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Abstract—Very high resolution satellite images are used to de-
rive the spatial distributions of landscape ecological metrics within
suburban areas. These indicators are weighted mean patch size
and lacunarity computed from thresholded normalized difference
vegetation index obtained from multispectral IKONOS-2 imagery.
Spatial distributions of the metrics are derived for an extensive
suburban area on the southwest edge of London, U.K. Weighted
mean patch size and lacunarity values have also been investigated
in subimages corresponding to different kinds of suburban land
cover and with different box sizes. The results indicate typical
ranges of the metrics in environmentally sustainable localities.
The spatial distributions of the metrics provide new insight into
landscape structure, which can be exploited in land use planning
and in the construction of empirical spatial planning heuristics
for sustainable urban development.

Index Terms—IKONOS multispectral data, landscape ecology,
landscape metrics, suburban land cover, urban development.

I. INTRODUCTION

T HERE IS A significant global trend toward the increasing
urbanization of the human population with a gradual dis-

placement of work and people toward city areas and away from
rural areas. This is not a new phenomenon but the pace of urban-
ization has been growing with the shift of employment toward
high-technology or knowledge-based activities. Most cities in
the world are in a state of continual growth facing regional plan-
ners with difficult choices over where to permit new housing and
industrial development. The southeast of England, and in partic-
ular the London area, is a region that currently faces significant
future planning challenges. The U.K. Government recently es-
timated that a further 200 000 homes would be needed in and
around London in the next ten years. The government is also
committed to the goal of sustainable development, which puts
significant constraints on land development policies.

So far remote sensing has not been widely used in land use
planning by regional authorities. Several authors have however
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recognized the potential of remote sensing as a useful tool that
can help urban planners [1] and a number of studies have ex-
amined the use of remote sensing in understanding urban land-
scape form and its evolution [2]–[4]. There has been growing
interest in the monitoring of urban and suburban environments
by remote sensing in recent years as a consequence both of the
interest in improving urban environmental quality and of the in-
crease in sensor spatial resolution. There have been a number
of studies on the mapping of urban and suburban land cover
using classification of multispectral remotely sensed imagery,
e.g., [5]. Given the complexity of urban and suburban land-
scapes, innovative classification methods have been developed
using kernel-based spatial reclassification [6], [7], combinations
of large numbers of textural features [8], use of Gabor filters
[9] and also fuzzy approaches using statistical and neural net-
work methods [10], [11]. In some urban and suburban studies,
remotely sensed imagery has been complemented by ancillary
geographical data from global information systems [12], [13].
Synthetic aperture radar imagery is also now yielding important
new results in urban monitoring [14].

From the perspective of sustainable land use development,
the characterization of the environmental quality of urban
landscapes becomes especially important. The environmental
quality is controlled by many factors such as presence of
vegetated areas and of derelict areas, housing density, climate
quality, and extent of impervious surfaces. Attempts have been
made to monitor and model these factors by use of remote
sensing data, e.g., [15]–[21].

II. SCOPE OFTHIS PAPER

Most of the previous work on the use of remote sensing for
urban or suburban studies has focused on pixel-level or parcel-
level land use classification. Whilst mapping of land use in this
way makes an important contribution to environmental analysis,
a full understanding of the suitability of areas for development
must take into account aspects of the surrounding landscape and
the overall regional pattern of land use. This can be achieved
with remote sensing through the use of approaches derived from
“landscape ecology” and in particular through the extraction
of landscape metrics [22]. Several different types of landscape
metrics can be derived from satellite imagery. These include la-
cunarity [23], Korcak patchiness exponent, and area-perimeter
fractal dimension [24]. Such metrics can provide information
about the spatial distributions of vegetated and built-up areas
and the relationships between them. In [24], such metrics were
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applied to the analysis of deforestation patterns in the Amazon,
and in [25] they were used to analyze rangelands. In this paper,
landscape metrics have been derived from suburban imagery
on the edge of London, in an area which is undergoing signifi-
cant land use change as a result of the regional demand for new
housing. The aim of this work has been to identify novel ap-
proaches for visualizing land use in terms of landscape metrics
and in so doing to provide new approaches that can be of use
to regional planners. Very high resolution satellite imagery has
been chosen for this purpose, as it maximizes the detectability
of small-scale features such as roads which separate vegetated
areas. From an ecological perspective, a road is a barrier to flora
and fauna and needs to be extracted and included in analysis fo-
cusing on environmental quality. In addition, the connectivity
and spatial cooccurrence of small green islands such as gardens
in densely built-up suburban areas can be significant from an
environmental point of view.

