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  Abstract.  
 
The problem of communication between observers in the vicinity of a black hole in a Schwarzschild metric is 
considered. The classic example of an infalling observer Alice and a static distant mothership MS is extended to 
include a second infalling observer Bob, who follows Alice in falling towards the event horizon. Kruskal 
coordinates are introduced to analyze this situation, and the pedagogic value of introducing this alternative 
coordinate system is demonstrated by their ability to provide a graphically based solution and illustration to this 
problem. The counterintuitive result that is obtained, which will be of interest to those studying general relativity 
at an introductory level at final year undergraduate or at graduate level, is that Bob appears to reach a ghostly 
image of Alice at the event horizon. 
 

1. Introduction 
 
One of the most appealing features of the gravitational field yielded by a spherically 
symmetric, static mass M, is the fact that it is an exactly solvable problem both in classical 
and in relativistic mechanics. The meaning of exact solvability is that the gravitational field 
itself is known (in relativistic mechanics, the metric tensor) and the equation of motion of a 
test particle can be solved. That is why it is often used as an example of a relativistic equation 
of motion in the framework of Schwarzschild coordinates. The simplest problem in this case 
is radial free fall. Despite the exact solvability and simplicity of the problem (see e.g. [1]) one 
can still find some new, unexpected, and even intriguing features. One such unexpected 
characteristic (unknown to the best of our knowledge) occurs when discussing the problem of 
communication with an object falling towards the event horizon in this case. A well-known 
feature of radial fall towards the event horizon is that the coordinate time (the time that would 
be measured by a static distant observer) taken to reach the event horizon by a freely falling 
object is infinite (see e.g. [2]). This feature is accompanied by unlimited redshift: the 
frequency ratio of electromagnetic signals coming from the falling object and recorded by a 
distant observer at rest, tends to zero as the infalling observer approaches the event horizon. In 
principle, such signals will be recorded for an infinite future duration; in practice, they will 
disappear from the screens of rest observers due to the sensitivity limits of recording devices. 
On the other hand, an infalling observer reaches the event horizon in a finite proper time (the 
time measured by the infalling observer). This may be regarded as the most dramatic 
manifestation of time-dilation-like phenomena [2].  
 
Bearing  in mind such a dramatic difference between the measurements of an observer at rest 
and an infalling observer, one may consider an intermediate situation, and ask: what would be 
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the observations made by two infalling observers, A (Alice) being followed by B (Bob)? 
Alice crosses the event horizon in “the infinite future”  in terms of coordinate time,  but in a 
finite proper time, as measured by her – what would be Bob’s perception of this event? How 
much later (behind Alice) will Bob himself  cross the event horizon, according to his proper 
time? Would this be shortly after Alice appears to? We will discuss these questions here 
because the key answer turns out, to be rather surprising: Bob, while continuously in receipt 
of signals from Alice, finds her crossing the horizon, at the instant that he himself crosses the 
horizon. This counter-intuitive result is found to be much less surprising when studied in 
more detail. An especially illuminating description of this effect may be given using so-called 
Kruskal coordinates [3, 4], and it has pedagogic value to introduce the use of these specialized 
co-ordinates to a wider audience by addressing this particular problem of interest. By focusing 
primarily on the qualitative character of this observation rather than on its quantitative 
aspects, one can obtain an appealing and simple description of this nontrivial observation. A 
further pedagogical value of this approach is added by the fact that although it is not a new, 
scientifically original result, (referring to objects that in principle have been understood for 
more than 90 years - Schwarzschild black holes [5,6] -  although in practice widely accepted 
for only some 40 years). Apart from static black holes, there are also charged [6] and/or 
rotating black holes [7, 8], described also in introductory texts [9,10] as well as more rigorous 
textbooks [11, 12]. This current description provides a new perspective on a well-known 
feature of these objects, namely free fall in Schwarzschild spacetime. As a matter of fact, this 
new perspective might be added to the list of phenomena unknown in the “classical world” 
that are accessible to us only by means of relativistic physics.  
 

2. Radial fall in Schwarzschild spacetime 
 

Let us start by defining the framework for our considerations. One may consider a static, 
spherically symmetric mass M of radius R. The properties of the gravitational field outside of 
this gravitating body, Rr > , are described in terms of the metric tensor. The metric tensor 
expressed in  Schwarzschild coordinates turns out to be diagonal and the line element is then 
expressed as: 
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where the Schwarzschild radius is denoted  2

2

c

GM
rS =  . Solution (1) holds above the event 

horizon, Srr > . 

