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Abstract.

The problem of communication between observerkénvicinity of a black hole in a Schwarzschild nets
considered. The classic example of an infallingeobar Alice and a static distant mothership MSxigerded to
include a second infalling observer Bob, who fokolice in falling towards the event horizon. Krask
coordinates are introduced to analyze this sitna@md the pedagogic value of introducing thisrafigve
coordinate system is demonstrated by their atiitgrovide a graphically based solution and illatstm to this
problem. The counterintuitive result that is obéainwhich will be of interest to those studying gt relativity
at an introductory level at final year undergraéuat at graduate level, is that Bob appears tchraaghostly
image of Alice at the event horizon.

1. Introduction

One of the most appealing features of the grawvitali field yielded by a spherically
symmetric, static mass M, is the fact that it isemactly solvable problem both in classical
and in relativistic mechanics. The meaning of exstvability is that the gravitational field
itself is known (in relativistic mechanics, the metensor) and the equation of motion of a
test particle can be solved. That is why it is ofised as an example of a relativistic equation
of motion in the framework of Schwarzschild cooatas. The simplest problem in this case
is radial free fall. Despite the exact solvabibtyd simplicity of the problem (see e.g. [1]) one
can still find some new, unexpected, and evenguing features. One such unexpected
characteristic (unknown to the best of our know&daccurs when discussing the problem of
communication with an object falling towards thesetvhorizon in this case. A well-known
feature of radial fall towards the event horizothigt thecoordinate timgthe time that would
be measured by a static distant observer) takeeatth the event horizon by a freely falling
object is infinite (see e.g. [2]). This feature ascompanied by unlimited redshift: the
frequency ratio of electromagnetic signals comirayf the falling object and recorded by a
distant observer at rest, tends to zero as th#ingabserver approaches the event horizon. In
principle, such signals will be recorded for annié future duration; in practice, they will
disappear from the screens of rest observers diretsensitivity limits of recording devices.
On the other hand, an infalling observer reachestlent horizon in a finite proper time (the
time measured by the infalling observer). This nksy regarded as the most dramatic
manifestation of time-dilation-like phenomena [2].

Bearing in mind such a dramatic difference betwibenmeasurements of an observer at rest
and an infalling observer, one may consider arrnméeliate situation, and ask: what would be



the observations made by two infalling observers(Afice) being followed by B (Bob)?
Alice crosses the event horizon in “the infiniteufte” in terms of coordinate time, butin a
finite proper time, as measured by her — what waa@dob’s perception of this event? How
much later (behind Alice) will Bob himself crodsetevent horizon, according to his proper
time? Would this be shortly after Alice appears We will discuss these questions here
because the key answer turns out, to be ratherisimgn Bob, while continuously in receipt
of signals from Alice, finds her crossing the honzat the instant that he himself crosses the
horizon. This counter-intuitive result is found k@ much less surprising when studied in
more detail. An especially illuminating descriptiohthis effect may be given using so-called
Kruskal coordinates [3, 4], and it has pedagoglae/#o introduce the use of these specialized
co-ordinates to a wider audience by addressingoimiscular problem of interest. By focusing
primarily on the qualitative character of this otvs¢ion rather than on its quantitative
aspects, one can obtain an appealing and simpteiptesn of this nontrivial observation. A
further pedagogical value of this approach is adalethe fact that although it is not a new,
scientifically original result, (referring to objicthat in principle have been understood for
more than 90 years - Schwarzschild black holeq [5,8lthough in practice widely accepted
for only some 40 years). Apart from static blackelsp there are also charged [6] and/or
rotating black holes [7, 8], described also inadtrctory texts [9,10] as well as more rigorous
textbooks [11, 12]. This current description pr@sda new perspective on a well-known
feature of these objects, namely free fall in Salagehild spacetime. As a matter of fact, this
new perspective might be added to the list of phema unknown in the “classical world”
that are accessible to us only by means of retittvphysics.

2. Radial fall in Schwarzschild spacetime

Let us start by defining the framework for our ddesations. One may consider a static,
spherically symmetric mass M of radius R. The proge of the gravitational field outside of
this gravitating bodyr > R, are described in terms of the metric tensor. Maric tensor
expressed in Schwarzschild coordinates turnsambetdiagonal and the line element is then
expressed as:
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where the Schwarzschild radius is deno's = PO Solution (1) holds above tleent

horizon r >ry.

