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pproximating the marginal effect of discrete regressors in logit models 

Abstract 

Logit models are non-linear in their explanatory variables. Derivatives with respect to 

the explanatory variables therefore only approximate the response to discrete changes 

in regressor values, yet have gained some support within the literature. This note 

investigates such an approximation strategy and delineates the conditions under which 

it does or does not give satisfactory results. The conclusion is that it is a risky strategy 

and that therefore the correct alternative should be employed. 
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Introduction 

Where models are non-linear in their explanatory variables, differentiation with 

respect to an explanatory variable will only approximate the modelled response to a 

discrete change in that variable’s value. Nevertheless, use of this approximation has 

been noted within contemporary reputable textbook literature as being capable of 

accuracy for the particular case of binary choice models - Greene (2000: p817). 

Intuitively, this is an unexpected property for such models to possess and thus a 

puzzle that does not seem to have been yet addressed
1
. The puzzle is of more than 

academic interest since the rate of response of dependent variable to explanatory 

variable may, in applied work, be used to assess practical questions where accuracy is 

a serious concern. Examples could include determining whether or not a binary policy 

instrument is sufficiently influential or deciding the size – and thus the expense, of a 

sufficiently large change in a continuous instrument. This present note investigates the 

conditions required for such an approximation strategy to deliver acceptable accuracy, 

concluding that these are too restrictive to make the strategy advisable. The note 

proceeds by first briefly introducing logit models, then deriving an expression for 

correctly calculating the response to a discrete change in a regressor. The 

proportionate error that follows from using a derivative-based approximation to this 

correct calculation is then derived and its behaviour is analysed. A concluding section 

summarises the implications of the analysis. 

 

Logit Models of Success Probability 

Binary response models restrict the dependent variable, Y ,  to taking one of two 

values, which may be coded 0iy  and 1iy , at each observation point, 

Ni ,2,1 .  Simply as a matter of notation, the outcome 1iy  can be denoted 

“success”. The logit model is a particular example of binary response modelling, so 

named because it models the “logit”, i.e. the logarithm of the odds ratio, as a linear 

regression. With ix  being a k1  row of observed regressor values at the i
th

 

                                                
1 On the basis of a search of all abstracts held in the EconLit database, using “logit” and “approximat*” 

as keywords. 
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observation point, and   a 1k  column of parameters, a logit model may be 

presented as follows. 
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Inverting the logit transformation and introducing a scalar disturbance, iu , gives the 

implied model for iy : 
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This non-linear model is typically estimated by numerical Maximum Likelihood, to 

give 
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(2. 

 

If the row x  is specified to be one of the observed ix  then (2) provides a fitted value, 

ii py ˆˆ  . More generally, the estimated model may be used to simulate  xyE |  for 

any instance of x , observed or hypothetical. Because the function 

   zz eezF  1  is the cumulative density function for the logistic distribution 

the fitted or simulated values will fall within the range (0,1), making them acceptable 

as estimates of the “conditional success probability”,  xy  |1Pr .  

 

A natural focus in the application of the estimated model is to consider its 

implications for the influence of the regressors upon success probability. For 

continuous regressors the point rate of response can be obtained by differentiation.
2
 

                                                
2
 Appendix 1 provides support for this and other assertions made within the main text. 
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On occasion it may be more useful to evaluate how success probability responds to a 

discrete change in a regressor value, i.e. jxp   - for example when modelling the 

consequences of changes in the value of a policy instrument. Moreover, some 

regressors – for example 0 / 1 dummies, are intrinsically discrete, making 

instantaneous rates of response theoretically irrelevant. The non-linear nature of the 

model prompts an expectation that the marginal effects of discrete changes may not be 

well-approximated by the point rates of response. 

 

However, Greene (2000: p817) suggests that evaluating the derivative jxp   in fact 

provides an approximation to the discrete change jxp   that is “often surprisingly 

accurate” for binary choice models and substantiates this assertion with an example. 

The purpose of this present note is to examine more closely the merits of such an 

approximation strategy. Greene makes the case for binary response models generally, 

offering a fitted probit
3
 model as a supporting example. This note investigates the 

approximation strategy in the context of logit models, because of their relative 

analytical tractability, maing some comments upon Probit models in the conscluding 

section. Greene focuses on a particular instance of x , namely the case where 

regressors are equal to their sample averages. The analysis presented here is not 

restricted to that case but is applicable to it.  

