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T
he importance of video surveillance techniques [3], [9], [25] has increased considerably since the
latest terrorist incidents. Safety and security have become critical in many public areas, and there
is a specific need to enable human operators to remotely monitor activity across large environ-
ments such as: a) transport systems (railway transportation, airports, urban and motorway road
networks, and maritime transportation), b) banks, shopping malls, car parks, and public build-

ings, c) industrial environments, and d) government establishments (military bases, prisons, strategic infra-
structures, radar centers, and hospitals). 

Modern video-based surveillance systems (see classifications described in [9]) employ real-time image
analysis techniques for efficient image transmission, color image analysis, event-based attention focusing, and
model-based sequence understanding. Moreover, cheaper and faster computing hardware combined with effi-
cient and versatile sensors create complex system architectures; this is a contributing factor to the increasing-
ly widespread deployment of multicamera systems. 

These multicamera systems can provide surveillance coverage across a wide area, ensuring object visibili-
ty over a large range of depths. They can also be employed to disambiguate occlusions. Techniques that
address handover between cameras (in configurations with shared or disjoint views) are therefore becoming
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increasingly more important. Events of interest (identified as
moving objects and people) must be then coordinated in the
multiview system, and events
deemed of special interest
must be tracked throughout
the scene (see Figure 1).
Wherever possible, tracked
events should be classified and
their dynamics (sometimes
called behavior) analyzed to
alert an operator or authority
of a potential danger. For secu-
rity awareness based on multiscale spatio-temporal tracking,
see Hampampur et al. [10].

In the development of advanced visual-based surveillance sys-
tems, a number of key issues critical to successful operation must
be addressed. The necessity of working with complex scenes char-
acterized by high variability requires the use of specific and sophis-
ticated algorithms for video acquisition, camera calibration, noise
filtering, and motion detection that are able to learn and adapt to
changing scene, lighting, and weather conditions. Working with
scenes characterized by poor structure requires the use of robust
pattern recognition and statistical methods. The use of clusters of
fixed cameras, usually grouped in areas of interest but also scat-
tered across the entire scene, requires automatic methods of com-
pensating for chromatic range differences, synchronization of
acquired data (for overlapping and nonoverlapping views), estima-
tion of correspondences between and among overlapping views,
and registration with local Cartesian reference frames. 

This article describes the low-level image and video process-
ing techniques needed to implement a modern visual-based sur-
veillance system. In particular, change detection methods for

both fixed and mobile cameras (pan and tilt) will be introduced
and the registration methods for multicamera systems with

overlapping and nonoverlap-
ping views will be discussed.

FROM IMAGES TO 
EVENT REGISTRATION
A visual-surveillance system is
comprised of a network of sen-
sors (typically conventional
closed circuit (CCTV) cam-
eras), some with overlapping

fields of view, providing continuous (24/7) online operation.
Each visual surveillance network has its own specific archi-

tecture. For fixed cameras, the architecture is very much data-
driven and its data-to-information flow is bottom-up. As mobile
cameras are employed in more sophisticated networks, one
might envisage a number of feedback controls to tune camera
parameters (for instance, to adapt to weather or illumination
conditions) or to track events of interest. Figure 1 illustrates the
main processing tasks for a visual system:

■ camera calibration with respect to an extrinsic Cartesian
reference frame
■ scene acquisition 
■ adaptive modeling of background
■ change detection for foreground regions/blobs identi-
fication
■ multicamera registration. 

All of the steps are intertwined: camera calibration and registra-
tion can be learned from observation data, and the processes
used to achieve this automatically require basic image process-
ing, such as the modeling of background views and the detec-
tion of foreground events. Change detection and camera
registration have been chosen as the two basic steps, and they
will be described in detail in the next two sections.

CHANGE DETECTION METHODS FOR FIXED CAMERAS
A variety of change detection methods have been developed for
fixed cameras (see Figure 2). Exhaustive reviews can be found in
[9]. Here, the main methods used in visual-based surveillance
systems are detailed. 

The simple difference (SD) method (see Figure 3) com-
putes for each time instant t the absolute difference Dt(x, y)
between the pixel intensities of the input image pair; it then
applies a threshold (Th) to obtain a binary image B(x, y).
Threshold selection is a critical task, and the methods pro-
posed by Kapur [14], Otsu [19], Ridler [27], Rosin [29], and
Snidaro and Foresti [33] illustrate the variety of approaches
that have been employed. 

The SD method is the simplest and fastest, but it is very sen-
sitive to noise and illumination changes; this directly affects the
gray level recorded in the scene, which could be incorrectly
interpreted as structural changes.

To overcome the problem of noise sensitivity, the derivative
model (DM) method considers n × n pixel regions in the two

[FIG1] A general architecture of an advanced visual surveillance
system.
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input images and computes a likelihood ratio Lij by using the
means and the variances of the two regions Ri and Rj.

