instead of “training” and “test” to mark that both
methods do not require training but instead rely on a
reference set (“query”).

Profile HMMs are the state of the art for protein
sequence matching. Unlike the two previous approaches,
but similarly to our method, they require a training step
consisting of statistical estimations [24]. From a theoreti-
cal point of view, Profile HMMs are approximately equiv-
alent to probabilistic regular grammars [141] and hence

cannot represent medium- or long-range dependencies.
HMMER is the classical Profile HMM package available
from http://hmmer.org [24,25]. In this section we test both
the recent HMMER 3.0 and HMMER 2.3.2 since it allows
local (option -s) and global (option -g) search. If HMMER
did not find any hit (despite practically unlimited E-value),
the bit score equal to -1000 was assigned. ROC curves
were calculated according to rankings established from bit
scores.

Processing
In our previous tests, sequences were preprocessed so
that fragments from each helix of the pair were flanked
by special symbols that were exploited by our method
(see a rule for non-terminal Turn in Eq.22). This informa-
tion is redundant for the closest neighbor method which
is based on complete alignments. On the contrary, the
flanking could have been potentially useful for BLASTP
and HMMER, however non-FASTA symbols had to be
removed from datasets processed by these tools. Thus,
the BLASTP and HMMER methods worked on concate-
nated sequences of helix fragments. In addition, we tested
an approach where after initial processing of each helix
independently, bit scores for two parts (fragments) form-
ing the pair were summed. Moreover, it was possible
to modify HMMER 2.3.2 source code to allow a special
divider symbol between helix fragments; thus the amount
of alignment information used by the tool was identical to
that exploited by our grammars.

The tests were carried out for 4-fold CV in
WDG150NR and two combinations of training and test-
ing onWDG150NR and PDBTM150NR. HMMER3, whose
training and searching steps are stochastic (hmmbuild
and hmmsearch option –seed 0), was run three times for
each set of data and options. Although HMMER2 calibra-
tion step is in principle stochastic (by default seed=time()),
we did not see any variability of results between runs.
Therefore, the tool was only run once per configuration,
as BLASTP and the closest neighbor approaches which
did not require any training. Results were evaluated in
terms of AUC ROC (Table 6, Table 7 and Figure 3).
Average performance of best PCFGs and best HMMER3
machines, selected after testing out 3 trained classifiers
(best of 3), is included to compare the potential of the
methods. Note that performance of the combined single
grammars, obtained in 4-fold CV, was recalculated as in
the case of comparison with multiple grammar classifiers
and classical methods.

Results
In the 4-fold CV (Table 6), the best average per-
formance achieved by combined PCFGs (0.60-0.61)
matched the reference results of the closest neighbor
approach. They were closely followed by HMMER2 local

http://hmmer.org
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Table 6 Comparison of classifiers performance in 4-fold CV in the WDG150NR dataset in terms of AUC ROC

Method/trained for c1 c2 c3 c4 wavg uavg

Our PCFG comb 0.56 0.67 0.64 0.57 0.60 0.61

Our PCFG best of 3 0.59 0.68 0.71 0.70 0.65 0.67

BLASTP concat 0.51 0.45 0.47 0.44 0.48 0.47

BLASTP 2-parts 0.49 0.47 0.51 0.47 0.48 0.48

HMMER2 global concat 0.55 0.64 0.56 0.46 0.56 0.55

HMMER2 global 2-parts 0.56 0.61 0.62 0.49 0.58 0.57

HMMER2 global divider 0.55 0.62 0.60 0.45 0.57 0.56

HMMER2 local concat 0.54 0.58 0.45 0.56 0.54 0.53

HMMER2 local 2-parts 0.53 0.64 0.64 0.57 0.58 0.60

HMMER2 local divider 0.55 0.61 0.62 0.46 0.57 0.56

HMMER3 local concat 0.52 0.57 0.53 0.52 0.54 0.54

HMMER3 local 2-parts 0.57 0.61 0.57 0.60 0.58 0.59

HMMER3 local 2-parts best of 3 0.57 0.61 0.57 0.61 0.59 0.59

MSA closest neighbor 0.56 0.69 0.62 0.55 0.60 0.61

wavg and uavg are weighted and unweighted averages, respectively. In the case of our PCFGs, accessibility grammars are used for c1 and c4, and van der Waals
grammars are used for c2 and c3. Column best results are shown in bold (PCFG’s and HMMER3’s best of 3 results are not considered).