III. M ETHODOLOGY AND DATASETS

The test area chosen for this project is situated on the south-
west edge of Greater London and stretches from Wimbledon on
the east side, to Hampton in the west, and from Richmond on
the northern edge to Epsom in the south. Suburban land cover
dominates the area. Being on the fringe of the London conur-
bation, the test area is one in which rapid urban expansion is
taking place and in which difficult land use planning decisions
will need to be taken in the future. Part of the test area is des-
ignated London “green belt.” It also contains some historical
parks such as that at Hampton Court Palace.

The image data used for this project were acquired on Au-
gust 21, 2001 by the IKONOS-2 satellite (Space Imaging Cor-
poration). They have been georeferenced using the Universal
Transverse Mercator map projection and WGS84 ellipsoid.1

The complete dataset consists of panchromatic data with a spa-
tial resolution of 1 m and multispectral data, collected in blue,
green, red, and near-infrared bands, with 4-m resolution. Fig. 1
shows a color composite of the IKONOS multispectral image
for the test area. The sketch map in Fig. 2 shows the locations
of the readily identifiable geographical features. The image data
of the test area consists of 38323714 pixels which covers an
area of 15.33 14.86 km. The use of the very high resolution
data from IKONOS is to facilitate a strong detection of the linear
barriers such as roads. Although not critical to the computation
of lacunarity and WMPS, it would be critical in any subsequent
analysis in which connectivity of green areas is assessed.

Basic processing and analysis of the satellite imagery were
carried out using the ENVI (V3.5) software package. The new
algorithms required to compute landscape metrics from the
satellite data were developed using IDL (V5.5), incorporating
some functions from the ENVI function library.

Most natural landscapes are very complex, and it is difficult
to quantify them using a single number. Landscapes are often
characterized with metrics that each identify particular types of
feature, such as variability of patch size or density of vegeta-
tion, which together describe the landscape. Many metrics are

1http://www.spaceimaging.com/products/ikonos/geo_techspec.htm

Fig. 1. IKONOS image of suburban test area, southwest London, U.K. Space
Imaging LLC © 2002. Supplied by NPA Group www.satmaps.com. Reprinted
by permission.

Fig. 2. Sketch map of image area showing location of principal geographical
features.

available, and the ecologist or the land use planner must select
the most appropriate ones from the toolbox to best measure the
landscape structure of interest. In order to characterize suburban
areas, image metrics have been used in this work that provide in-
formation about the relative distributions of the built-up spaces
and of vegetated spaces in the test area.

In order to separate vegetated from built-up surfaces in the
suburban environment, the normalized difference vegetation
index (NDVI) can be used. NDVI has often been applied in
land use studies and in mapping primary production, e.g., [26],
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Fig. 3. NDVI image thresholded at a value of 0.3.

though its use with IKONOS imagery has not been extensive.
NDVI is given by

NDVI
NIR VIS
NIR VIS

where NIR is the reflectivity in the near-infrared part of the
spectrum and VIS is the reflectivity in the red part. IKONOS
provides four bands of multispectral data as follows: Band 1:
blue- 0.45–0.52 m; Band 2: green- 0.52–0.60m; Band 3:
red- 0.63–0.69 m; Band 4: near-infrared: 0.76–0.90m. The
red and near-infrared bands (bands 3 and 4) are used in the
calculation of NDVI (as the VIS and NIR parameters, respec-
tively). To extract useful information from the NDVI image it is
thresholded. Pixels above the threshold are likely to be found at
areas of significant vegetation. Several vegetation pixels group
together to form vegetation patches. The size and distribution of
the areas of these vegetation patches are important in character-
izing the ecological nature of urbanized or semiurbanized areas.
Fig. 3 shows a binary image with values (in black) denoting
nonvegetation land cover and (in white) indicating vegetated
land cover. This was derived from the test image in Fig. 1 by
thresholding NDVI at a value of 0.3, which was found by trying
different thresholds until a good classification was found. Mis-
classifications result if the threshold is not chosen carefully.

(Using adaptive techniques to classify the NDVI image has
also been attempted, to obtain a more local threshold for dif-
ferent parts of the image.) It can be seen that the vegetated areas
are highly distinct in white, and nonvegetated such as buildings,
roads, rivers, and water bodies (reservoirs) are shown in black.
Striped areas corresponding to rows of residential houses sepa-
rated by gardens are very clear at this resolution. The misclas-
sification of pixels is estimated at10%. Overall, the NDVI
image thresholded at 0.3 appears from local knowledge to give
an accurate and usable separation of the vegetated and non-
vegetated land cover in this area. This area also has excellent
transportation networks into central London as well as ameni-
ties. It is, therefore, one of the areas in which the demand for
new housing is most acute and where part of the government

(a) (b)

Fig. 4. NDVI images for two test regions. (a) Suburban parkland area
(Richmond Park). (b) High-density residential area (Worcester Park).