The output binary image is obtained as

B(x, y) =
{

0 if Lij < LTh
1 otherwise

∀(x, y) ∈ Ri, Rj (1)

where LTh is the threshold.
The shading method (SM) models the intensity at a given

point Ip(x, y) as the product of the illumination Ii(x, y) and a
shading coefficient Sp which is calculated for each point accord-
ing to Phong’s illumination model. It can be easily proved that,
to establish whether a change has taken place in a given region
Ri over two consecutive frames, It−1(x, y) and It(x, y), it is suf-
ficient to calculate the variance σi of the intensity ratios
It/(It−1) in that region. If σi is close to zero, no change has
taken place. 

The DM and SM methods yield similar results. The noise
level affecting the output image is lower than that generated by
the SD method; however, the accuracy of the detected blobs, in
terms of shape, position, and size, is lower. In particular, object
contours are significantly altered and the original object shape
is partially lost.

The LIG method [22] is based on the assumption that pixels at
locations having a high gray-level gradient form a part of an
object and that nearly all pixels with similar gray levels will be
also part of the same object. The intensity gradient is computed as

G(x, y) = min {I(x, y) − I(x ± 1, y ± 1)} . (2)

Thereafter, the G(x, y) image is divided into m × m subimages in
order to limit the effects of illumination change on the computa-
tion of local means and deviations. The regional means and devia-
tions are first smoothed using the neighboring regions and then
interpolated to refill a m × m region. Finally, a threshold proce-
dure is applied to isolate object pixels from the background. The
LIG method gives satisfactory results, even if is not sufficient to
completely discriminate the object from the background.

BACKGROUND UPDATING
To minimize errors in the background change detection process
due to noise effects, illumination, and/or environmental
changes, advanced visual-based surveillance systems apply back-
ground updating procedures [8]. A classical approach is based
on the Kalman filter (see Figure 4). Background updating
procedures attempt to determine significant changes using an
estimate of the background scene (see an example in Figure 5). 

In Figure 4, the filter is applied to each pixel (x, y) of the
input image to adaptively predict an estimate of the related back-
ground pixel at each time instant. Figure 3 illustrates the data flow
diagram for a Kalman-based background updating module [8]. 

The dynamic system model is represented by

St+1(x, y) = St(x, y) + µt (3)

where St(x, y) represents the gray level of the background
image point (x, y) at the instant time t; St+1(x, y) represents
an estimate of the same quantity at t + 1 and µt is an estimate
of the system model error. Such an error takes into account the
system model approximation and is formed by two components
(i.e., µt = βt + νt, where βt represents a slow variation (with
non-zero mean and a temporal range comparable to the filter
response time) and νt represents a white noise with zero
mean). The model for βt is a random walk model,

[FIG3] General scheme of the Kalman-based background
updating module.
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[FIG2] A flow chart showing the main tasks involved in the
computation of the image of differences in context of static camera.
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βt+1 = βt + εt with initial condition β0 = 0, where εt is white
noise with zero mean. 

The measurement model is represented by

It(x, y) = St(x, y) + ηt(x, y) (4)

where It(x, y) represents the gray-level of the current image
point (x, y) and ηt(x, y) is the measurement noise (an esti-

mate of the noise affecting the input image).
This noise is assumed to be Gaussian with zero
mean and variance σ 2. The recursive equations
of the Kalman filter are applied to obtain the
optimum linear estimate of the background
image St(x, y) based on the observations (system
measures) {It(x, y) : 0 � t � k} and initial con-
ditions S0(x, y) = I0(x, y).

The updating module uses the gray-level
Dt(x, y) of the difference image point (x, y)
and the estimate ηt(x, y) of the noise affecting
the input image to update the filter gain
gt(x, y). Then, it computes an estimate of the
system model error εt on the basis of the filter
gain gt(x, y) and the Dt(x, y) value (i.e.,

µt = Dt(x, y) · gt(x, y)). The prediction module computes an
estimate of the gray-level St(x, y) of the background image point
(x, y) at the next frame. The image storage block simulates the
delay between two successive image acquisitions. 

A multilayered background model has been used in the CMU
surveillance system [5], which employs a combination of tempo-
ral differences and template matching to perform object track-
ing. Each time an object enters the scene and remains
stationary for a predefined amount of time, it is considered a
new layer and is added to the background (i.e., a parked car).
This adopted multilayer solution was effective in solving typical
problems of background-based change detection approaches,
such as “holes’’ or “ghosts’’ created by objects in the background
that began to move (such as a car leaving the area). 

