Replacing lectures with study packs: a method to improve student engagement and achievement.

Dr Neil Williams School of Pharmacy and Chemistry Kingston University

Introduction

Alternatives to LecturesWhat's the use of lectures?Programmed learning

Getting rid of lectures
A Blended Learning approach
Format
Examples of materials

Evaluation

"What's the use of lectures", Bligh, 2000

TABLE 1.1. NUMBER OF EXPERIMENTAL COMPARISONS OF LECTURES WITH OTHER METHODS WHERE ACQUISITION OF INFORMATION IS THE MAIN CRITERION.

Teaching Method		Lectures Less Effective	No Significant Difference	Lectures More Effective
Programmed learning and PSI-related	20	17	8	
Discussion (various)		18	54	22
Reading and independent study		10	21	9
Inquiry (e.g., projects)		6	6	3
Other (mostly audio, TV, computer-assisted learning)		27	57	20

Programmed learning and PSI

Small steps Self-paced active learning Early feedback on performance Individual support with personal contact Progress to next unit dependent on mastery of previous one

Getting rid of lectures

Adopt a Blended learning approach : combination of with e-learning and distance learning with face-to-face teaching .

Replace lectures with study packs supported by on-line assessment and feedback via Virtual Learning Environment (VLE)

Use the lecture time for more workshops to improve student engagement and their problem solving skills

Blended Learning Module Format

- 22 lectures replaced by 22 study packs Study packs include learning activities and are provided as hard copies and on VLE.
- 1 workshop for each study pack.
- Each study pack supported by formative on-line assessment.
- Each workshop ended with summative MCQ quiz.

Map against Programmed learning

Small steps – 20 short study packs. 2 study packs delivered each week.

Self-paced active learning- A week to work through 2 study packs.

Early feedback on performance – immediate feedback with on-line assessment.

Individual support with personal contact – more personal contact due to 2 workshop sessions per week. Each workshop ended with summative MCQ quiz

Getting students engaged

Including learning activities in Study Packs.

Summative On-line assessment for each study pack in advance of workshop.

Monitor student activity via gradebook.

More Workshop time.

Workshop MCQ tests

Materials

Study packs – with learning activities
On-line assessments
Weekly Workshops with tests
On-line presentations

Study Pack -fragment

Encouraging active learning

- Learning effectiveness improved if learning activities were included in study packs.
 - Tendency to ignore activities that are not assessed.
- The value of blank space.
- "Important to identify the benefits that activities offer as well as the costs that learners will incur."
- Lockwood, F. (1992) *Activities in self instructional texts* London: Kogan Page

Study Packs

mpirical formu	ula of double chain (ladder) Si ₄ O ₁₁ 6-	
Eg	Asbestos chain structure reflected in fibrous character	
variety of dou	uble chain structures with different repeat units exist.	
Activity 1	Silicate structures: Pyroxenes and amphiboles	
Appreciatio	on of the variety of pyroxene and amphibole structures the	hat are
Draw a silicate	nother example of a chain silicate (pyroxene) and a e (amphibole). Demonstrate how you can determine a of your structures	double chain the empirical
10 minutes	s	
Feedback	Examples can be found in Chemistry of the Elements b	ov Greenwood
Feedback and Earnst	c Examples can be found in Chemistry of the Elements b haw. Second edition p350-351	by Greenwood
Feedback and Earnst	c Examples can be found in Chemistry of the Elements b haw. Second edition p350-351	by Greenwood
Feedback and Earns!	x Examples can be found in Chemistry of the Elements b haw. Second edition p350-351	by Greenwood
Feedback and Earns! ayer structur	x Examples can be found in Chemistry of the Elements b haw. Second edition p350-351 res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earns! ayer structur	在Examples can be found in Chemistry of the Elements b haw. Second edition p350-351 res Silicate Layer made up of 6T rings 介 永 永 永	by Greenwood
Feedback and Earns! ayer structur	R Examples can be found in Chemistry of the Elements b haw. Second edition p350-351 res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earnst	res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earnst	res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earns! ayer structur	res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earnst	res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earns! ayer structur	res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earns!	res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earns!	res Silicate Layer made up of 6T rings	by Greenwood
Feedback and Earns!	R Examples can be found in Chemistry of the Elements to haw. Second edition p350-351	by Greenwood
Feedback and Earnst	R Examples can be found in Chemistry of the Elements to haw. Second edition p350-351	by Greenwood
Feedback and Earnst	R Examples can be found in Chemistry of the Elements to haw. Second edition p350-351	by Greenwood