 

Calculation of Marginal Effects 

This section provides an expression for the response of an estimated success 

probability to a discrete change in the value of a single regressor, which may be 

specified without loss of generality as the k
th

. To simplify notation, let the fixed 

contribution of the remaining regressors to the fitted / simulated logit be 

                                                
3 Where Logit models use the cumulative density function (cdf) of the Logistic distribution, Probit 

models use the cdf of the standard Normal distribution. 
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change in the value of this regressor from xxk   to xxxk  .  

 

The consequence of the shift in value of the k
th

 regressor is a shift in the estimated 

success probability. Let the estimated success probabilities before and after the 

change of regressor value be, respectively 
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Using the continuous derivative to approximate p  gives 
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Whereas the actual discrete change in the estimated probability of success is obtained 

by the subtraction ppp 12   and, following some algebra, may be expressed 

as 
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(4. 

 

Correct calculation of the effect of a discrete change in a regressor value, whether by 

computation of  , or simply by the subtraction pp 12  , requires only small 

effort. This suggests that the effort should only be avoided if the returns are even 

smaller – for example if the approximation error is negligible. This possibility is now 

investigated. 

 

Assessing Approximation Error 

The cases 0p , 1p , 0b  and 0x  may be excluded from consideration 

since here 0 ppa
. Before proceeding to a detailed analysis, it is worth noting 
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that, for given values of p  and b ,    xx  . Thus the symmetry 

implicit in the approximation    bppxpxp  1  is always 

qualitatively incorrect.  

 

A more complete assessment of the approximation strategy can be based upon the 

proportionate approximation error, which is  

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be algebraically re-arranged
4
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The first term of the RHS,  , is recognisably the proportionate error that would result 

from using xb  as an approximation for  1xbe  and   differs from this by an 

amount, xpb , whose size and sign are in general unrestricted.  

 

Now, a first-order McLaurin expansion has ze z 1  so that, when xb  is 

sufficiently small as to make this first-order approximation satisfactory, then 

 xpbxb  1  and xpb . This confirms that the approximation 

noted by Greene (2000) will indeed have small error whenever xb  is sufficiently 

close to zero. However, there are no generally applicable a priori limits to the 

absolute size of xb  and the analysis should therefore proceed without the 

assumption that xbe xb  1 . 

 

The object of analysis is   - the proportionate error that results from approximating 

jxp  by jxp  . Consider   as a function of xbz  , and indexed by the 

value of p - now treated as a parameter. Setting 0p  provides a benchmark case in 

which    zz  0  is identical to the proportionate approximation error in 

                                                
4
 The detailed derivation is in Appendix. 1. 
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ze z 1 , which approaches -1 asymptotically as z  but increases without 

bound as z . Since 0p  is not achievable with finite regressor values, this 

benchmark should be read as a limiting case – approached as 0p . Setting 

5.0p  provides a second useful benchmark:     zzz 5.05.0  , which is 

symmetric around zero, and non-negative. The following graph shows both 

benchmark cases. 

PROPORTIONATE APPROXIMATION ERROR - 

TWO BENCHMARK CASES
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The two benchmark cases indicate that p , the value of success probability before the 

change of regressor value, has a fundamental influence upon the approximation error. 

For 5.0p , the approximation over-states the size of the response to a discrete 

change in a regressor value, whether this change is one that increases success 

probability -   0 xbz , or decreases success probability -   0 xbz . The 

size of this approximation error increases without bound as z . The second 

benchmark,  z0 , indicates that for values of p  approaching 0p  the error is 

asymmetric: the approximation over-states the size of response when 0xb  and 

understates it when 0xb . The proportionate size of error increases without bound 

as z  but is bounded below by -1 as z . 

 

For any 5.0p , consider      zpzzp 5.05.0  . This has the appearance of 

a (distorted) rotation of  z5.0  around 0z  - clockwise for 5.0p  and anti-
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clockwise for 5.0p . Instances of 5.0p  are mirror images of the corresponding 

5.0p  - i.e.     5.00,5.05.0     zz . Hence an investigation of one or 

the other will suffice. The analysis therefore proceeds for the case of clockwise 

rotation, illustrated by the following graph.  