None of the methods described above address the problem of
multimodal backgrounds that are typical of outdoor scenes,
where the pixels can switch state (e.g., due to trees waving in
the wind). For these conditions, a single Gaussian model per
pixel cannot be assumed. Stauffer and Grimson [34] modeled
the recent history of each pixel, {x1, . . . , xt}, as a mixture of k
Gaussian distributions. The probability of observing the current
pixel value is given by

P(xt) =
k∑

i=1

ωi,t ∗ η

(
xt, µi,t,

∑
i,t

)
(5)

where k is the number of distributions, ωi,t, µi,t, 
∑

i,t are
an estimate of the weight, the mean, and the covariance
matrix of the ith Gaussian of the mixture at time t, and * is
the convolution operator. η is a Gaussian probability den-
sity function:

η
(

xt, µ,
∑)

= 1

(2π)n/2
∣∣∑∣∣n/2 e−1/2(xt−µt)

T
∑−1

(xt−µt). (6)

The parameter k is, in part, determined by the available memory
and computational power; a value in the range of 3–5 is suggest-
ed by Stauffer and Grimson [34].

[FIG4] Example of background updating. (a) has been acquired at start time,
while (b) represents the background image after two hours. It is worth noting
how the building shadow has been associated with the background.
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[FIG5] A flow chart with the main tasks involved in the
computation of the image of differences in the context of a
mobile camera. It is worth noting how the motion compensation
is employed to negate the camera motion.
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Every new pixel value is checked against the existing k distri-
butions and, if the value is within 2.5 standard deviations of a
distribution, then the pixel matches that distribution. 

CHANGE DETECTION METHODS FOR MOBILE CAMERAS
Since the camera movement induces an apparent motion in all
of the image pixels, the application of standard CD techniques
results in poor motion detection and therefore cannot be used.
To overcome this problem, various methods have been devel-
oped based on the alignment of the images involved in the CD
process (see Figure 6). 

These methods, also known as image registration techniques,
are based on the hypothesis that the changes between two consec-
utive frames can be approximated with a particular motion model.
Three main models are generally used in this context of visual-
based surveillance systems: translation, affine, and projective. 

The purpose of these techniques is to compute the parame-
ters that best approximate the motion of corresponding pixels

belonging to two consecutive frames, It−1(x, y) and It(x, y).
Once the parameters have been estimated, the transformation
corresponding to the selected motion model is applied to the
previous frame It−1(x, y). This process enables the effects of the
ego-motion to be removed before applying the traditional
change detection operation.

To compute the parameters of the motion model, three
principal directions have been investigated in the litera-
ture:  a) techniques based on explicit knowledge of the
camera motion, b) computation of the optical flow, and c)
direct methods.

In [18], Murray and Basu proposed a method to compute
the transformation parameters based on explicit information.
By means of the data related to the rotation of the camera in
pan and tilt angles, they are able to estimate the position of
each pixel in the previous frame. They are then able to apply a
frame-by-frame CD operation whose output is a set of moving
edges, or edges belonging to moving objects. 

CHANGE DETECTION METHODS

Camera registration techniques require information about the position of objects in the image plane and the calibration of the sensor
to correspond image pixels to points on a 2-D ground-plane map. The registration process can benefit from the use of multicamera
techniques. In this context, the detection of mobile objects (based on the computation of the position on the image plane) is referred
to as change detection (CD) and can be performed by using image differencing techniques (see the figure below). 

CD is commonly implemented at either the pixel [28], edge, or more complex feature level (such as lines and corners) [32]. Real-time
image and video processing methods require low-computational cost; therefore CD algorithms using complex features are not gener-
ally employed. Frame-differencing CD methods that have been applied in the context of visual-based surveillance systems can be cate-
gorized into two principal types: a) frame by frame and b) frame to background.

CD methods compare two digitized images, I1(x, y) and I2(x, y),and generate a binary image B(x, y) that identifies image sub-areas
(called blobs) with significant differences between the two input images. Frame by frame methods consider two successive images of
the sequence, It−1(x, y) and It(x, y), while frame to background methods use the current image It(x, y) and a reference one (called the
background), Ibck(x, y), which represents the monitored scene without moving objects. 

In a typical image sequence representing an outdoor scene, a blob does not always correspond to a single object because of the pres-
ence of shadows, light reflections, noise, and partial occlusion [8]. A background image, acquired in absence of moving objects, must
be updated continuously to account for both slow and abrupt changes [8].
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When explicit information about the camera motion
parameters is not available, the image alignment can be per-
formed by using optical flow. In [1], Araki et al. proposed a
background compensation method based on the estimation of
the background motion. This is achieved by tracking feature
points on the background and estimating the parameters of an
affine transformation from the previous frame to the current
frame. The employment of optical flow in advanced visual-
based surveillance systems requires the solution of several
problems in order to reduce the computational complexity or
provide effective methods to reject badly tracked features. To
overcome these problems, direct methods [12] have been con-
sidered because they allow the estimation of the transforma-
tion parameters for image alignment without computing the
optical flow (see Table 1). 