The motion of a test particle within a Schwarzsthipacetime (1) may be described in a
rigorous manner by reference to conservation lal¥ere are two conserved quantities,
energy and angular momentum. The planar motionulangnomentum conservation), may

be considered to occur in an equatorial plet9=g and hence the equation of motion

simplifies in this case to the four-velocity comaolit
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where,u? =

q denotes ther - component of the velocity vector.
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Hereafter radial fall only is considered, impliegiu® =0 . Then energy conservation, (a
result of the time-independence of the system,[5e#&3]) gives an explicit dependence for
the time component velocity vector

= got’ =€ (3a)
This in turn (see Eq. 2) leads to the obvious smiufor the radial velocity component:

Ut =Fy&% — gy (3b)
The parametes = /g ,(f,) can be shown to be related to the energy , adétarmined by

the initial conditions:r, denotes the starting point of the radial fall, umsig free fall
beginning from rest. One can also consider massésgsparticles such as photons. In this

a

case the corresponding tangential four ve&tor c(ljx
o

is, (by definition) a null vector,

gaﬂkakﬁ =0 (4)

where g is an auxiliary parameter of a photon world li@@mponents of the wave vector for
radial fall, found by use of the energy conservaticondition (c.f. Eg. 3a) and Eq. 4, take the
form (see the discussion in Ref. [14]):
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The F sign corresponds to incoming and outgoing masséssparticles (light rays).

By using Egs. (3) one can calculate the time elhpseeach the event horizon. The proper
time, i. e. the time as measured by the infallibgesver is defined by Eqg. (3b),

dr = dr __ dr (6a)
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while the coordinate time is defined by egs. (3&) €b)
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As direct calculation shows [2, 15] an in-fallingjectreaches the event horizon
a) after a finite amount of proper time (accordinghe infalling observer), and
b) after an infinite time (according to a distanttistabserver)

dt=- dr (6b)

Indeed, by using the substituti x = 1/%0 -1 one can integrate Eq. (6a)

r
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to find that in-falling observer starting frorg reaches the event horizon in a finite (proper)
time,

(7a)
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On the other hand, the coordinate time period, dduvom Eq. (6 b),
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tends to infinity as r approaches the event horizon

At O -rgIn(xg = x) O 1% - 0.
This is a time-dilation-like effect and it is a Wwkhown feature of a Schwarzschild black
hole. Less well-known is the frequency ratio relataccompanying mutual signal exchange
between Alice and her “mother station”, MS locaédr,. Namely one finds that the
frequency ratio is redshifted in both cases. M&ikexs (r) signals emitted (e) by Alice, and
the frequency ratio defined as a scalar produici [46].

G,

w{AS_(k”ua)Ms_ (QOOKOUO)MS _ Too (r,) (8)

Wy ) (kaua )A ) (gookou0 + gnklul)A wmuo(1+§3l:1(l)11]
A

This may be expressed in terms of Alice’s locabe#y, v, (as measured by a local observer
at rest [17]), via
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Then it takes a simple form, namely
B —1-2a (10a)
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and is critically redshifted, i.e. it tends to z¢t8], becausiv,tends to c as the event horizon
is approachedThere is a simple argument ttv,. tends to c independently of the starting
point r,: an immediate consequence of the energy consenvga) and Eq. (9a) is that
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is conserved, henwv, tends to c wher, - rg [17]). In turn Alice receives signals issued by
MS, universallyredshifted,

= const
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This ratio tends to ¥2 when Alice approaches thaelverizon, independently of the starting
position. This asymmetry in communication evenyubkcomes singular: MS receives
Alice’s signals emitted only above the event hamiawhereas Alice will receive signals from
MS continuously above and below the event horizothis sense two-way communication is
disrupted. One may ask how would two-way commuinoabe disrupted between two
falling observers, Alice and Bob, with Bob followg\lice. Both Alice and Bob would reach
the horizon within a finite proper time period &eit two-way communication must be
broken within a finite proper time.

To study this more easily one needs a change efeete frame. Namely, the considerations
above have been performed within Schwarzschilddinates, which produce a singularity at

the event horizon; =rg. A different frame of reference may be deploye=ijaid of this
defect.

3. Kruskal coordinates

Schwarzschild coordinates (1) yield a singularityttee event horizon g,,(rs)=0. This

singularity is termed a coordinate singularity d@ndioes not appear in other, carefully chosen
systems of coordinates. There are various coomiggstems free of this singularity [1,2].