PROPORTIONATE ERRORS AT VARIOUS 

VALUES OF P
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It is convenient to deal separately with positive and negative values of  xbz  . In 

the case of clockwise rotation, i.e. for 5.0p , it can be seen that, at any value of z  

along the negative half-axis, the approximation error worsens relative to the case of 

5.0p . The further the departure of p from 0.5, the greater the error that results at 

any given 0xb  when approximating jxp  by jxp  . For any given value 

of p  the size of error increases with the size of xb . An investigator who employs 

the approximation jjj xpxxp   when 0xb  introduces an error 

whose size increase with the size of the coefficient, b , and with the size of the change 

in regressor value, x , and also with the size of  5.0p . 

 

For the other half-axis,   0 xbz , the consequences of the clockwise rotation of 

 zp  are less straightforward;  zp  decreases algebraically relative to  z5.0  

but this algebraic reduction does not necessarily imply a reduction in the absolute size 

of approximation error. The slope of  0p  is steeper for smaller values of 5.0p , 
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causing the approximation errors close to the origin to be larger in size for smaller 

values of p . As z increases, however  zp  approaches a (negative) turning point. 

Thereafter its slope is positive, initially decreasing the size of negative error but 

eventually causing the error to become positive and thereafter to increase in size. The 

smaller the value of p , the less steep this positive slope and therefore the more 

extended the range of values of z for which the absolute size of  zp  is less than at 

its turning point.  

 

Any arbitrary criterion for acceptable approximation error, such as (say) 

  %20xbp , is represented in the preceding graph by a horizontal band 

centred on the horizontal axis. The arguments of the previous paragraphs lead to the 

conclusion that 

(i) on the half-axis   0 xbz , this criterion is only met when z occupies 

a range close to the origin, whose width narrows as p  falls below 

5.0p ; 

(ii) on the half-axis   0 xbz , this criterion is also met when z occupies a 

range close to the origin, whose width narrows as p  falls below 5.0p , 

and is additionally satisfied for a second range of values of z whose width 

increases as p  approaches 0p . For values of p  sufficiently close to 

5.0p , these two ranges will be contiguous
5
. 

 

Cases of 5.0p are a mirror image of the above. 

 

We are now in a position to understand why evaluating the derivative jxp   

provides an approximation to the discrete change jxp   that has been described as 

“often surprisingly accurate”. It is because  

 the approximation (not surprisingly) achieves whatever accuracy might 

be required when xb  occupies a range sufficiently close to zero 

                                                
5 This is because the minimum point of the proportionate error function then falls within the error 

tolerance band.  
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 when 5.0p  it will also be acceptably accurate for some additional 

finite range within 0xb , though not within 0xb  

  when 5.0p  it will also be acceptably accurate for some additional 

finite range within 0xb , though not within 0xb  

 

The end-points of these ranges are the roots of   0*  zp , where 
*  is the 

target level of accuracy. The roots can be obtained by numerical solution
6
; the 

following table gives the detail for the case where the target level of accuracy for the 

approximation is set at %5 .  

 

Table 1 

p  Range of xb  for which accuracy is within %5 . 

0.1 Between -0.12 and 0.13 and also between 9.49 and 10.50 

0.2 Between -0.16 and 0.18 and also between 4.50 and 5.09 

0.3 Between -0.23 and 0.28 and also between 2.33 and 2.96 

0.4 Between -0.38 and 1.64 

0.5 Between -0.78 and 0.78 

0.6 Between -1.64 and 0.38 

0.7 Between -2.96 and -2.33 and also between -0.28 and 0.23 

0.8 Between -5.09 and -4.50 and also between -0.18 and 0.16 

0.9 Between -10.50 and -9.49 and also between -0.13 and 0.12 

 

Table 1 confirms that there are combinations of p , b  and x  for which the strategy 

of employing point rates of response to approximate discrete changes can achieve a 

given target level of accuracy. However, these combinations do not dominate within 

the range of the table, which is 50.1050.10  xb , and all combinations 

outside of this range fail to achieve the target accuracy level. Moreover, whenever the 

accuracy criterion is met for some 
*zxb  , there is no guarantee that it is also met 

for 
*zxb  . 