In [12], Irani et al. estimate the ego-motion by searching for
regions that can be approximated as planar and computing the
displacement between consecutive frames with a direct method.
They address the problem of moving object detection in multi-
planar scenes by estimating a dominant eight-parameter trans-

formation. In particular, the sum of squared differences (SSD)
error measure is minimized:

E(t)(q) =
∑

(x,y)∈R

(uIx + vIy + It)
2 (7)

where Ix, Iy, It are the partial derivatives; (u, v) is the
two-dimensional (2-D) motion field; R is a planar image
region; and q = (a, b, c, d, e, f, g, h)represents the vector of
unknown parameters of the transformation. Then, by register-
ing two consecutive frames according to the computed transfor-
mation, the rotational component of the camera motion can be
cancelled. Furthermore, the focus of expansion (FOE) can be
computed from the purely translational flow field in order to
estimate the camera translation given its calibration informa-
tion. Finally, given the 2-D motion parameters and the three-
dimensional (3-D) translation parameters (Tx, Ty, Tz), the 3-D
rotation parameters of the camera are obtained by solving the
following system:

a = − fcαTX − fc�Y e = −�Z − fcβ TY

b = αTZ − fcβ TX f = αTZ − fcγ TY

c = �Z − fcγ TX g = −�Y

fc
+ β TZ

d = − fcαTY + fc�X h = −�X

fc
+ γ TZ

(8)

which has only six unknowns.

PERFORMANCE MEASURES
FOR CHANGE DETECTION METHODS
The optimal tuning of all visual processes included in an
advanced surveillance system is a complex problem [25].
Receiver operating characteristic (ROC) curves have been used
as the basis to evaluate the performance of a system and allow
an automatic or quasi-automatic tuning. An ROC curve is gen-
erated by computing pairs (Pd, Pf ), where Pd is the probability
of correct detection and Pf is the false-alarm probability. Both
probabilities depend on the values of the parameters regulating

Static Camera Ridler [27] Otsu [19] Kapur [14] Rosin [29] Fen [33] Mobile Camera Murray [18] Araki [1] 

PCC 0.4822 0.6243 0.9465 0.6751 0.9697 MBE 11.119 6.109 

JACCARD 0.0008 0.0315 0.3823 0.0421 0.6248

[TABLE1] A COMPARISON, BASED ON THE PERCENTAGE CORRECT CLASSIFICATION (PCC) AND JACCARD METRICS [30], BETWEEN
CD THRESHOLDING METHODS. ON THE LEFT, RESULTS FOR A STATIC IR CAMERA ARE SHOWN. ON THE RIGHT, THE
MEAN BARYCENTRE ERROR (MBE) HAS BEEN CONSIDERED TO EVALUATE THE PERFORMANCES OF MURRAY [18] AND
ARAKI [1] METHODS FOR IMAGE ALIGNMENT IN THE CONTEXT OF THE MOBILE CAMERA.

[FIG6] Differences in appearance between views.
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the behavior of a decision module of the system. The global per-
formance curve summarizing the curves obtained under differ-
ent working conditions is found by imposing an operating
condition (e.g., equal bias, Pf = 1 − Pd) and by plotting the cor-
responding values of Pe = (1 − Pd + Pf )/2 against different val-
ues of the variable of interest.

Since most video-based surveillance systems aim at detecting
objects, people, dangerous events, etc., ROC curves represent a
good tool for evaluating the system performance after a previous
characterization of the subject to be detected. 

Object detection metrics can be defined in at least two ways.
The first determines the segmentation quality, but requires reli-
able ground truth on the pixels that comprise the object. This
information is notoriously difficult to reliably determine for real
data. The second method simply identifies the presence of an
object using some representative points (typically the blob cen-
troid or bounding box) that are then used to perform tracking.
In this case, ground truth can be more easily generated manual-
ly using a mouse pointer to locate objects in the scene. Once the
ground truth positions are acquired, a trajectory distance metric
(such as described by Black et al. [2]) can be adopted to assign
computer observations to ground truth. See Table 1 for a per-
formance comparison.

MULTICAMERA VIEW REGISTRATION
For many tasks, a coherent interpretation of a complex scenario
can only be maintained if events (people and other objects of
interest) in the scene are identified and tracked correctly. For a
single camera, tracking requires correspondence to be deter-
mined between pairs of observations separated over time (as in
consecutive video frames). In a multicamera environment, if the
target is detectable in more than one camera view field, corre-
spondence can be established in a common coordinate frame
(e.g., the ground plane) to locate the same target in the different
views. If the cameras are not synchronized, then temporal corre-
spondence must also be estimated. 