2-parts (0.58-0.60) and HMMER3 local 2-parts (0.58-
0.59). Apparently, local HMMs performed better when
sequences were split in 2 parts (ca. 10% improvement).
In the case of WDG150NR training and PDBTM150NR
testing all methods performed poorly (not shown). Best
average AUC ROCs were 0.53-0.55 for HMMER2 divider
and 0.52-0.55 for combined PCFGs. AUC ROCs over
0.60 were achieved only by HMMER3 (0.60-0.62) and

HMMER2 global concat (0.61) for class 4 and by com-
bined PCFG for class 3 (0.60). Eventually, PDBTM150NR
trained classifiers were tested in WDG150NR (Table 7). In
this setup, the combined PCFG was the best method with
average AUC ROC of 0.58. It was followed by HMMER2
(up to 0.53-0.55) and the closest neighbor reference
method (0.53-0.54). Surprisingly, HMMER3 local 2-parts
performed very poorly (0.51-0.53).

Table 7 Comparison of classifiers performance trained in the PDBTM150NR dataset and tested in WDG150NR dataset, in
terms of AUC ROC

Method/trained for c1 c2 c3 c4 wavg uavg

Our PCFG comb 0.56 0.60 0.59 0.56 0.58 0.58

Our PCFG best of 3 0.58 0.62 0.65 0.63 0.63 0.62

BLASTP concat 0.48 0.49 0.58 0.49 0.50 0.51

BLASTP 2-parts 0.52 0.52 0.50 0.52 0.52 0.52

HMMER2 global concat 0.55 0.61 0.44 0.45 0.54 0.51

HMMER2 global 2-parts 0.54 0.60 0.52 0.47 0.54 0.53

HMMER2 global divider 0.55 0.61 0.50 0.46 0.55 0.53

HMMER2 local concat 0.56 0.57 0.58 0.39 0.55 0.53

HMMER2 local 2-parts 0.50 0.60 0.55 0.49 0.53 0.53

HMMER2 local divider 0.55 0.61 0.50 0.45 0.55 0.53

HMMER3 local concat 0.45 0.50 0.54 0.50 0.48 0.50

HMMER3 local 2-parts 0.48 0.53 0.54 0.56 0.51 0.53

HMMER3 local 2-parts best of 3 0.48 0.53 0.54 0.56 0.51 0.53

MSA closest neighbor 0.49 0.64 0.42 0.62 0.53 0.54

wavg and uavg are weighted and unweighted averages, respectively. In the case of our PCFGs, accessibility grammars are used for c1 and c4, and van der Waals
grammars are used for c2 and c3. Column best results are shown in bold (our PCFG best of 3 is not considered).
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Figure 3 Performance comparison with standard methods. Average AUC ROC of classifiers in 4-fold CV (horizontal axis) and when trained in the
PDBTM150NR dataset and tested in WDG150NR dataset (vertical axis). Left: unweighted average, right: weighted average of AUC ROC. Sample
method designations: gconcat - global HMM/concatated helices scanned together; l2parts best3 - local HMM/2 parts of a helix pair scanned
independently; best3 - best classifiers out of 3trained. In the case of the PCFGs, accessibility grammars are used for c1 and c4, and van der Waals
grammars are used for c2 and c3.

In virtually all cases BLASTP achieved AUC ROC close
to 0.50, because it was able to assign a class only to a
fraction of subject sequences. For example, BLASTP con-
cat found matches to 48-82% of helix pairs in 4-fold CV
and to 24-75% of helix pairs in the PDBTM150NR train-
ing and WDG150NR testing. This demonstrates that the
helix-helix contact site classification problem is out of
scope of a simple sequence similarity search and requires
a more powerful solution. Figure 3 shows that com-
bined PCFGs outperformed Profile HMMs from HMMER
packages, especially when trained on the PDBTM150NR
dataset. In the most direct comparison, the combined
PCFGs were better than HMMER2s divider by 5 to
10% in both dataset configurations. In thePDBTM150NR
training and WDG150NR testing setups, the combined
grammar classifiers outscored HMMER3 local 2-parts by
ca. 10%. Moreover, in the same setups, PCFG best of 3
achieved about 20% larger AUC ROC than HMMER3
local 2-parts best of 3. Finally, performance of PCFGs
and Profile HMMs are compared to results of the MSA-
based strategy. In the case of 4-fold CV, the combined
grammars and the HMMs matched the closest neighbor
reference approach despite lacking complete alignment
information. In the other setup, PCFGs had 6-8% larger
AUC ROC than the MSA-based reference strategy due to
significantly better recognition of class 3 (by 41%). This
illustrates the ability of grammar induction to generalize
over the training sample.