One of them is the Kruskal (or Kruskal-Szekere®)rdmate frame [2 - 4]. Coordinates in this

frame are usually denoted v, u, 6, ¢ and the relatiol(t,r) — (v,u) is the following:
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The last two coordinates are those of Schwarzsemgpilar coordinates.
The transformation (11), above the event hoir >rg, is described by the following matrix,

(11)
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Inverting this matrix results in the inverse tramsiation:
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By performing transformation (12b) one can find dogresponding metric tensor in Kruskal
coordinates
ox" ox”

Ko = s Way_g
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that does not reveal singular behavior. In fact line element, expressed in Kruskal
coordinates, is

dr® = K(dv2 —duz)—rzde2 —r%sin” &lg” (14)
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where K :32—Me ™Mo

The most appealing features of Kruskal coordinates the nonsingular behaviour of the
metric tensor and the fact that radial geodesiesand outgoing, are represented in the v-u
plane as perpendicular, straidines at—45" and + 45, respectively (see below].he meaning

of v-u coordinates becomes clearer when considespegific hypersurfaces — lines in this
case (see Fig.1).
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Fig.1 Kruskal coordinates v-u and radial geodesics. kééhiu + Vv > 0, covers black hole exterior (1)
and interior (I). Hyperbolas with asymptotas= v represent “surfaces” of constant radius
straight lines, passing through the origin, repnessurfaces” of constant time. Ingoing and

outgoing radial null geodesics afe45’ straight lines. A geodesic for a massive parigleketched
schematically

Namely, world lines of fixed distanctr = cons are hyperbolas, u? —-v? =C; spacelike
curves, t =cons are straight lines, originating iv=u=0. Therefore, the region (I)
bounded in Fig. 1 by the two straight linev =-u corresponding tor =rg, t =—c and

v =u corresponding tr =rg, t = represents the Schwarzschild coordinate system (1)
In the ranger >rg, applying transformation (12b) to the solutiony §8d (5) one obtains the

equations for geodesics. Geodesics are arrangetheinv-u plane and velocity vector
components are then given as follows:

UV:; us —v 52 _ﬂ (15a)
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where £ is a constant of motion (see Eq. 3). Let us empbkasiat the velocity components
(15) are well-defined in the whole ran0<r <o . The wave-vector components are:
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These null geodesics are straight lines¥ 45" to x-axis,where the labe+ stands for
ingoing (outgoing) rays (see Fig.1).
3

i photons -+ .
t=t, ———— X

Fig.2 Exchange of radial sighals between Alice and “rap#tation”, MS. Alice records (in principle)
the signals from MS above and below the horizon;ret®rds only those signals sent above horizon

Applying these tools to the information exchangemMeen Alice and the mother station MS

(see Fig. 2) one can reproduce qualitatively thé-kveown result: Alice receives messages
from MS throughout her journey towards the eventzom and also below the event horizon.
MS will receive messages sent by Alice from ababe event horizon, throughout all the

infinite future. Actually, due to formal technidahitations, these messages, when sufficiently
redshifted, will cease to arrive as their intensitlf not be sufficiently high.

What may be easily deduced from Fig. 2 is that M8, @n principle, infer the last instant at
which a message sent to Alice could produce a resspthat can be received asymptotically
by MS in the future, namely the instaint t,. However, signals from Alice suffer unlimited

redshift and as claimed above, at some stage cteese to be recorded by MS.

4. How does Bob “see” Alice crossing the event horizén

One may ask about communication between Alice aoll, Both falling towards the event
horizon. As static observers, MS (and all othereobsrs arranged radially at rest), receive
messages from Alice continuously throughout thénite future; the question is, how will
observer Bob, who is also going to cross the elientzon in a finite proper time, “see”
Alice approaching and crossing the event horiziostead of giving a direct answer, let us
first consider a trivial question: how does Bole #dice reaching and crossing a specific



point at coordinate=r,? If Alice and Bob are communicating by means eCegbmagnetic
signals then, Alice, when crossingr,, at somet=t, sends a signal (back) to Bob. In

Kruskal coordinates this signal is a straight li+45 that hits Bob’s world line at some
later instanit =t,, atr =r, (see Fig.3). One can use proper time notatiorceMdiand Bob's
world lines may be parameterized with their ownperotimesz” and r® respectively, and
consequently respective proper times representingy drossing instant =t, (emission

instant) and receiving instat =t, would be fixed az;* andr}, respectively.
2 : : -
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Fig.3 Bob receives signalt =t,, r =r, from Alice crossingr =r, att =t,.