Many techniques exist to combine data and extract useful
information from multicamera systems [20]. Consistency
across multiple camera views can only be maintained once
correspondence between cameras is established; then an
enhanced 2-D (usually called 2-D1/2) or 3-D rendering of the
scene can be generated. Techniques used for monitoring wide
spaces make use correspondence between views, combined
with some a priori knowledge of the network topology and
the environment.

Establishing correspondence is complicated for a number of
reasons. First, the targets may not maintain a consistent appear-
ance between views or over time due to changes in the pose,
nonuniformity of target appearance, or the location of illumina-
tion sources (see Figure 7). In addition, the measurement of tar-
get appearance may require accurate calibration of the cameras
in order to generate comparable characterizations. Secondly, a
predictive model may not accurately represent the target’s possi-
ble range of motions; whilst a simple linear predictor (for
instance, xt+1 = αxt + β) is subject to error if the motion is

nonlinear, the use of a nonlinear motion model [generalized as
xt+1 = f(xt;k)] can create significant uncertainties if the target
is undetected over one or more frames.

Failure to detect the target may be a result of segmentation 
failure or may occur because the target disappears from the 
camera view field as a result of occlusion. Thirdly, target loca-
tion is initially measured in pixel coordinates, which are unique 
to each camera view; some method is required to bring these 
into correspondence within the regions of overlapped
view fields.

While most surveillance systems comprise multiple cameras,
these are normally arranged to maximize the coverage of the
environment being surveyed. As a consequence, the surveyed
environment typically contains a minimum of overlapping view
fields, and the tracking of targets through the environment
requires correspondence between nonoverlapping (disjointed)
camera views.

In comparison with the spatial registration afforded by geo-
metric camera calibration for determining overlapping view
fields, nonoverlapping view field registration methods are prin-
cipally based on temporal cross-correlation of object disappear-
ance and reappearance.

However, if the interstitial region between cameras is treat-
ed as an occlusion region, then it is possible to track targets as
they transit between the two views using a predictive filter
(such as Kalman) [2] provided that the two cameras are cali-
brated to a common coordinate system. As with many other
occlusion-reasoning methods, reliability in determining corre-
spondence is inversely proportional to the duration of the
occlusion; through wide occlusion regions, the tracker is more
likely to lose track. 

[FIG7] (a), (b) Epipolar lines from two cameras with a wide
baseline. The white circles indicate the centroid of each object.
The red circles represent the object centroid projected by the
homography transformation from the other camera view. (c), (d)
Epipolar lines from two cameras with a narrower baseline.
(Images are taken from the PETS2001 data sequences.)

(a) (b)

(d)(c)
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REGISTERING OVERLAPPING VIEWS
Camera calibration for overlapping view fields requires a suffi-
cient number of correspondences in order to establish a geo-
metric transformation between views. Three-dimensional
constraints (for instance, the
ground plane) can then be
applied to allow back-projec-
tion of information into a
map representation of the
scene and to perform spatial
and temporal reasoning in a
consistent manner. 

A common constraint in
surveillance is based on planar motion, resulting from the
assumption of a piece-wise linear world where the scene is
assumed to be formed by facets or locally planar surfaces.
The planar motion constraint can be used to estimate the

homography between views; if more than two views are avail-
able to the multicamera system, then an approximate
Euclidean reconstruction of the scene can be performed.
Reconstructing a 3-D model in surveillance usually means

generating a map (effectively
a 2-D top view of the scene—
see Figure 9) where events
occur. The map can then be
employed to add semantic
detail to the scene.

The mathematics involved
for a multiview system under
planar motion can be found in

Lee et al. [16] who based their method on the approach of Tsai
[36] for the motion of a planar patch. 

Correspondences between views are usually established by
matching the appearance of interest points [35], regions, or iden-

MULTICAMERA GEOMETRY

Camera geometry is uniquely defined by its intrinsic and extrinsic parameters: i) intrinsics: focal length, pixel resolution, distortion (refer
to [7] for details), ii) extrinsics: position of the optical center of the camera and the orientation of its Cartesian frame with respect to an
extrinsic reference frame, for instance instantiated on a plane (i.e., the ground plane) [see (a) below].

In multicamera systems [see (a) and (b) above], more external reference frames are established, defining locales and grouping a limit-
ed number of cameras and a semantic location in space. It would be impractical to have a single external coordinate frame for a wide
area; also, it is more robust to perform geometric calculations in a locality. The use of locales is also important for a quick semantic
annotation of scene dynamics. A point in the reference frame RF2 can always be transformed into a point in the reference frame RF1

by means of a rotation matrix R and a translation t:

PRF1 = R PRF2 + t (1)

The rotation R is between the two reference frames, and the translation is the displacement vector between the two reference
frames. The relationship between a point in the camera (X, Y, Z) frame and the image frame (x, y) is therefore defined by:

(
x
y

)
= f

(
X/Z
Y/Z

)
(2)