Analysis and discussion
We have demonstrated the capability of grammar clas-
sifiers to learn helix-helix contact site classes from
sequences in the WDG150NR dataset. The results were
consistent between LOO and 4-fold CV. While the aver-
age performance in terms of AUC ROC was moderate
(approximately 0.60), this improved to 0.65 when the
helix pair classification problem was treated explicitely
as a 4-way classification (multiple grammar classifiers,
Table 4). Testing in the independent PDBTM150NR
dataset has shown 20% worse performance. This could
indicate that sequence based features, distinctive to the
four helix-helix contact site classes, may not be as
well defined in the PDBTM150NR as in the original
WDG150NR dataset (see also Additional file 1: Figure S1).
We demonstrated that the helix-helix contact site clas-
sification problem cannot be solved by a simple BLAST
search and requires a more powerful solution. The com-
bined grammar classifiers outperformed state-of-the-art
Profile HMMs from the HMMER2 and HMMER3 pack-
ages in the 4-fold CV in WDG150NR dataset. More-
over, our PCFG method was the only which learnt
from PDBTM150NR to classify the WDG150NR sam-
ple for all four contact site classes. Comparison with
reference results of the MSA-based closest neighbor
in the training set approach demonstrated the gram-
mar induction ability of generalization over the training
sample.
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In the next section, we will investigate the foundations
of grammar classifiers performance and their relations to
helix pair features. Moreover, correspondence between
grammar structures and spatial configuration of helix
pairs is assessed.

Added value of grammar classifiers
Better performance of the grammar classifiers in relation
to Profile HMMs can be related to (1) higher expressive
power allowing (2) problem-specific grammar structure,
but also (3) usage of amino acid properties and (4) selec-
tion of the most informative of them for a given class
(which requires a validation step). Impact of the first
two features was expected to be seen especially in the
anti-parallel contact site classes 1 and 2, where depen-
dencies between residues can be directly modelled by
a PCFG. However, the combined grammars are better
than HMMs only for class 2 in the 4-fold CV. Moreover,
even higher AUC ROC of the reference closest neighbor
method for that case suggests that good performance can
also be grounded in sequence similarity. On the other
hand, usage of amino acid properties by the PCFGs con-
siderably reduces sequence information in comparison to
that utilised by the other methods. Thus, it is possible
that higher order dependencies represented by the gram-
mars compensates this. Best single PCFGs significantly
outperformed other methods even in class 3 and class 4 in
the 4-fold CV. However, these results cannot be directly
linked with modelling of nested dependencies as those
contact site classes are parallel. Further in this section, we
investigate the hypothesis that performance of the gram-
mar classifiers is mainly grounded in the average value of
the amino acid property level.

Let the average property level classifier assign a con-
tact site class on the basis of the average amino acid
property level in the helix-helix sequence (Table 8). Its
training only consists on establishing a preference towards
higher or lower property level based on positive and neg-
ative training sets. For the purpose of comparison with
the average property level classifier, performance of the
combined single grammars, obtained in 4-fold CV, was

Table 8 Added value of grammar classifiers

Trained for
Accessibility vdW volume

Avg. prop. Grammar Avg. prop. Grammar

c1 0.44 0.56(0.59) 0.58 0.41 (0.45)

c2 0.43 0.45 (0.50) 0.61 0.67(0.68)

c3 0.61 0.49 (0.55) 0.64 0.64(0.71)

c4 0.62 0.57 (0.70) 0.69 0.44 (0.55)

Helix-helix contact fragments classification in the WDG150NR dataset on the
basis of amino acid property average and using the combined grammars.
Average AUC ROC of the best performing classifiers, out of 3 trained grammars
for each class-property case, is shown in parentheses.

recalculated as in the case of comparison with multiple
grammar classifiers and standard methods.