 

                                                
6
 See Appendix 2 
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It remains to be considered whether the approximation strategy has any improved 

chances of success when the regressor being considered for variation is itself binary, 

i.e. a 0 / 1 dummy variable, and all other regressors are set equal to their sample 

means. This case deserves attention because it is one that has been used in applied 

work to characterise the influence of a binary regressor upon success probability and 

because it is described by Greene (2000: p817) as one in which the point rate of 

response “generally produce[s] a reasonable approximation to the change in 

probability”. The analysis presented above has established that the extent of 

approximation error depends only upon the sign and size of  xbz   and the 

success probability, p , associated with the given regressor values. Investigation of 

the case highlighted by Greene may therefore be limited to a consideration of whether 

or not it constrains the values of xb  and / or p . 

 

Firstly, note that, despite the non-linearity of a Logit model, its Maximum Likelihood 

residuals are orthogonal to its regressors (Cameron and Trivedi, 2005: p469), with the 

implication that these residuals average to zero if the model includes an intercept. In 

this case, the sample average of fitted success probabilities, which, in the notation of 

equation (2), is    ̂,1 iii xFppNp   , is equal to the observed sample 

frequency of successes:   iyNy 1 . Limiting attention to applications in which 

this sample frequency is in the range 7.03.0  p  then permits appeal to Amemiya 

(1981), who notes (p1488) that a linear approximation to the logistic cumulative 

density function (cdf) “works well” for probabilities in this range. The implication of 

this approximate linearity is that setting regressors to their sample average values will 

produce an estimated probability approximately equal to the average of the fitted 

probabilities, i.e.   ypxF ̂ , and therefore also in the quoted range. As the 

sample frequency of success moves away from the quoted range into the lower or 

upper tail then, because of the increased curvature of the cdf,  ̂xF   moves further 

into the tail than does p , so that it is no longer possible to claim   yxF ̂  . In 

summary, if the sample frequency of success is in the range 7.03.0  p  then the 

success probability associated with regressors being at their sample means will 

probably also be in this range if the model employs an intercept. This places some 
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limitations upon the behaviour of the approximation error, but not sufficient to lead to 

any useful conclusions without also considering the size of xb . 

 

Since the change in a 0 / 1 dummy variable is 1 , then the quantity  xbz   

becomes in this case b . Note from equation (1) that b  is the change in the 

logarithm of the odds ratio that is occasioned by the regressor switching between its 

possible values of zero and unity.  If it could be speculatively accepted that binary 

regressors do not commonly induce dramatic changes in the odds ratio in favour of 

success, this would imply a bound on the commonly encountered values of  b . For 

example, an assertion that binary regressors are rarely capable of changing an odds 

ratio more dramatically than from (say) 50/50 to 75/25, which is a change of logit 

from 0 to 1.1, would imply that b rarely exceeds 1.1 in modulus. Table 1 then 

suggests that if, across a range of applications employing regressors at their sample 

average values, b varies uniformly within 1.11.1  b  and y  varies uniformly 

within 7.03.0  y , the chances of approximation accuracy being within %5  in 

any one application are of the order of 50%.  Widening the permitted range of 

variation for b and y  would reduce the average accuracy of the approximation 

strategy. 

 

Thus it is possible to put the case that “When applied at the point of regressor sample 

means, for logit models incorporating an intercept, and estimated on data for which 

success frequency is not particularly high or low, and in which the binary regressor 

being considered does not have a dramatically large influence, then the approximation 

strategy has a fair chance of meeting accuracy criteria that are not too stringent.” This 

does not seem a sufficient basis upon which to argue in favour of employing the 

approximation as a matter of course, even for the limited circumstances highlighted 

by Greene (2000: p817). 

 

 

Conclusion 

In Logit models the link between regressors and regressand is highly non-linear. 

