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Abstract 

A brief simulation study of real-time packet-

dispersion mode-tracking using the Gaussian-Mix 

Model (originally devised for real-time background 

classification in moving pictures) and an adaptation 

of the Kernel-Density Estimator is presented. The 

simulated environment consisted of two FIFO store-

and-forward nodes where the probe packets interact 

with Poisson and Pareto-generated cross-traffic 

with a range of packet sizes. The two models 

produced broadly similar results, able to track node 

activity under the dynamically changing conditions 

associated with the Pareto cross-traffic. The 

Gaussian model sometimes replaced the primary 

mode with a double peak, which disappeared when 

some of the model’s parameters were changed. 

1. Introduction

Techniques for estimating the bandwidth of a 

network path (summarized by Prasad et al. [1])  may 

be classified two ways: (i) Whether they measure the 

bandwidths of individual network links or the end-

to-end capacity of a path, and (ii) whether they 

measure the maximum potential capacity or the 

bandwidth available to a particular user. Here we 

consider one particular technique: Packet Pair/Train 

Dispersion  (PPTD) probing, which aims to measure 

maximum end-to-end capacity. 

PPTD injects pairs (or trains) of closely spaced 

probing packets, whose resulting dispersion 

provides an estimate the path capacity. Suppose that 

two probe packets are introduced into the path in

seconds apart and emerge out  seconds apart at the 

other end. If no cross-traffic interferes then 

 lSinout ,max  (1) 

where S  is the packet size in bits and l  is the 

smallest link capacity (bits/s) within the path. (The 

latter is usually called the narrow link, not to be 

confused with the tight link - the hop with the 

smallest available bandwidth.) 

Cross-traffic complicates this simple picture by 

delaying one or both of the probing packets, thus 

interfering with the dispersion mechanism. When the 

first packet is delayed more than the second the 

dispersion is increased, causing an underestimation 

of the narrow-link bandwidth. Similarly if the 

second packet experiences greater delay than the 

first, the bandwidth is overestimated. Thus the 

“true” bandwidth stands as a local node within the 

dispersion distribution, surrounded by spurious 

cross-traffic nodes which must be statistically 

filtered. Furthermore, these nodes change their 

positions and sizes as the cross-traffic conditions 

change dynamically over time.  

For the remainder of this paper we consider two 

models for tracking the activity of nodes in real-

time. The first of these - the Gaussian Mixture 

Model (GMM) - is borrowed from the field of 

machine vision where it was developed to classify 

background activity in moving images [2]. The 

second model - the Kernel Density Estimator (KDE) 

- is an adaptation of a technique investigated by Lai

and Baker [3]. Both models are tested using both

Poisson and Pareto cross-traffic (the latter based on

the ON/OFF scheme described in [4]) in a simulated

network environment written in C++ [5]. Figure 1

shows the two-hop network topology employed, and

Table I shows the distribution of packet-sizes within

the cross-traffic.

Figure 1. Simulated network topology. Five hundred pairs 
of probe packets, 1500 bytes each were transmitted 0.1ms 
apart over 50s. Initial packet dispersion was 1ms. 



 
 
 

Table I: Composition of Cross Traffic [6] 

Packet Size (bytes) % Total Packets 

60 46 

148 11 

500 11 

1500 32 

 

(a) Poisson cross-traffic 

 
(b) Pareto cross-traffic 

 
Figure 2. Typical dispersion profiles for the two-node 
network path of Figure 2 using the packet-size profile of 
Table I. Pareto streams had mean ON-time 30s, minimum 
ON-time 10s and a mean (Poisson) OFF-time of 50s. 
 

 2. The Gaussian-Mixture Model (GMM) 
 

Suppose we represent the history of the output 

dispersion out  as  t ..., 21 , where t  is time 

expressed as the number of packet-pair 

transmissions since the experiment began. 

(Figure 2 shows typical profiles, obtained using 

the simulated network path of Figure 1.) Now 

suppose we represent the probability density 

function for t  as a weighted sum of K 

Gaussian distributions: 
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(3) 

 

and ti,  represents the probabilistic weighting 

of the Gaussian component i at time t. 

Following Stauffer and Grimson [2] we 

classify a dispersion measurement t  as 

belonging to distribution i if and only if 

5.2,,  titit  . In the case of multiple 

matches the closest match is selected, and if no 

existing distribution matches a new Gaussian is 

created with a mean of t , standard deviation  

20t  and weighting probability 0.01. 

If k represents the distribution selected for a 

particular dispersion then the weightings are 

adjusted according to the rule 
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(4) 

where   is the learning rate (which we set to 

0.02 for a response time-constant of 1/0.02=50 

packet-pair cycles, i.e. one tenth of the 

experiment’s time-span) and renormalize such 

that the weightings again sum to unity. 