1

Lockwood Format for Learning Activity

Activity 1: Linear combination of atomic orbitals	Title
This activity will help you derive molecular orbitals from the linear combination of atomic orbitals	Motivational rationale
Sketch the four MOs produced by the linear combination of four 1s atomic orbitals. Use the principles outlined in the study pack	Instructions
5 minutes	Time allocation
	Answer space
	& example if needed.
zero nodes 3 bonding interactions Lowest enrgy MO	
Attempt the on-line assessment test for feedback on this topic	Feedback

Rapid Feedback: On-line tests

Summative on-line tests delivered through VLE/Blackboard Needs to be done before workshop Test for each study pack. Feedback given on each question dependent on answer given

On-line tests

Use of graphics Types of questions Multiple choice **Multiple Response** Rank order **Observation-conclusion** Analysis of Statements

On-line presentations

Power point presentations with audio commentary. Camstasia Screencasts

Blackboard 9.1 Mobile App allows access on smart phones and IPads.

n-type semi-conductor cont.

- Electrons reside in discrete energy levels (donor levels) just below the conduction band.
- Low concentration of As means not enough levels to form a band
- Promotion into the conduction band means they can act as charge carriers.
- Electrons in donor levels cannot act as charge carriers as they do not reside in a band. (Not enough donor levels to form a continuous band)

valence band

n-type semi-conductor

Accessible via mobile App

Student Evaluation : Content stimulating and interesting

Student Evaluation: Taught at appropriate pace

Student Evaluation: Provided Helpful Feedback

Student Evaluation : Found module difficult

Evaluation of implementation of Blended learning in CH2020

" the way it was taught was better than any other module"

"the study pack Blended learning format, with more time spent solving problems and addressing difficult concepts makes the module difficult to fail!"

"The blended learning teaching suited me perfectly, it would be good if the whole course was taught like that it was very Interesting 10/10"

Module averages

Module Code	Module Name	12	11	10	9	8	7	6	5	av	4
CH2010	Inorganic I	58	48	46	50	51	49	46	49	49	44
CH2020	Inorganic II	62	42	58	48	52	53	52	50	51	48
CH2250	Physical		37	46	38	44	46	43	50	43	51
CH2260	Physical		39	41	44	45	46	44	47	44	45
CH2030	Organic		47	41	42	45	42	43	38	43	40
CH2040	Organic		42	37	37	48	46	44	43	42	51
annual average			44	42	41	47	45	44	43	44	45

Evaluation of implementation of Blended learning in CH2020

- Content and learning experience rated very highly by students.
- Attendance of workshops very good
- On-line tests with feedback, study packs and extra workshops deemed best features
 - Student Performance above average

Adoptions elsewhere

Implemented in Chemistry for first year " Chemistry for Life Sciences" module (300+ students) in 2007 by Dr Simon Carrington.

Adopted for half of Organic Chemistry 1 in 2010. *I am so glad I made the effort to modify the teaching methods as the student performance on the module has been significantly better in the last two years.*"

CHEMISTRY FOR LIFE SCIENCES

BOND MAKING AND BREAKING

Dr. Simon Carrington

email s.carrington@kingston.ac.uk telephone 62398

W B	Week 2 ≥ Build Content ≥ Create Assessment ≥ Add Interactive Tool ≥						
ţ		Organic Chemistry Introduction and nomenclature 🗵					
		Enabled: Statistics Tracking					
		Attached Files: <u>Lecture</u> (20.633 MB) <u>Directed Study</u> (26 KB)					
		After learning this session you will be able to:					
		Recognise organic compounds and different types of functional groups in organic chemistry					
		Use different ways of writing chemical formulae					
		Recognise alkanes, alkenes and alkynes					
		Name Alkanes according to official (IUPAC) nomenclature rules					
		Name Organic compounds depending on their functional group					

Activity1: Keto-enol tautomerism

Time: 5 minutes

Task: On your own exercise book draw the keto enol tautomerism of butan-2-one and then look at the answer and feedback.