Greene (2000, p817) notes that, nevertheless, the strategy of using continuous 
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derivatives to approximate the response of a binary regressand to a discrete change in 

a regressor value is may be acceptably accurate, particularly when regressors are at 

their sample average values. This note has demonstrated that, for logit models at least, 

such accuracy is fortuitous, being contingent in a complex manner upon the sign and 

size of the discrete change to be considered, the sign and size of the coefficient 

attaching to this regressor and the modelled value of the regressand prior to the 

discrete change. The approximation strategy should therefore be considered a risky 

one and exact calculation of the marginal effect of discrete regressors should be 

preferred to it. There has been no explicit analysis of Probit models above but 

Amemiya (1981: p1487) characterises them as approximately a linear transformation 

of Logit models for 7.03.0  p , which suggests that similar conclusions may be 

expected for Probit models within this range of success probabilities. For probabilities 

outside of this range, as with Logit models, the increased non-linearity is sufficient to 

put in doubt the usefulness of linear approximations to the impact of discrete marginal 

changes in regressor values. 
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Appendix 1 

This appendix provides support for assertions made within the text. 

 

(page 4) 

 To establish that   jj ppxp ̂1 , begin with the fitted logit model,  
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Recalling that  ggp  1 , and therefore    gp  111 , gives the required 

result. 

 

(page 6) 

To establish the actual discrete change in the estimated probability, begin with 
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This may be recast as 
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







11

11
, as  

     111   xbbxA eepppp . 
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Now, using   pgp
g

g
p 


 1

1
, leads to     11  xbepppp  and 

thus to 

 
 
 11

1
,1










xb

xb

ep

e
ppp

 

 

(page 7) 

The proportionate approximation error is 

   
 

1
1

11






















xbxb

pp

ppxpbp

p

ppa

 . Substitution of the 

detail for   gives
 

 
1

1

11











xb

xb

e

ep
xb , which can be re-arranged 

as
   
 1

11










xb

xbxb

e

eexpbxb
 , i.e. 

 
 

xpb
e

exb
xb

xb











1

1
 ,  

which is presented in the text as 
 

 1
1

,









xb

xb

e

exb
xpb   and 

later as    
 

 
xbz

e

ez
zpzz

z

z





 ,

1

1
,  . 

 

(page 8)  

To show the symmetry of   z5.0 , first recall that the text defines 

   
 

 1
1

,





z

z

e

ez
pzzz  . The asymmetry in  z  is detailed as 

 
 

 
 

 
 

 1
1

1

1

1

1




















z

zz

z

zz

z

z

e

eze

e

eze

e

ez
z , which leads to 

 
   

 
  zz

e

zzeez
z

z

zz





 

1

1
 

Consequently, we can show that  zp  is generally asymmetric: 
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         zpzpzzzpzzz ppp 21   

But from this it follows that in the particular case of p=0.5 we have 

   zz pp   . 

 

(page 8)  

To show the non-negativity of  z5.0 , note that the symmetry of  z5.0  requires 

that non-negativity only be proved for 0z  or for 0z . Also note that 

  00   and   5.00   so a demonstration that   00   will establish 

that   zz 5.0 , which proves the non-negativity of  z5.0 . 

  

By differentiation we have 

 
 
 

 
     

 4
22

2
1

1221

1

1
















z

zzzzz

z

zz

e

ezeezee
z

e

zee

z
z 


  

Hence,         zzzz ezeezez  21120
22  

Proceed initially with the assumption 0z : 

    zezez zz  2120  

      zezezz zz  212120  

     12210  zz ezezz  

    1220  zezzz  

Now,  

 








 
!4!3!2

212
432 zzz

ze z
 

 








 
!3!2!1

01
432 zzz

ez z
 

So   


































 

!3

1

!4

2

!2

1

!3

2

!1

1

!2

2
212 432 zzzzez z
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i.e.   















 








 








 
 

!4

42

!3

32

!2

22
212 432 zzzzez z

 

 

Hence, for 0z ,      0212  zzez z   

 

Since   00  ,   5.00   and   00  zz   then 

  zzz 5.00    

 

When   zz 5.0 then     05.05.0  zzz  . 

 

This proves that  z5.0  is non-negative for 0z  and the previously established 

symmetry of  z5.0  then means that it is also non-negative for 0z . For 

completeness, note that   005.0   because   00  . 

 

To confirm that, therefore,  z5.0  always “over-states” the (size of the) response, 

first express the non-negativity as 0




p

ppa

 when . 0z . To confirm that 

this implies an over-statement of size, argue as follows. 

 For 0xb , 0pa
 and 0p  so 

pp
p

pp a
a





0 , i.e. ppa   

 For 0xb , 0pa
 and 0p  so 

pp
p

pp a
a





0 , i.e. ppa   
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(page 8)  

Asymptotic behaviour of  z : 

As z , 
ze  dominates z , so  

 
11

1





ze

z
z  and hence 

    pzpzzz  1 . 