We found that AUC ROCs of the best single grammar
classifiers were better than AUC ROCs of the average
property level classifiers by 0.07-0.15 (11-34%) for acces-
sibility grammars of classes 1 and 4, and for van der Waals
volume grammar of classes 2 and 3. These results suggest
rejecting the hypothesis that performance of the gram-
mar classifiers is mainly grounded in the average value of
the amino acid property level and support the idea that
grammar capability to represent intra- and/or inter- heli-
cal dependencies contributes to successful classification.
Moreover, we found that combined grammar classifiers
performed better than the average property level classi-
fiers for the accessibility grammar of class 1 and van der
Waals volume grammar of class 2.

No good grammar classifier based on the van der Waals
volume property was obtained for class 1 and 4, despite
relatively good performance of the average property level
classifiers. Similar was the case of the accessibility prop-
erty and class 3. It is likely that in these cases grammars
learnt features of other classes rather than the class for
which they were trained. For example, the combined
grammar classifier based on the van der Waals volume
property trained for class 1 achieved AUC ROC of 0.41.
Interestingly, if it was applied to distinguishing the class
3 pairs from pairs in classes 1, 2 and 4, its AUC ROC
would be relatively high 0.66 (not shown). We hypothe-
sized that, perhaps, some of the helix-helix contact site
classes shared the same features, related to amino acid
accessibility or van der Waals volume. However, while one
feature was dominant in one class, it was only weakly
present in the other. Nevertheless, that weak presence of
the feature could be learnt by a grammar in our frame-
work. As a result, such a grammar would rather fit the
class where the feature was dominant rather than the class
for which it was trained.

Finally, we studied which of the PCFG capabilities
contribute to its overall performance. For this purpose,
grammars incapable of directly representing inter-helical
contacts were designed and their rule probabilities were
inferred.

First, we performed several modifications of our
original helix-helix grammar so that the 3rd RHS
symbol (Single or Double) was removed from the
rules rewriting Inside and Outside non-terminals to
break inter-helical dependencies. Moreover, Turn →
Whatever ] { Whatever Inside/Outside rules were
added to account for two helices and Inside/Outside → ε

to finish the derivation. In this way, the rule set contin-
ued to account for helix periodicity and boundaries of
helix fragments. In comparison to our original PCFGs,
combined classifiers based on the modified helix-helix
grammars matched the original PCFGs in WDG150NR
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(AUC ROC 0.56-0.61). Moreover, the modified grammars
were even better than the combined original helix-helix
PCFGs in the PDBTM150NR training /WDG150NR test-
ing (0.57-0.61); however they obtained very poor scores
for class 1 (below 0.53).

Second, we produced grammars whose (otherwise
unconstrained) rules allowed only adding one property
non-terminal A ∈ {Low, Medium, High, Any, Turn} at
each derivation step. Thus, the rule set did not include
any prior knowledge about protein fragments. Com-
bined classifiers based on the unconstrained grammars
achieved slightly worse average AUC ROCs in the 4-fold
CV in WDG150NR (0.56-0.59) and comparable scores in
the PDBTM150NR training /WDG150NR testing scheme
(0.57-0.58). The best single unconstrained grammars per-
formed worse than the best single original helix-helix
PCFGs.

These results indicated that direct representation of
inter-helical dependencies was not required for achieving
maximal performances reported in this study. This finding
is consistent with the fact that PCFGs trained for paral-
lel and anti-parallel contact site classes worked similarly
well. Interestingly, the most successful types of grammars
contained rules dealing with helix periodicity, which could
be represented practically (i.e. using reasonable number of
rules) only in the context-free framework. Consequently,
this capability seems to boost the PCFG performance in
our framework.

Correlation between helix pair features and grammar
classifier efficiency
Correlation between performance of single grammar clas-
sifiers and helix pair structure and sequence was analysed
using the single grammars generated in the LOOCV
scheme. Three features were considered:

• Spatial distance in terms of RMSD in 3D, calculated
relatively to the class centroid,

• Average normalized distance dist to other class
members in terms of sequence similarity. All
distances, calculated by ClustalW 1.83 [142], ranged
from 0.87 to 0.95.