The situation of crossing the event horizon is, hevea special case. Approaching the event
horizon Alice emits signals continuously: thosensig reach Bob continuously. But as can be
seen in the Fig. 4 those signals are recorded Wy, Bdo is also approaching the event
horizon, until the verynstant of crossinghe event horizon himself! It looks like informati
that Alice crosses the event horizon reaches Bépairthe event horizon.



Fig.4 Bob receives signals from Alice until he, himgefiches the event horizon. This is an
asymptotic process as no signal can be emittdtedidrizon (there can be no “trapped”
signal)

This is obviously a counter-intuitive outcome: iteses that Bob, approaching the event
horizon can see Alice all the time, and moreov&t he is going to collide with her.

5. Discussion and remarks

Geodesic radial fall in Schwarzschild spacetimesdo& seem to yield any controversies, at
least above the event horizon. Nevertheless, debpihg an exactly solvable problem, it still
reveals interesting behaviour - namely, the dramdiicrepancy between a rest observer’s
and an infalling observer's perception of the titad&en to reach the event horizon. A
manifestation of this discrepancy is the disruptcdncommunication: an infalling observer
continues to receive electromagnetic signals frorash observer positioned above the event
horizon, even when they drop below the event lborigi.e. within the interior of a black
hole). On the other hand, the rest observer canrenkive signals from the infalling observer
while the latter remains above the event horizos.nday be deduced from the above, this
does not lead to an information paradox: the imfgliobserver, from the perspective of the
rest observer, disappears into the latter’s irdifitture. It should be pointed out though, that
Alice appears to take forever to reaghSo intuitively one may expect that light raystsey

MS at any future coordinate time, will reach hefobe she crosses the horizon. In fact, this is
not the case. Only signals sent upt tot, will do so, and responses to these may be received
in the limit of the limit of infinite coordinaterme. And that is a direct consequence of the
aforementioned divergence of time perception.
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However, as discussed in this paper, it is botare@#ting and instructive to explore
another perspective — what will be perceived bgaord infalling observer, Bob who follows
a first infalling one, Alice? Bob reaches the evhantizon in a finite time, so for him the
argument of the infinite future does not apply. Bmalysis of observation made by Bob has
been described here in a very qualitative mann#talde for pedagogic purposes, by means
of Kruskal coordinates. Paradoxically, those camaiths, devised mainly to match the interior
of the black hole with its exterior, have been ulseck solely above the event horizon in order
to illuminate the issue. The issue itself turnstoube the following: Bob continues to receive
signals until the very last instant before crosdimg event horizon. It would appear to him
that he is going to collide with Alice. More preelg, it would appear that Bob’s recording
location approaches Alice’s emission location; éwalty overlapping on the event horizon
itself. Hence the allusion in the title of this papo touching ghosts.

It should be noted that this conclusion is, in asgeg inevitable. Bob, in chasing Alice,
has to receive signals until he himself crossesethent horizon. This may be proven by
considering a counterexample. Suppose that Babeatbthat Alice had already crossed the
event horizon — this means that he is no longegivew signals from her. Then he could emit
a signal back to observers at rest letting thenwkiiat Alice had crossed the event horizon,
and this signal would be received at a finite cowté time. But this would then lead to a
contradiction, since Alice’s crossing of the evéwrizon cannot be recorded at a finite
coordinate time as noted in the discussion above.

Although it would have been possible to draw tliadusion directly as noted above,
it is more natural and possesses greater pedagalgie to do it in the deductive manner we
have followed in this paper.

What happens at the event horizon and what hagpelow the event horizon? These
guestions are beyond the scope of the current sigmu but one can provide here two
impressions resulting from studies undertaken dieeav First, it seems that one can not emit
an outgoing signal, at the event horizon; suchgaadiwould betrapped at the horizon.
Second, it appears that in the case of Schwardsdphcetime, the black hole interior
represents a region where there are two possilstencmication scenarios. In one of these
scenarios, signals emitted by Alice “towards” Bdlmutgoing” signals - are recorded by Bob
below their emission location. This is in a sensesg®ension of the above discussion. The
other scenario of communication in the black hoterior seems to be even more exotic.

The fascinating consequences of this for interacbetween real objects provide
grounds for further discussion.
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