The motion of a test particle within a Schwarzschild spacetime (1) may be described in a 
rigorous manner by reference to conservation laws. There are two conserved quantities, 
energy and angular momentum. The planar motion (angular momentum conservation), may 

be considered to occur in an equatorial plane, 
2

πθ =  and hence the equation of motion 

simplifies in this case to the four-velocity condition  
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Hereafter radial fall only is considered, implied by 03 =u  . Then energy conservation, (a 
result of the time-independence of the system, see [1, 13]) gives an explicit dependence for 
the time component velocity vector 

ε== 0
000 ugu         (3a) 

This in turn (see Eq. 2) leads to the obvious solution for the radial velocity component:  

00
21 gu −= εm        (3b) 

The parameter ( )000 rg=ε  can be shown to be related to the energy , and is determined by 

the initial conditions: 0r  denotes the starting point of the radial fall, assuming free fall 

beginning from rest. One can also consider massless test particles such as photons. In this 

case the corresponding tangential four vector 
σ

α
α

d

dx
k =  is, (by definition) a null vector,  
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where σ  is an auxiliary parameter of a photon world line. Components of the wave vector for 
radial fall, found by use of the energy conservation  condition (c.f. Eq. 3a) and Eq. 4, take the 
form (see the discussion in Ref. [14]): 

∞
∞ == ωω

m
1

00

0 k
g

k        (5) 

The m sign corresponds to incoming and outgoing massless test particles (light rays). 
 
By using Eqs. (3) one can calculate the time elapsed to reach the event horizon. The proper 
time, i. e. the time as measured by the infalling observer is defined by Eq. (3b), 
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while the coordinate time is defined by eqs. (3a) and (3b)  
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As direct calculation shows [2, 15] an in-falling object reaches the event horizon  

a) after a finite amount of proper time (according to the infalling observer), and  
b) after an infinite time (according to a distant, static observer) 

 

Indeed, by using the substitution 10 −=
r

r
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to find that in-falling observer starting from 0r  reaches the event horizon in a finite (proper) 

time,  
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On the other hand, the coordinate time period, found from Eq.  (6 b), 
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tends to infinity as r approaches the event horizon, 
 

( ) ∞ →−−∝∆ → Sxx
SS xxrt ln . 

This is a time-dilation-like effect and it is a well-known feature of a Schwarzschild black 
hole. Less well-known is the frequency ratio relation accompanying mutual signal exchange 
between Alice and her “mother station”, MS located at 0r . Namely one finds that the 

frequency ratio is redshifted in both cases. MS receives (r) signals emitted (e) by Alice, and 
the frequency ratio defined as a scalar product ratio [16]. 
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This may be expressed in terms of Alice’s local velocity, Av  (as measured by a local observer 
at rest [17]), via 
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Then it takes a simple form, namely   
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and is critically redshifted, i.e. it tends to zero [18], because Av tends to c as the event horizon 

is approached. (There is a simple argument that Av  tends to c independently of the starting 

point 0r : an immediate consequence of the energy conservation (3a) and Eq. (9a) is that 
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is conserved, hence Av  tends to c when SA rr →  [17]). In turn Alice receives signals issued by 

MS, universally redshifted,  
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This ratio tends to ½ when Alice approaches the event horizon, independently of the starting 
position. This asymmetry in communication eventually becomes singular: MS receives 
Alice’s signals emitted only above the event horizon, whereas Alice will receive signals from 
MS continuously above and below the event horizon. In this sense two-way communication is 
disrupted.  One may ask how would two-way communication be disrupted between two 
falling observers, Alice and Bob, with Bob following Alice. Both Alice and Bob would reach 
the horizon within a finite proper time period so their two-way communication must be 
broken within a finite proper time.  
 
To study this more easily one needs a change of reference frame. Namely, the considerations 
above have been performed within Schwarzschild coordinates, which produce a singularity at 
the event horizon, Srr = . A different frame of reference may be deployed, devoid of this 

defect.  
 