• multiplicity of helix pair contacts, i.e. a number of
other helices in contact with the helix pair of interest.

Intuitively, the correlation between grammar classifier
performance and all three features is expected to be near
zero or negative, e.g., the more helix-pair differs from its
class average in terms of sequence or spatial similarity, the
lower AUC ROC is expected. Moreover, if a helix pair is
involved in other helix-helix contacts, then its sequence
and spatial conformation had to adjust to these other
contacts. Thus, the helix pair structure and sequence
would diverge from the pair-wise mean for a given class.

In this study, the correlation between AUC ROC of sin-
gle grammar classifiers and features of helix pair structure
and sequence were represented by Pearson’s R coefficient
(Table 9).

In agreement with expectations, the performance of
grammar classifiers was negatively correlated with the
sequence alignment distance. However, the observed lin-
ear correlations were statistically significant at p-value
below 0.05 only in the case the van der Waals gram-
mars of classes 2 and 3 (Table 9). The linear correlation
of AUC ROC and helix contact multiplicity was always
negative, yet not statistically significant. While relatively
high Pearson’s R was observed between AUC ROC of the
van der Waals volume classifiers of class 3 and the spa-
tial distances from the template (p-value below 0.04), the
dependency was not confirmed by the Spearman rank
correlation. The weak positive correlation of the same
features for van der Waals volume grammar of class 2
seems to be due the unexpected negative linear correla-
tion between spatial and sequence similarities in class 2
(Pearson’s R equal to -0.42, not shown).

Analysis of parse trees of single grammar classifiers
The best performing grammar descriptors of class 1 and
2 were analysed in terms of their average a priori parse
trees. The best single accessibility-based grammar of class
1, pruned of low probability (Pr< 0.05) rules and normal-
ized, is shown in Eq. 26:

A → mm, Pr(0.11) | mh, Pr(0.67) | hh, Pr(0.22)
B → mm, Pr(0.68) | hm, Pr(0.23) | hh, Pr(0.09)
C → mm, Pr(0.58) | hm, Pr(0.42)

T → hQA, Pr(0.12) | hQB, Pr(0.18) | APm, Pr(0.16)

| BPh, Pr(0.39) | hOm, Pr(0.15)
U → ARC, Pr(0.13) | BRB, Pr(0.44) | BRC, Pr(0.36)

| CRC, Pr(0.07)
V → ARA, Pr(0.16) | ARB, Pr(0.66) | CRB, Pr(0.08)

| hQA, Pr(0.10)
W → BRA, Pr(0.10) | CRA, Pr(0.08) | CRB, Pr(0.07)

| X] {X, Pr(0.75)

R → lWm, Pr(0.14) | mWm, Pr(0.22) | mWh, Pr(0.23)
| hWm, Pr(0.17) | hWh, Pr(0.24)

Q → AVh, Pr(0.28) | BVm, Pr(0.55) | BVh, Pr(0.06)
| CVh, Pr(0.10)

P → lUB, Pr(0.14) | mUC, Pr(0.22) | hUA, Pr(0.20)
| hUC, Pr(0.44)

O → ATA, Pr(0.86) | CTC, Pr(0.14)

X → xX, Pr(0.35) | ε, Pr(0.65)
S → [ XTX}, Pr(1.00)

,

(26)

where, for the sake of brevity, the property of non-
terminals, i.e. Low, Medium, High and Any (Eq. 21) are
denoted as l, m, h and x, respectively; Double non-
terminals (Eq. 20) are denoted as A, B, C; Inter− and Out-
erface non-terminals (Eq. 22) are denoted as T , U , V , W
and O, P, Q, R; Whatever non-terminal is denoted as X,
and S is the start symbol of the grammar (see Eq. 22).
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Table 9 Correlation between helix pair features and
grammar classifier efficiency

Trained for Using property RMSD Dist Multiplicity

c1 accessibility -0.08 -0.14 -0.14

c2 vdW volume +0.16 -0.45 -0.25

c3 vdW volume -0.44* -0.62 -0.24

c4 accessibility -0.30 -0.47 -0.12

Pearson’s R correlation coefficients values between AUC ROC and some helix
pair features, i.e. spatial distance (RMSD), sequence alignment distance (dist) and
helix contact multiplicity. Only Classifiers built using the most informative amino
acid properties for a given class are shown. P-values below 0.05 are shown in
bold. *not confirmed by Spearman rank correlation.