(a) Single camera geometry. 
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tified blobs. Standard matching techniques follow template
schemes, where a template from one view is compared with an
area of interest in another view. Matching utilizes criteria based
on the appearance of the template and the matched area of inter-
est. Appearance criteria either make use of texture or color infor-
mation [30]. Templates employed in matching can also vary in
shape, and matching takes place using either pixel information
or statistical measures drawn from the analyzed area of interest
based on corners, edges, simple chromatic (histograms, mixture
models, or robust statistics), combined chromatic (cooccur-
rence of colors) [4], or more sophisticated approaches, such as a
wavelet-based representation of the underlying object template
[21]. Features, such as points of interest (corners, for instance),
can also be employed to impose additional geometric constraints.
The epipoles can be estimated [7], and they indeed impose
stricter geometric constraints or a simplified constraint imposes
the projection of a field of view into the image plane of other
cameras [20]. Epipolar geometry is usually imposed to constrain
template matching between views (see Figure 7). Matches can be
employed to refine the estimate of the homography or to estab-
lish online correspondence and fuse information from blobs or
bounding boxes extracted after the change detection.

Traditionally, robust techniques to estimate epipolar
geometry exist for a short baseline (e.g., binocular stereo);
more recently, these have been extended to deal with wider
baselines [24]. In [17] the epipolar constraint is used for
region-based stereo, where a limited number of epipoles are
selected and divided into segments belonging to classified
objects. Corresponding segments are then back-projected
onto the epipolar plane, and the center of the quadrilateral
constructed by correspondences is considered to belong to a
matched object.

A semi-automated calibration of overlapping views was pro-
posed in [13]. First, a mapping between each view and a plane
(where motion takes place) is estimated, using a manually
selected set of parallel lines. The alignment between the recov-
ered plane coordinates is then calculated as an optimization
problem, assuming the transformation is affine. A similar
approach is proposed in [26] based on minimal knowledge about
the scene (namely, height of moving pedestrians and approxi-
mate camera height). 

REGISTERING NONOVERLAPPING VIEWS
The spatial relationship between multiple nonoverlapping cam-
eras can be represented in different ways. The topology of the
network qualitatively expresses the relative spatial relationship
between cameras, explicitly identifying spatially adjacent cam-
eras. A topological map is represented as a graph depicting the
cameras as nodes and the adjacency property as the links.
Alternatively, a topographical model of the network includes spa-
tial information to relate the ground plane geometry between the
camera views. For example, if cameras are calibrated to a com-
mon world coordinate system, then a geometric analysis would
enable viewpoint adjacency to be computed and an estimate of
inter-view path distances to be calculated. However, knowledge of

the spatial adjacency of the cameras does not guarantee that a
pathway exists between the two views, such that targets leaving
the view field of one camera never appear in the adjacent cam-
era’s view field. This might occur because some fixed element in
the scene (such as a wall or a building) blocks the pathway
between the two viewed regions. One solution would include a
geometric model of the environment (e.g., a CAD model), manu-
ally tagged to indicate the potential pathways.

The topological or topographical model of the camera net-
work can be created by correlating the observations of targets
exiting the view field of one camera and entering that of another.
This ensures that the model only expresses actual paths that exist
between two views and enables a predictive mechanism to antici-
pate where the transiting target is expected to reappear. A further
refinement of the model adds temporal characteristics,

HOMOGRAPHY BETWEEN VIEWS

A homography (H) is a 3 × 3 linear projective transform that
defines a planar mapping between two overlapping camera
views (see the figure above)

x′ = h11x + h12y + h13

h31x + h32y + h33
y′ = h21x + h22y + h23

h31x + h32y + h33

where (x, y) and (x′, y′) are the image coordinates in the first
and second camera views respectively. Hence, each pair of cor-
responding image points between two camera views results
in two equations expressed by the coefficients of the homog-
raphy. Given at least four corresponding points, the homogra-
phy can be estimated. 

Given a set of detected moving objects in each camera
view, we can define a match between a correspondence pair
when the transfer error condition (x′ − Hx)2 +
(x − H−1x′)2 < εTE is satisfied, where x and x′ are projective
image coordinates in the first and second camera views.

The homography between two cameras can be estimated
using the motion of tracked objects across overlapping views
with a robust estimator (see [16]). Homographies are com-
monly used to register two views based on calibration points
(markers) or are learned by analyzing a large quantity of data
and statistically estimating the most likely homography
among a large number of possibilities [2], [35].

Homography. 