  

3. Kruskal coordinates 
 

Schwarzschild coordinates (1) yield a singularity at the event horizon: ( ) 000 =Srg . This 

singularity is termed a coordinate singularity and it does not appear in other, carefully chosen 
systems of coordinates. There are various coordinate systems free of this singularity [1,2]. 
One of them is the Kruskal (or Kruskal-Szekeres) coordinate frame [2 - 4]. Coordinates in this 
frame are usually denoted as ϕθ ,,, uv  and the relation ( ) ( )uvrt ,, →  is the following: 
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The last two coordinates are those of Schwarzschild angular coordinates. 
The transformation (11), above the event horizonSrr > ,  is described by the following matrix,  
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Inverting this matrix results in the inverse transformation: 
 



            6 

( )
( )



















−

−
=

∂
∂ −

u
M

v
M

v
Mg

u
MgD

uv

rt
tttt

4

1

4

1
4

1

4

1

,

, 1 ,    (12b) 

where, 
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By performing transformation (12b) one can find the corresponding metric tensor in Kruskal 
coordinates 
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that does not reveal singular behavior. In fact the line element, expressed in Kruskal 
coordinates, is 
 

( ) 22222222 sin ϕθθτ drdrdudvKd −−−=    (14) 
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r
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332 −
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The most appealing features of Kruskal coordinates are: the nonsingular behaviour of the 
metric tensor and the fact that radial geodesics, in- and outgoing, are represented in the v-u 
plane as perpendicular, straight lines at o45−  and o45+ , respectively (see below). The meaning 
of v-u coordinates becomes clearer when considering specific hypersurfaces – lines in this 
case (see Fig.1).  
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Fig.1 Kruskal coordinates v-u and radial geodesics. Manifold 0>+ vu , covers black hole exterior (I) 
and interior (II). Hyperbolas with asymptotes vu ±=  represent “surfaces” of constant radius r ; 
straight lines, passing through the origin, represent “surfaces” of constant time t . Ingoing  and 

outgoing  radial null geodesics are  o
m 45  straight lines. A geodesic for a massive particle is sketched 

schematically  
 
 
Namely, world lines of fixed distance, constr = are hyperbolas,  Cvu =− 22 ; spacelike 
curves, constt =  are straight lines,  originating at 0== uv . Therefore, the region (I) 
bounded in Fig. 1 by the two straight lines:  uv −=  corresponding to, Srr = , −∞=t  and 

uv =  corresponding to Srr = , ∞=t  represents the Schwarzschild coordinate system (1).   

In the range Srr > , applying transformation (12b) to the solutions (3) and (5) one obtains the 

equations for geodesics. Geodesics are arranged in the v-u plane and velocity vector 
components are then given as follows: 
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where ε  is a constant of motion (see Eq. 3). Let us emphasize that the velocity components 
(15) are well-defined in the whole range ∞<< r0 . The wave-vector components are: 
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These null geodesics are straight lines, at  om 45  to x-axis, where the label m  stands for 
ingoing (outgoing) rays (see Fig.1).  

 
 
Fig.2 Exchange of radial signals between Alice and “mother station”, MS. Alice records (in principle)  
the signals from MS above and below the horizon; MS records only those signals sent above horizon 

 

 
Applying these tools to the information exchange between Alice and the mother station MS 
(see Fig. 2) one can reproduce qualitatively the well-known result: Alice receives messages 
from MS throughout her journey towards the event horizon and also below the event horizon. 
MS will receive messages sent by Alice from above  the event horizon, throughout all  the 
infinite future. Actually, due to formal technical limitations, these messages, when sufficiently 
redshifted, will cease to arrive as their intensity will not be sufficiently high. 
 
What may be easily deduced from Fig. 2 is that MS can, in principle, infer the last instant at 
which a message sent to Alice could produce a response that can be received asymptotically 
by MS in the future, namely the instant 1tt = . However, signals from Alice suffer unlimited 
redshift and as claimed above, at some stage  they cease to be recorded by MS. 
 

4. How does Bob “see” Alice crossing the event horizon? 
 
One may ask about communication between Alice and Bob, both falling towards the event 
horizon. As static observers, MS (and all other observers arranged radially at rest), receive 
messages from Alice continuously throughout the infinite future; the question is, how will 
observer Bob, who is also going to cross the event horizon in a finite proper time Bτ , “see” 
Alice  approaching and crossing the event horizon? Instead of giving a direct answer, let us 
first consider a trivial question: how does  Bob see Alice reaching and crossing a specific 
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point at coordinate 1rr = ? If Alice and Bob are communicating by means of electromagnetic 

signals then, Alice, when crossing 1rr = ,  at some 1tt =  sends a signal (back) to Bob. In 

Kruskal coordinates this signal is a straight line, o45+   that hits Bob’s world line at some 
later instant 2tt = , at 2rr =  (see Fig.3). One can use proper time notation: Alice’s and Bob’s 

world lines may be parameterized with their own proper times Aτ  and Bτ  respectively, and 
consequently respective proper times representing the crossing instant 1tt =  (emission 

instant) and receiving instant 2tt =  would be fixed as A
1τ   and B

2τ , respectively.  