For this grammar, its most common parse tree stem in
the training set (present in 24% of maximal parse trees)
was utilized in the Viterbi parses of 2 test cases (Figure 4).
The most prominent feature of the parse tree is i + 3/i + 4
periodicity of highly accessible residues in the left helix. In
the right helix, two highly accessible amino acids are sep-
arated by 7 less accessible residues. Interestingly, highly
accessible residues are pointed towards the other helix
(except methionine in Figure 4B) in the manner resem-
bling the knobs-into-holes configuration [84,85].

The best single van der Waals-based grammar of class
2, pruned of low probability (Pr< 0.05) rules and normal-
ized, is shown in Eq. 27:

A → ll, Pr(0.05) | mm, Pr(0.95)
B → ll, Pr(0.06) | lm, Pr(0.29) | mm, Pr(0.65)
C → lm, Pr(0.46) | ml, Pr(0.39) | mm, Pr(0.15)

T → lQC, Pr(0.25) | mQA, Pr(0.11) | mQA, Pr(0.31)
| hQB, Pr(0.08) | mOl, Pr(0.26)

U → CRA, Pr(0.62) | APh, Pr(0.38)
V → ARC, Pr(0.40) | BRB, Pr(0.37) | BRC, Pr(0.09)

| mQC, Pr(0.14)
W → BRC, Pr(0.06) | CRA, Pr(0.19) | X] {X, Pr(0.75)

R → lWm, Pr(0.29) | mWl, Pr(0.11) | mWm, Pr(0.41)
| hWh, Pr(0.18)

Q → AVl, Pr(0.15) | BVm, Pr(0.70) | CVh, Pr(0.15)
P → CTB, Pr(0.08) | lUC, Pr(0.82) | mUA, Pr(0.11)
O → ATB, Pr(0.77) | CTB, Pr(0.23)

X → xX, Pr(0.34) | ε, Pr(0.66)
S → [ XTX}, Pr(1.00)

,

(27)

For this grammar, its maximal parse tree for 3 test cases
(Figure 5) based on the second most common stem in the
training set (33% of Viterbi parses) is shown. Positions of

Figure 4 An average parse tree of accessibility-based grammar of class 1 (Eq. 26). Lengths of branches express expected level of accessibility.
Terminal symbols on the tree branches represent residues of two helix pairs (panels A,B) from chain A of cytochrome b6f from C.reinhardtii (PDB
code: 1Q90). The residues expected to be the most accessible, according to the grammar, are shown in blue in the parse tree and as blue balls in the
structural model of the helix-helix contact site. The acceptance rate of PDBTM helix pairs assignment to a given WDG contact site class in function of
the RMSD cutoff.
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Figure 5 An average parse tree of van der Waals-based grammar of class 2 (Eq. 27). Lengths of branches express expected level of van der
Waals volume. Terminal symbols on the tree branches represent residues of two helix pairs from: (A,B) glutamate transporter from P.horikoshii (PDB
code: 1XFH) and (C) calcium ATPase from O.cuniculus (PDB code: 1SU4). The residues expected to be the smallest in the left-hand-side helix,
according to the grammar, are shown in cyan. The residues expected to be the largest in the right-hand-side helix, according to the grammar, are
shown in green. Note, that the helix contact in (C) is disturbed by the presence of another helix (drawn in magenta).

the two smallest residues in the left helix indicate surface
of the flat contact. On the other hand, large residues in the
right helix (peridicity i+3/i+4) are on the non-contacting
side of the helix. Note, that the helix contact in Figure 5C
is disturbed by the presence of another helix (drawn in

magenta). This fact was reflected by lower probability of
the Viterbi parse for that case.