Fig. 5. Vegetation lacunarity curves for two test subareas from the image of
Fig. 1, representing “suburban parkland” and “high-density residential” areas.
A fixed window of size 251� 251 pixels was used with varying box size.

strategy for housing development is being realized, thus leading
to a rapid trend of urbanization.

IV. L ANDSCAPEMETRICS

We have used two landscape metrics in this work to char-
acterize the distribution of vegetation patches within suburban
areas. The “weighted mean patch size” (WMPS) [27] and “lacu-
narity.” WMPS provides information about the size distribution
of vegetation patches in a region, and lacunarity provides an in-
dicator of the spatial clustering of such patches.

The mean patch size and weighted mean patch size are mea-
sures for quantifying landscape structure. The mean patch size
is the average size (area) of vegetative patches within a window.
The weighted mean patch size is intended to better quantify
landscape structure by including information on both patch size
and number [27]. It is similar to the mean patch size, except that
it is biased toward the size of large patches.

Lacunarity can be used as a measure of the distribution of
patches of pixels in a scene [23]. The lacunarity value helps to
compare two regions with identical patch sizes: the one with
the highest “clumpiness” of patches rather than an even spa-
tial scattering will have the highest lacunarity. Essentially, la-
cunarity is high when there is a range of patch sizes of a par-
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Fig. 6. WMPS image calculated from Fig. 1 with a moving window of size
251� 251 pixels.

ticular type (vegetated, nonvegetated, etc.). To calculate lacu-
narity, a square box with a set width is moved across the image
in a raster-scan fashion within a fixed image window, which is
normally smaller than the full image size. In order to calculate
vegetation lacunarity, at each position in the window a count is
made of the number of interpatch pixels (nonvegetated pixels)
within the square box in the thresholded NDVI image. These
counts are summarized in a histogram. The mean and variance
of the counts are calculated. The lacunarityis then given by

variance
mean

We have calculated the lacunarity (Fig. 5) in two different
subareas of the image, shown in Fig. 4. The first area (suburban
parkland) contains significant vegetation and was measured
within Richmond Park. The second area is high-density residen-
tial and was measured near Worcester Park. The computation is
performed using the interpatch pixels which are not of the type
“vegetation” (i.e., coded in the thresholded NDVI image).

V. OBTAINING WMPSAND VEGETATION LACUNARITY IMAGES

Within urban or suburban environments that are subject to
necessary development (i.e., where housing development must
take place because of population pressure), an appropriate urban
land use planning strategy for “sustainability” will be to choose
to develop the landscape in such a way as to ideally conserve, or
at least reduce by the minimum amount, both WMPS and veg-
etation lacunarity in the region. Since both quantities only pro-
vide a characterization of a locality centred on a given pixel, re-
gional planning decisions need to take into account the regional
variations of these quantities.

An appropriate mechanism for achieving this is to compute
WMPS and lacunarity “images” covering a geographical area,

Fig. 7. Lacunarity image calculated from Fig. 1 with a moving window of size
251� 251 pixels and a fixed box size of 7� 7 pixels.

Fig. 8. Lacunarity image calculated from Fig. 1 with a moving window of size
251� 251 pixels and a fixed box size of 51� 51 pixels.

i.e., by moving the window within which these quantities are
calculated over the entire input satellite image and calculating
an array of WMPS and lacunarity values at the successive loca-
tions of the center of each window position. The measurement
is assumed to be valid for the pixel location at the center of the
window. The window has to be moved over every pixel in the
image in order to generate an image illustrating the variability
of the chosen metrics. The values of WMPS and lacunarity ob-
tained can be mapped to grayscale values that can then be color
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TABLE I
AVERAGE VALUES OF WEIGHTED MEAN PATCH SIZE AND LACUNARITY OF DIFFERENT TYPES OFSUBURBAN LAND COVER

DERIVED FROM THE TEST IMAGE OF SOUTH WEST LONDON SUBURBS

coded using a smoothly changing color map for visualization
purposes.

VI. EXAMPLE RESULTS OFREGIONAL WMPS AND

VEGETATION LACUNARITY IMAGES

Figs. 6–8 show color-coded WMPS and lacunarity images
derived from the IKONOS-2 scene for the test area of Fig. 1.