As z , 0ze , so  
 

11
1




 z
e

z
z

z
  and 

     zppzzz  11 . 

 

(page 9) 

To show that clockwise rotations are “mirror images” of anti-clockwise rotations, i.e. 

    5.00,5.05.0     zz , first establish 

           zpzzpzzpzzzp 5.05.05.0 5.0    

Now use this to show that    zz     5.05.0 : 

      

    

   

 z

zz

zz

zzz

























5.0

5.0

5.0

5.05.0

5.05.0

5.05.0
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ADDITIONAL LY 

a) confirming that    xbsignsign   

z > 0: 

 
 

xbz
ep

e
z

z





 ,

11

1
 

010  zez  

z < 0: 

    zz pepe  11  

010,10  zep  

 

b) slope of  z ,  z  

For 0z  

 
 

 
 
 21

1
1

1 












z

zz

z
e

zee

z
z

e

z
z


  and 

    pzz    

 

As 0z  

 
  B

A

e

zee
z

z

zz







2
1

1
  

We use 
!3!2!1

1
32 zzz

e z

 and 
!3!2!1

432 zzz
zze z

 to 

get 



























!3

1

!4

1

!2

1

!3

1

!1

1

!2

1
1 432 zzzzeeA zz

. i.e. 
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



































 
!3

1

!4

1

!2

1

!3

1

!1

1

!2

1 432 zzzA . We write this as So 

as 







 0

2

2

1
AzA , where 00 A  as 0z ,  

We use  0

32

1
!3!2!1

1 Bz
zzz

e z   , where 

0
!4!3!2

32

0  
zzz

B  as 0z . To get 

   20

2 11 BzeB z   

 

Hence,  
 
   20

0

2

0

2

0

2

1

21

1

21

B

A

Bz

Az

B

A
z









  and as 0z :  

00 A , 00 B ,    05.0   z . 

 

Consequently,     5.0 ppzz   as 0z ; in particular 

  05.0  z . 
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Appendix 2 

This appendix provides the roots of   0*  zp  for several combinations of 

success probability ( p ) and accuracy criterion (
* ). The roots have been obtained 

numerically by a first-order Newton-Raphson iteration implemented in Excel. 

 

target accuracy = +/- 5% (used to provide Table 1 in the text) 

 +0.05 -0.05  -0.05 +0.05 

p      

0.1 -0.1219 0.1284  9.4928 10.4971 

0.2 -0.1596 0.1752  4.4966 5.0926 

0.3 -0.2283 0.2834  2.3290 2.9613 

0.4 -0.3800    1.6354 

0.5 -0.7785    0.7785 

0.6 -1.6354    0.3800 

0.7 -2.9613 -2.3290  -0.2834 0.2283 

0.8 -5.0926 -4.4966  -0.1752 0.1596 

0.9 -10.4971 -9.4928  -0.1284 0.1219 

 

target accuracy = +/- 10% 

 +0.1 -0.1  -0.1 +0.1 

p      

0.1 -0.2382 0.2646  8.9888 10.9982 

0.2 -0.3072 0.3716  4.1737 5.3750 

0.3 -0.4250 0.7059  1.8479 3.2200 

0.4 -0.6502    1.9316 

0.5 -1.1065    1.1065 

0.6 -1.9316    0.6502 

0.7 -3.2200 -1.8479  -0.7059 0.4250 

0.8 -5.3750 -4.1737  -0.3716 0.3072 

0.9 -10.9982 -8.9888  -0.2646 0.2382 

 

target accuracy = +/- 20% 

 +0.2 -0.2  -0.2 +0.2 

p      

0.1 -0.4567 0.5665  7.9725 11.9993 

0.2 -0.5752 0.8782  3.4230 5.9203 

0.3 -0.7610    3.6834 

0.4 -1.0677    2.4023 

0.5 -1.5806    1.5806 

0.6 -2.4023    1.0677 

0.7 -3.6834    0.7610 

0.8 -5.9203 -3.4230  -0.8782 0.5752 

0.9 -11.9993 -7.9725  -0.5665 0.4567 

 

 