This analysis shows that the grammar parse trees
can convey biologically meaningful information regarding
structural features of helix-helix contact sites.
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Explicit multi-class classification
Walters and DeGrado [91] identified 14 classes of trans-
membrane helix-helix pairs. In our study, we only con-
sidered the 4 most populous classes, because the other
classes did not include sufficient number of members for
automated training of classifiers. Therefore, our principle
approach was to train classifiers independently for each
class, which does not assume knowledge of the entire
spectrum of possible helix-helix configurations. However,
we also studied the approach where the the helix pair clas-
sification problem was treated explicitely as a multi-class
classification. Multiple grammar classifiers were gener-
ated to solve a 4-way problem of assigning a helix pair
to one of the four most populous classes. This resulted
in the average AUC ROC by almost 10% higher than for
combined grammars (Table 4) as a benefit of combining
positive and negative information through averaging over
scores of grammars trained for each class (Eq. 23). For the
same reason, performance of the multiple grammar was
approximately even for all the helix-helix pair classes. The
multiple grammar classifiers would be therefore prefer-
able to single or combined grammars if a larger dataset
of helix pairs, encompassing the entire spectrum of their
configurations, was available for training (see Limitations
below).

Limitations
Context-free grammars PCFG, used in this research, are
able to represent explicitly nested dependecies between
residues formed by anti-parallel helices (e.g. class 1 and
2). However, associations of residues in a pair of paral-
lel helices (classes 3 and 4) form crossing dependencies,
which can be explicitly described only by context-sensitive
rules. Parsing of the context-sensitive languages generally
has exponential time complexity, which can be reduced to
higher order polynomial complexity for some subclasses,
e.g. O(n6) in the case of mildly context-sensitive lan-
guages [143,144]. Instead of time consuming inference of
probabilities of mildly context-sensitive rules, we opted
for learning probabilities of context-free rules for paral-
lel helix pairs, which linked residues at the opposing sites
of helices. Therefore, grammar descriptors generated for
classes 3 and 4 cannot be directly interpreted as in the
case of anti-parallel pairs. Alternative strategy could rely
on reversing of sequence direction in one helix of the par-
allel pair. Then, for an unknown pair of helices, both cases
(normal and reversed direction of one of the helices) could
be evaluated.

Learning scheme Noticeable better performance of
the best single grammars, in comparison to combined
(averaged) grammars (Tables 9 and 5), suggests that
our framework could benefit from further develop-
ment of the evolutionary inference scheme in order to

assure obtaining solutions consistently close to the global
optimum. As an alternative, limitations of the current
grammar induction process could be complemented by
selecting the best grammar classifier from several trained
candidates by means of validation, especially if more com-
prehensive datasets are available.

Dataset The Walters and DeGrado [91] classification
of helical pairs in transmembrane proteins was the
first attempt to systematic identification of helix-packing
geometries with their encoding sequence motifs. More-
over, despite recent interest in helix packing in transmem-
brane proteins, their approach has not been superceded
by up-to-date works [90,145-147]. Therefore, it was natu-
ral do adopt the WDG classification as the basis for our
research. An apparent limitation of this dataset is its rela-
tively small size. This did not allow us to induce grammar
classifiers for less populous WDG classes of helix-helix
arrangements which contain 1/3 of the sample. More-
over, interpretation of results for small classes 3 and 4
is less dependable. Therefore, we attempted to enlarge
the available dataset using PDBTM database [47]. How-
ever, we noticed that coherence of PDBTM-based dataset
with WDG classification in terms of spatial similarity did
not implicate coherence in terms of sequence features
(see Additional file 1: Figure S1 and Additional file 3:
Figure S3). Therefore, generation of a new larger set of
helix-helix pairs could require to redefine helix-helix pair
classification.