Fig. 6 shows the weighted mean patch size for the image, cal-
culated with a window size of 251 251 pixels. The spatial pat-
tern of WMPS clearly indicates the main areas of vegetation, but
also highlights localities in which some large vegetation patches
exist among extensive built up areas. The dark areas have the
lowest WMPS values and represent those parts of the land-
scape in which ecologically significant vegetation patches are
not present. It is suggested that these could be targeted for urban
development in the first instance. The WMPS ranged from 100
to 62 000 pixels corresponding to areas of 0.0016–0.992 km.

Fig. 7 is the lacunarity image, calculated with a window size
of 251 251 pixels and a box size of 77 pixels. The lacu-
narity range was from 1.01 to 20.9. Whilst the spatial pattern of
lacunarity is broadly similar to the WMPS image, there are some
significant differences. In particular, road features have less ef-
fect, and high lacunarity values are confined to smaller areas
where there is good vegetation patch “clumpiness.” From an
ecological perspective, the lacunarity image can be interpreted
as indicative of the priority areas for preservation of existing
natural vegetated land cover and of areas in which urban devel-
opment should not take place. Fig. 8 is a lacunarity image cal-
culated with a window size of 251 251 pixels and a box size
of 51 51 pixels. This image is indicative of spatial clustering
of vegetation patches at a larger scale. The lacunarity range was
from 1.01 to 5.98.

Table I gives a summary of the values of the WMPS and la-
cunarity in the test area as a whole and in the subimages of
Fig. 4 representing different types of suburban land cover. The
low-density residential areas and suburban parkland areas have
lacunarity values (at box size of 77 pixels) in the range 2–4,
whereas the high-density residential area has a lacunarity value

Fig. 9. Iterative land use planning scheme based on modeling process using
WMPS and lacunarity images.

of the order of 1.2. At a box size of 5151 pixels, the low-den-
sity residential areas and suburban parkland areas have lacu-
narity values in the range 1.4–1.8, whereas the high-density res-
idential area has a lacunarity value of the order of 1.05.

VII. D ISCUSSION

In this work, we have demonstrated how WMPS and lacu-
narity images, which provide a visual representation of the eco-
logically meaningful spatial structure of suburban areas, can be
derived from very high resolution satellite imagery. By com-
puting WMPS and lacunarity images, planners can visualize the
current spatial distribution of WMPS and lacunarity in a geo-
graphical region. Whilst the visualization of such images by it-
self provides new insight into suburban landscapes, by making
artificial changes to the greenness spatial distribution and re-
computing WMPS and lacunarity, it would be possible to un-
derstand the local impacts of different land use planning strate-
gies and modify those strategies accordingly (Fig. 9). WMPS
and lacunarity images could, thus, become important tools in
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regional development planning in the suburban context. Whilst
it is still too early to predict the full benefit of this approach, it
is possible to see a significant role for WMPS, lacunarity, and
other landscape ecological metrics, computed from very high
resolution imagery as two-dimensional (2-D) image products,
within suburban planning decision support systems. However,
before this can become feasible, more work is needed to un-
derstand optimum strategies for employing such quantities. All
landscape metrics require the selection of window sizes and, in
some cases such as lacunarity, also a box size. By utilizing a
variety of window and box sizes, a vast spectrum of 2-D image
products can be derived. A key issue is to determine which eco-
logical metric images from such a vast spectrum are the most
meaningful and useful in the context of land use planning. The
results from this work appear to show that for environmentally
sustainable land use in suburban areas local WMPS should be
maintained at values in excess of 10 000 pixels (equivalent to
0.16 km ) and lacunarity at values exceeding 2.0 at box size
7 7 (28 28 m) and exceeding 1.4 at box size 5151 pixels
(204 204 m). This corresponds to maintaining a relatively low
density of housing and a good clustering of local green areas,
which would be supportive of recreation and diversification of
flora and fauna. However, more work is needed “calibrate” the
land use planning and development process in terms of such
metrics. From such an approach, it is possible to envisage the
derivation of empirical development laws such as conservation
of lacunarity, maximization of WMPS, or maintenance of min-
imum values of these and other quantities in particular urban or
suburban contexts. High-resolution satellite imagery was moti-
vated by the need to detect small-scale features. However, as the
NDVI can only distinguish between vegetative and nonvegeta-
tive pixels, the classification is fairly unsophisticated.

The NDVI is a relatively simple way of assessing the spa-
tial texture of ecological quality, as it only categorises into two
classes. Consequently we are considering the recently proposed
normalized difference built-up index (NDBI) [28].
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