 
 
Fig.3 Bob receives signal at 2tt = , 2rr =  from Alice crossing 1rr =  at 1tt = . 
  
The situation of crossing the event horizon is, however, a special case. Approaching the event 
horizon Alice emits signals continuously: those signals reach Bob continuously. But as can be 
seen in the Fig. 4 those signals are recorded by Bob, who is also approaching the event 
horizon, until the very instant of crossing the event horizon himself! It looks like information 
that Alice crosses the event horizon reaches Bob only at the event horizon. 
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Fig.4 Bob receives signals from Alice until he, himself reaches the event horizon. This is an 
asymptotic process as no signal can be emitted at the horizon (there can be no “trapped” 
signal)  
 
This is obviously a counter-intuitive outcome: it seems that Bob, approaching the event 
horizon can see Alice all the time, and moreover, that he is going to collide with her.  
 

5. Discussion and remarks 
 
Geodesic radial fall in Schwarzschild spacetime does not seem to yield any controversies, at 
least above the event horizon. Nevertheless, despite being an exactly solvable problem, it still 
reveals interesting behaviour - namely, the dramatic discrepancy between a rest observer’s 
and an infalling observer’s perception of the time taken to reach the event horizon. A 
manifestation of this discrepancy is the disruption of communication: an infalling observer 
continues to receive electromagnetic signals from a rest observer positioned above the event 
horizon,  even when they drop below the event horizon (i.e. within the interior of a black 
hole). On the other hand, the rest observer can only receive signals from the infalling observer 
while the latter remains above the event horizon. As may be deduced from the above, this 
does not lead to an information paradox: the infalling observer, from the perspective of the 
rest observer, disappears into the latter’s infinite future. It should be pointed out though, that 
Alice appears to take forever to reachSr . So intuitively one may expect that light rays, sent by 

MS at any future coordinate time, will reach her before she crosses the horizon. In fact, this is 
not the case. Only signals sent up to 1tt = will do so, and responses to these may be received 
in the limit of the limit of infinite coordinate time.  And that is a direct consequence of the 
aforementioned divergence of time perception.  
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However, as discussed in this paper, it is both interesting and instructive to explore 
another perspective – what will be perceived by a second infalling observer, Bob who follows 
a first infalling one, Alice? Bob reaches the event horizon in a finite time, so for him the 
argument of the infinite future does not apply. The analysis of observation made by Bob has 
been described here in a very qualitative manner, suitable for pedagogic purposes, by means 
of Kruskal coordinates. Paradoxically, those coordinates, devised mainly to match the interior 
of the black hole with its exterior, have been used here solely above the event horizon in order 
to illuminate the issue. The issue itself turns out to be the following: Bob continues to receive 
signals until the very last instant before crossing the event horizon. It would appear to him 
that he is going to collide with Alice. More precisely, it would appear that Bob’s recording 
location approaches Alice’s emission location; eventually overlapping on the event horizon 
itself. Hence the allusion in the title of this paper to touching ghosts. 

It should be noted that this conclusion is, in a sense, inevitable. Bob, in chasing Alice, 
has to receive signals until he himself crosses the event horizon. This may be proven by 
considering a counterexample.  Suppose that Bob noticed that Alice had already crossed the 
event horizon – this means that he is no longer receiving signals from her. Then he could emit 
a signal back to observers at rest letting them know that Alice had crossed the event horizon, 
and this signal would be received at a finite coordinate time. But this would then lead to a 
contradiction, since Alice’s crossing of the event horizon cannot be recorded at a finite 
coordinate time as noted in the discussion above. 

Although it would have been possible to draw this conclusion directly as noted above,  
it is more natural and possesses greater pedagogic value to do it in the deductive  manner we 
have followed in this paper.  

What happens at the event horizon and what happens below the event horizon? These 
questions are beyond the scope of the current discussion, but one can provide here two 
impressions resulting from studies undertaken elsewhere. First, it seems that one can not emit 
an outgoing signal, at the event horizon; such a signal would be trapped at the horizon. 
Second, it appears that in the case of Schwarzschild spacetime, the black hole interior 
represents a region where there are two possible communication scenarios. In one of these 
scenarios, signals emitted by Alice “towards” Bob - “outgoing” signals - are recorded by Bob 
below their emission location. This is in a sense an extension of the above discussion. The 
other scenario of communication in the black hole interior seems to be even more exotic. 

The fascinating consequences of this for interaction between real objects provide 
grounds for further discussion.  
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