Conclusions
We presented an original probabilistic grammatical model
of a protein language. The model covers the lexical (pri-
mary structure) and syntactical (secondary and tertiary
structure) levels of protein linguistics. The core of the
model consists of a probabilistic context-free grammar,
whose rule probabilities are automatically inferred by a
genetic algorithm from positive training samples only.
In this process, an initially large generic set of rules is
reduced to include only those rules which are relevant.
We demonstrated the capability of the context-free frame-
work for analysis of protein sequences. Sequence based
grammar descriptors, which represented four classes
of transmembrane helix-helix contact configurations,
defined by Walters and DeGrado [91], were induced and
tested using cross-validation on a modified non-reduntant
version of their original dataset [91]. The predictive power
was assessed in class-of-interest versus other classes clas-
sification. The quality of the grammar classifiers was pri-
marily evaluated in terms of Area Under ROC curves. The
highest performance of the combined grammars (averag-
ing over three single grammars) reached AUC ROC of 0.68
(average over the four classes 0.60). Moreover, best single
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grammars achieved AUC ROC of 0.71 (average over the
four classes 0.67). In addition, when the helix pair classifi-
cation problem was treated explicitely as a 4-way problem
of assigning a helix pair to one of the four most popu-
lous classes, our multiple grammar classifiers achieved an
average AUC ROC of 0.65.

The grammar classifiers were then tested on a indepen-
dent dataset obtained from the PDBTM database [47].
The performance was 20% lower (best AUC ROC of
0.60). We found that the sequence-based features distinc-
tive to the four helix-helix contact classes in the Walters
and DeGrado dataset are likely to be less well defined
in the PDBTM-derived dataset. However, when PDBTM-
derived dataset was used for training and WDG-derived
dataset served as the test sample, grammar classifiers
achieved an average AUC ROC of 0.58. This result is sig-
nificant since all standard approaches, including Profile
HMMs, obtained in this setting AUC ROC below 0.55.
The advantage of our probabilistic context-free frame-
work for analysis of protein sequences over the current
state of the art seems to be grounded in representing helix
periodicity. While this feature does not require modeling
long range dependencies, its implementation is facilitated
by the context-free framework.

A significant feature of our approach is that the gram-
mar rules and parse trees are human-readable [37]. In
this paper we introduced the notion of the average a
priori parse tree as a tool for convenient elucidation of
biological information from a probablistic grammar rep-
resentation of a protein fragment. Analysis of the sample
trees (Figures 4 and 5) suggests that PCFGs whose rule
probabilities were induced automatically, could represent
biologically meaningful features of protein structures only
based on amino-acid sequence.

A possible future application of our method is residue-
residue contact prediction based on residue-residue
dependencies derived from the parse tree of a helix
sequence. However, as the relation between grammar
dependencies and real residue-residue contacts is not
straightforward, a practical approach could consist on 3
steps: (1) assigning a helix pair of unknown structure to a
contact site class; (2) threading the pair on the class cen-
troid used as a template; (3) assigning residue-residue con-
tacts based on the predicted structure. Our approach can
also be potentially used to detect plausible helix pairings
of a certain type in a given set of helices.

Additional files

Additional file 1: Figure S1. Average values of amino acid properties.
Average values of amino acid properties in the four classes in WDG150NR
(white bars) and PDBTM150NR (gray bars). Notation: acc - accessibility
AAindex:BIOV880101 [126];vol - van der Waals volume
AAindex:FAUJ880103 [125]).

Additional file 2: Figure S2. Class centroids. Class centroids from WDG
datasets cut to the length of 10-10 residues using a criterion of the most
concise geometrical representation.

Additional file 3: Figure S3. PDBTM pairs assignment to WDG classes.
Acceptance rate of PDBTM helix pairs assignment to a given WDG contact
site class in function of the RMSD cutoff.

Additional file 4: Figure S4. ROC curves in the LOOCV. The ROC curves
were produced using the vertical averaging method [130] for band length
0.1. Normal approximation intervals are shown. Notation: acc - accessibility
AAindex:BIOV880101 [126]; vol - van der Waals volume
AAindex:FAUJ880103 [125]).

Additional file 5: Table S1. Classification performance measures in the
LOOCV after vertical averaging at selected FP rate thresholds.

Additional file 6: Figure S5. Specificity in WDG150NR dataset in the
LOOCV experiment. Each bar represents AUC ROC of classification of a
single helix pair against all helix pairs in the negative sample. White bars
indicate AUC ROC greater or equal to 0.75. Notation c1/c2+c3+c4 means
that the grammar was trained for class c1 and then tested for class c1
against three other classes c2-c4.

Additional file 7: Table S2. Classification performance measures in the
4CV, using (a) combined and (b) best single grammars, after vertical
averaging at selected FP rate thresholds.
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