Feedback:

Butan-2-one has got two alpha carbons (one on either side of the C=O) and a total of five alpha hydrogens, thus two different enol forms can be written

CH2030 - Organic Chemistry I - StudyPack 1

Dr Donatella Banti

- Scheme 6 -

The reaction shown in scheme 6 is an example of an SNAc of a neutral neuclophile (CH₃OH) on an acyl chloride. You should be able to apply this reaction to different subtrates using both negatively charged (i.e. stronger) or neutral (i.e. weaker) nucleophiles. The reaction mechanism varies slightly depending whether a neutral or a charged nucleophile is used.

seophine substitution (SNAC)
es
duct and the mechanism of the following Nucleophilic substitutions to p
H*, H ₂ O

Conclusion

Most popular with small groups Use small study packs Works with larger modules Improvements in results and satisfaction. Studypacks, on-line assessments and extra workshops increase student engagement.

Evaluation

Comparison of results with previous years

Year	No.	Pass %	Mod Av %	Exm Av %	CW Av %
2006	11	92	54	48	61
2005	14	85	55	5	57
2004	10	70	49	44	57
2003	20	95	56	53	59

MCQ question

Consider the effect of creating a single defect in a perfect crystal (no defects), which ONE of the following statements is true?

 \mathbb{R}

- The enthalpy of formation of a defect is exothermic (i.e is negative).
- There is a decrease in entropy (S).
- There is an increase in Gibbs free energy (i.e. change in G is positive).
- There is a decrease in Gibbs free energy (i.e change in G is negative).
- The number of intrinsic defects is independent of temperature

0 out of 1

incorrect. It takes energy to break ionic bonds in the removal of an ion. Therefore the creation of a defect is endothermic.

Statements question

3 of 3

Read the following statements

Statement 1

An oxidation state of two less than the group oxidation state is favoured by 6p elements. This is often known as the Inert Pair Effect.

Statement 2 The promotion energy for p-block elements increases down a group.

For your answer select ONE of the following

- If statement 1 is correct and statement 2 is false
- o if statement 1 is false and statement 2 is correct
- if both statements are false
- o if both statements are correct, but statement 2 does not help to explain statement 1
- o if both statements are correct and statement 2 helps to explain statement 1

0 out of 1

Incorrect the promotion energy increase down the group due to spin orbit effects and therefore it becomes less thermodynamically favourable to adopt the higher valency

Statements question

3 of 3

Read the following statements

Statement 1

An oxidation state of two less than the group oxidation state is favoured by 6p elements. This is often known as the Inert Pair Effect.

Statement 2 The promotion energy for p-block elements increases down a group.

For your answer select ONE of the following

- If statement 1 is correct and statement 2 is false
- o if statement 1 is false and statement 2 is correct
- if both statements are false
- o if both statements are correct, but statement 2 does not help to explain statement 1
- o if both statements are correct and statement 2 helps to explain statement 1

0 out of 1

Incorrect the promotion energy increase down the group due to spin orbit effects and therefore it becomes less thermodynamically favourable to adopt the higher valency

Observation-conclusion question

🚰 dblock oxidation - Microsoft Internet Explorer

File Edit View Favorites Tools Help

4 of 4

Read the following observation and conclusion, and for your answer select ONE of the following

Observation The strength of Metal-Metal bonding increases down a transition metal group.

Conclusion

The strength of element-element covalent bonding increases down a Main block group.

- A if both the observation and conclusion are false
- If the observation is true , but the conclusion is false
- C if the observation is false, but the conclusion is true.

 \odot D if both the observation and conclusion are true and the conclusion can be drawn from the observation

● E if both the observation and conclusion are true, but the conclusion does not follow from the observation

1 out of 1

Correct, well done. metal-metal bonding increase in strength down a group due to better overlap of the valence d-orbitals., whereas element element bonding in main group elements decrease downa p-block because of poorer overlap of more diffuse orbitals

Home

Rank order question

Si-O sigma bond is the strongest (420 kJ/mol)

Multiple response question

Total score: 0 out of 3, 0%

6

Read through the feedback for each question and refer back to your study pack

1 of 3

Which of the following statements are correct? There may be more than one correct statement

☑ The Si-O sigma bond is stronger than the C-O sigma bond due a greater electrostatic interaction.

The Si-O bond has some double bond character due to pi bonding involving a silicon 3d orbital.

☑ The Si-O pi bond is strong due to good side on overlap of the 3p and 2p orbitals.

☑ The C-O pi bond is strong due to good side-on overlap of the 2p orbitals.

Silicon dioxide contains two Si=O double bonds

0 out of 1

1,2 and 4 are correct Remember pi bonding involving 3p orbitals is normally very weak and in Silicon dioxide each silicon is bonded to four different oxygens in atetrahdral arrangement.