(x, y)
(x’, y’)

X’ = HX

X = [x  y  1]

H = 
h11       h12       h13

h31       h32       h33

h21       h22       h23
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EPIPOLAR GEOMETRY

Two overlapping views are constrained by the epipolar geometry. The optical center (also called center of projection) of a view projects
onto what is commonly called the epipole on the image plane of another view. The two centers of projection and a 3-D point define a
plane called the epipolar plane. Any point P in the 3-D world projects onto a point p in all the image planes of the multicamera system;
p is visible if its projection falls inside the view cone of that particular camera. The line joining a projection point and an epipole
defines an epipolar line (for instance l1 and l2 in the figure below). Any 3-D point P, visible by two overlapping views, lies on the epipo-
lar line of the other view (for instance P2 seen from camera C2, projection of the 3-D point P) lies on the epipolar line defined by the
projection of P onto C1 and the epipole of the image plane 1. This geometric constraint can be used to limit the search for a point of
interest in the field of view of other cameras. If the point moves, then the associated epipolar line moves with it, defining a pencil of
lines (see the figure below). This additional constraint can be used to track a moving point.

A closed-form relationship between two views can be established. A formula for the essential matrix E, relating the two views, can
be derived by imposing the coplanarity constraint of C1, C2, and P. Using the triple product (P1 − t) • t × P1 = 0, substituting the geo-
metric relation between two views P1 − t = RP2 (Pi being the 3-D point in the Ci reference frame) yields (RP2)t × P1 = 0 using 

t × P1 = SP1, where S =
[ 0 −tz ty

tz 0 −tx

−ty tx 0

]
and (R, t) the 3-D transformation between C1 and C2 reference frames. 

Substituting, we obtain P2EP1 = 0, where E = RS. So the essential matrix E provides a relationship between the epipolar geometry
and the extrinsic parameters of the camera system. Using (2) of plane (multicamera geometry), we can write p2Ep1 = 0.

P

p1

e1 e2

l1

C1 C2

p2

l1

(a)

C2

l1
t 

l1
t  + 1

P1
t + 1

p1
t  + 1

p1
t  

P1
t  

e1

C1

(b)

representing the transit period as the average or a probability
density function estimated from a set of observations.

This spatial and temporal information is most commonly
extracted by directly corresponding target trajectories across
pairs of views. Huang and
Russell [11] describe an algo-
rithm for the constrained task
of corresponding vehicles
traveling along a multilane
highway between a pair of
widely separated cameras (up
to two miles apart). They use
spatio-temporal and appear-
ance features of the tracked objects in one view to match to
those appearing after some expected transition period in the
next view, thus computing a       reappearance probability.
Matching is performed using an association matrix to describe

all possible pairings, then selecting the most probable based on
a global minimization constrained by one-to-one pairings.
However, they explicitly label the two cameras (one as
upstream and one as downstream) and do not attempt to infer

this information.
A similarly constrained

environment is the interior of
a building, tracking people
moving through a set of rooms
linked by corridors and imaged
by multiple cameras [11], [15],
[20], [37]. In this case it is not
uncommon for the camera

view fields to abut one another or be slightly overlapping; then,
coregistration of the target trajectories between two views will
result in a zero transit period (e.g., when two cameras image the
space on either side of a doorway and targets moving through

A VISUAL-SURVEILLANCE SYSTEM 
IS COMPRISED OF A NETWORK OF 

SENSORS, SOME WITH OVERLAPPING
FIELDS OF VIEW, PROVIDING

CONTINUOUS (24/7) ONLINE OPERATION.

(a) and (b) demonstrate epipolar geometry. 
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the door reappear instantly in the
view field of the second camera).
Similarly, corridors, like the lanes
on the highway, provide a signifi-
cant constraint on the typical
motion paths; hence, inter-camera
motion is more readily detected.

Kettnaker and Zabih [15] adopt
a Bayesian approach, maximizing
the posterior probabilities to solve
the correspondence. They assume
a known topology of motion paths
between the cameras, as well as a
model of the transition times and
probabilities. They also attempt to
reconstruct the complete trajecto-
ries. Color appearance information
is combined with the transition
probabilities to match the observa-
tions from different cameras. As
with [11], they use an association matrix (of size equal to the
total number of trajectories) to identify observation pairs
between two views, thereby “stitching” the trajectories associat-
ed with both observations.

Porkili and Divakaran [23] solve the same problem using a
Bayesian Belief Network to correspond targets moving in a
building, principally employing color histogram features for
matching. They provide a means of dynamically updating the
conditional probabilities over time to account for a changing
path usage, and a weighting value to create a “forgetting” func-
tion to account for targets that finally leave the camera environ-
ment. Wren and Rao [37], having calibrated the cameras in a
multicamera network of 17 overlapping cameras using a very
large calibration grid, proceed to treat each camera as a simple
motion detector capturing events associated with people moving
in the view field. They then compute the temporal cooccurrence
statistics for an event disappearing from one camera and re-
appearing in another after some given delay period, accumulat-
ing these over all other cameras. 