Adjustments to ti,  and ti,  are applied only to 

the matched distribution, i.e. 

 
  ttktk    1,, 1     (5) 
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where   is the learning rate adjusted 

according to the degree to which the new 

measurement fits the distribution. Stauffer and 

Grimson [2] used  tktkt ,, ,  , but this 



creates problems for very narrow distributions 

requiring 1 . Here we use a “compromise” 

formula which ensures that   never exceeds 

 : 

 

 tktktti ,,, ,2    .   (7) 

 

3. The Kernel-Density Estimator (KDE) 
 

Kernel-Density Estimation is a well known 

technique for estimating the probability density 

function of a random variable from a finite set 

of observations. It uses a “kernel function” 

 xK , typically a Gaussian or symmetrical 

triangular function with zero mean, unity 

width/standard deviation and a unity integral 

between  . The estimated distribution is 
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where t is the number of observations and h is 

the “kernel width” (loosely speaking, the 

minimum distance between   and observation 

i  in order that the observation should affect 

the distribution value at  .) Lai and Baker [2] 

used this approach to identify the dominant 

node of a dispersion distribution, which was 

assumed to represent the narrow-link capacity. 

(This is not necessarily the case [1].) However, 

it requires an arbitrarily selected value for h: 

Too small an h merely reproduces the 

observations as a series of spikes, while too 

large an h obscures genuine data-clustering. 

A small modification to the kernel-density 

model allows it to respond dynamically in a 

similar manner to the Gaussian-mix model: We 

replace the constant kernel width with a value 

which increases exponentially with the 

antiquity of the observation being included: 
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where h is the maximum kernel width and   

governs the rate of change to new information. 

 

 

 
(a) After 200 packet-pairs 

 
 

(b) After 450 packet-pairs 

 
Figure 3. Dispersion probability density functions obtained 
using the Poisson cross-traffic at two instants during the 
experiment. 
 

4. Results 
 

Figures 3 and 4 show the probability density 

functions obtained using both models for three 

points within the simulation data of Figure 2. For 

the GMM, no upper limit was set on the 

number of Gaussians, which was found to vary 

between 10 and 12. In the KDE model, the 

maximum kernel width h was set to 1/120th of 

the maximum observed dispersion range and 

 =0.001. A triangular function was used. 

Figure 3(a) and 3(b) are broadly similar, despite 

being separated in time by 20s. (Figure 2(a) suggests 

that the Poisson data are a roughly stationary 

process.) Both models pick out the dominant mode 

at 12ms, which corresponds to 1500×8/0.012 

=1Mbit/s, the actual narrow-link bandwidth of the 



path. The minor nodes surrounding this peak are to 

some extent consistent between the two models. 

 

 
(a) After 200 packet-pairs 

 
 

(b) After 450 packet-pairs 

 
Figure 4. Dispersion probability density functions obtained 
using the Pareto cross-traffic at two instants during the 
experiment. 
 

Figure 4 illustrates the adaptability of the two 

algorithms to the time-variations introduced by the 

Pareto cross-traffic. Figure 2(b) shows wide 

variations in dispersion between 1 and 200 packet-

pairs, and a much more consistent dispersion 

(centered around the modal 12ms) leading up to 450 

pairs. These differences are reflected in the 

dispersion profiles of Figure 4(a) and (b), 

particularly in the much more dominant primary 

peak in the latter. 

Figure 5(a) shows an interesting phenomenon 

which was sometimes observed in the Gaussian-

mixture distributions. (These particular results were 

obtained using Poisson cross-traffic, using a 

Gaussian learning rate of 0.01 and an inter-pair time 

of 10s.) While the primary “bandwidth” peak is 

identified correctly by the KDE, the Gaussian-

mixture model curiously splits the peak into two 

near-identical components. However, at other points 

in the distribution there is a fairly close agreement 

between the peaks of the two models. 

 
(a) Gaussian learning rate 0.01, cassification 

criterion <2.5 standard deviations. 

 
 

(b) Gaussian learning rate 0.01, cassification 

criterion <1.5 standard deviations. 

 

 
 

(c) Gaussian learning rate 0.05, cassification 

criterion <2.5 standard deviations. 

 

 
 



Figure 5. Misclassification of the primary distribution mode 
as a double peak (a) removed by using a more stringent 
classification rule (b) and a faster learning rate (c). 

 

To investigate this anomaly, further analysis was 

performed on the same data-set. Firstly a more 

stringent classification criterion was applied: 

Sample t was rejected from distribution i unless 

titit ,,   was less than 1.5. (Figure 5(b)) 

Secondly a faster learning rate was used: α=0.05 

instead of 0.01 (Figure 5(c)). The results show a 

single primary mode restored in both cases. It seems 

most probable that in Figure 5(a) the bandwidth-

peak falls midway between - and within the common 

catchment area of - two neighboring modes, which 

have developed separately at the expense of the 

“true” node between them. 

 

5. Conclusions 
 

 This paper presents a brief study of real-time 

mode-tracking using the Gaussian-mix model of 

Stauffer and Grimson [2] and an adaptation of the 

kernel-density method employed by Lei and Baker 

[3]. The two models produced broadly similar 

results, including the ability to track node activity in 

real time. However, the Gaussian model sometimes 

replaces the primary mode with a double peak, 

though this disappears when some of the model’s 

parameters are changed. 
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