A more challenging, less constrained environment is encoun-
tered in unrestricted outdoor scenes, where the vie fields are
likely to be more widely separated and the expected transit delay
increases proportionately, generally increasing the uncertainty of
the reappearance time. Javed et al [20] have used a feature
matching approach to track pedestrians across multiple cameras,
learning a typical track’s spatio-temporal transition probability
using a Parzen estimator, based on manually labeled correspon-
dences. Individual tracks are corresponded by maximizing the
posterior probability of the spatio-temporal and color appear-
ance, adapted to account for changes between the cameras. An
adaptive sliding time window is used to avoid the problem of
considering the entire observation set for online use in order to
cope with variations in the possible paths that may be taken.

Ellis et al. [6] have proposed a fully automatic, correspon-
dence-free method that learns the topography of the camera

network by utilizing a large number of observations to provide
reliable statistics of transition probabilities. The unsupervised
algorithm computes the temporal correlation between targets
disappearing from one camera view and reappearing within the
view field of an adjacent camera after a consistent time delay.
The algorithm operates in two stages, first identifying com-
monly used regions in the image where targets consistently
appear or disappear.

These regions are described as entry and exit zones that occur,
for example, at the image borders, occlusion boundaries, or a
doorway. The second stage correlates the transition time delay
between a set of observed target disappearances against the
appearance of new targets in every other camera view. Strong cor-
relations identify the links between adjacent cameras (i.e., the
topology) and the average transition period. While the lack of tar-
get correspondence means the system relies on targets moving
with similar and approximately constant velocities, using a large
observation set ensures robust estimation. One benefit of this
approach is that by also computing correlations of ‘negative’ time,
it is possible to determine the connectivity between entries and
exits both within and between camera views. An online version of
the algorithm is more practical than the approaches used in [11]
and [15] since the size of the association matrix is determined by
the number of entry and exit zones, not by the number of individ-
ual observations. Figure 8 shows an example of the entry and exit
zones (numbered ellipses) that have been identified for a six-cam-
era network; Figure 9 shows these reprojected onto the ground
plane, indicating the connectivity established between parts
of the network. 

WHAT THE FUTURE HOLDS
Modern visual surveillance systems deploy multicamera clus-
ters operating in real time with embedded sophisticated and
adaptive algorithms. Such advanced systems are needed for
24/7 operation: to robustly and reliably detect events of interest

[FIG8] Detected entry and exit zones for six cameras in the camera network. The zones are
numbered as individual nodes of the activity network.
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in adverse weather conditions while adapting to natural and
artificial illumination changes and coping with hardware and
software system failures. 

Visual surveillance enjoys terabytes of data, and large
amounts of data offers the potential for learning algorithms that
can tune parameters of low-level processing like change detec-
tion as well as inter-camera and inter-cluster registration. 

Ad hoc methods [5], [33], even though they achieve very
high performance, might not be sufficient for the visual sur-
veillance community. Researchers will need to develop tech-
niques capable of disambiguating people within groups and
isolating individual vehicles in traffic, enabling the tracking of
individual objects in dense, cluttered scenes. Such systems will
be constructed from heterogeneous clusters of sensors, includ-
ing mobile and fixed cameras. Tracking will be improved by
employing multiresolution extraction of features: tracking a
multitude of people can be carried out with a wide-angle cam-
era with low resolution; a zoomed active pursuit of an individ-
ual can then be carried out to extract more detailed
information. The success of change detection methods achieved
for static cameras is not directly applicable to active cameras,
where the intrinsic and/or extrinsic parameters may change. In
adopting frame-by-frame techniques to images acquired by
moving cameras, holes can appear in the resulting blobs.
Future methods are expected from the next generation of
frame-by-frame motion detectors.

Visual surveillance research is already moving towards the
development of self-adapting, self-calibrating algorithms [6],

[11], [15], [20], [23]. These tech-
niques will tune all camera param-
eters in real-time, including zoom,
focus, aperture, etc. Next-genera-
tion visual systems will react to
changes as they occur, providing
greater control over the parame-
ters to improve motion detection.
Similar methods have been pro-
posed to automatically register,
synchronize, and calibrate one
camera or a number of cameras. It
remains to be demonstrated how
well these methods will scale to
networks of many hundreds or
even thousands of cameras.
Existing techniques employ infor-
mation gathered from static
scenes, single and multiple moving
objects from single or multiple
cameras, using robust statistical
techniques [2], [26], taking advan-
tage of the wealth of information
generated by the camera network.
This trend will continue, taking
advantage of the ever-improving
technologies that support high

computational processing rates, high-bandwidth wireless net-
works, and online data storage in flexible databases that provide
sophisticated query access to the information they have
acquired. The capability of self-calibration will considerably
simplify installation of future surveillance systems, allowing
cameras placed in arbitrary and uncoordinated locations to
operate cooperatively, creating a virtual surveillance network.
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