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Abstract 

 

The packet-pair probing algorithm for network-bandwidth 

estimation is examined and an approximate model is proposed for 

predicting its behaviour. The model replaces the Poisson arrival 

process with a Gaussian distribution and resolves the queue-size 

profile into two separate components: A transient component 

representing the buffer-emptying process and an equilibrium 

component representing the return to steady-state behaviour. 

Comparison with discrete-event simulation results shows that the 

model is accurate in single-hop paths when utilisation ≤ 70% 

when the cross-traffic packets are ≤ ½ the size of the probe 

packets. When extended to two-hop paths, the model remains 

accurate for smaller cross-traffic packets (≤ 10
1 - 5

1  the probe 

packet size). 

 

 

1. Introduction 

 

The term available bandwidth refers to the unused portion of a network path’s 

capacity which new connections may utilise without taking bandwidth from the 

existing cross-traffic [1]. Reliable estimates of effective bandwidth are useful to 

network clients who may require a minimum bandwidth to support delay-sensitive 

multimedia applications, and to administrators for achieving optimal network 

configurations [2]. 

 

A network path typically consists of several links (or hops), each with its own 

capacity. The available bandwidth of the entire path is dictated by that of the tight-

link, the link with the smallest available bandwidth. Available bandwidth a  is related 

to tight-link capacity l , utilisation   and cross-traffic c  by the formula 

 

  1lcla  (1) 

 

where  1  is the idle-rate, the ratio of time during which the link is inactive. Some 

bandwidth-probing algorithms determine a  by multiplying l  by the idle rate, which 

can be inferred from the delay distribution of probe-packets [3] or from information 
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passed from the MAC layer [4]. Though accurate for links in isolation, these 

techniques are problematic in wider network settings [4].  

 

An alternative approach is typified by the packet-pair technique [5]. This belongs to a 

family of algorithms in which short sequences of evenly spaced probe-packets are 

sent through the monitored path and increases in their temporal separation (or 

dispersion) are used to estimate the path’s properties. The packet sequences (or pairs) 

are widely separated such the behaviour of each is unaffected by any of its 

predecessors and the disturbance to the network performance is minimal. 

 

An advantage of the packet-pair technique is that it requires no prior knowledge of 

link capacity, which together with the effective bandwidth can (in principle) be 

inferred from the measured data. However, this rests upon certain assumptions 

concerning network behaviour; namely that packet scheduling is FIFO (first-in-first-

out), that the raw bandwidth is constant and well-defined and that the bandwidth seen 

by discrete packet-pairs is identical to that enjoyed by sustained streams. None of 

these assumptions is universally valid in wireless and broadband access networks 

where methods based on the idle-rate produce more accurate results [3,4]. 

 

Nevertheless, the packet-pair algorithm is still valuable in conventional wired 

networks of switches and routers. Though it has been widely investigated, much of 

the previous work ignores the finite granularity of the cross-traffic which is treated as 

a continuous “fluid”. While this is approximately valid under certain conditions, it can 

give rise to a “probing bias” [6] which distorts the bandwidth estimate. Attempts to 

analyse and eliminate this bias have tended to be quite complex (e.g. [7]) even when 

simplifying assumptions are made. 

 

In the present paper we develop a simpler and more intuitive model, based partly on 

an empirical study of simulation data. The analysis mostly assumes a single-hop 

topology, though the extension to multi-hop topologies is also investigated. 

Simulations were performed using a purpose-written class-library (originally created 

for the work in [10]) which allows FIFO queuing nodes to be connected in arbitrary 

configurations and their status to be monitored using “virtual” (zero-size) packets. All 

the C++ classes are available online and can be downloaded from 

http://staffnet.king.ac.uk/~ku12881/netclasses/. 

 

2. Packet-Pair Probing and the Fluid Model   

 

2.1 The Fluid Approximation 

 

The use of hypothetical fluids to approximate discrete data-flows has quite a long 

history. Essentially, individual packet arrivals are ignored in favour of their average 

arrival rate which is treated as a continuous variable. (Alternatively the discrete 

packets could be considered infinitesimally small, thus constituting a continuous 

“fluid”.) This simplifies the mathematics, accelerating simulation speed [11] and 

bringing complex phenomena (such as TCP-flows [12]) within the scope of analysis. 

However, the disregard for individual packet behaviour sometimes introduces 

significant errors, as will shortly be demonstrated. 

 

http://staffnet.king.ac.uk/~ku12881/netclasses/


As mentioned before, available bandwidth is measured by injecting probe-packets 

into a path and observing their behaviour. The probe-packets’ response can be 

analysed using three different models: 

 

Model 1: The fluid approximation is applied to both the probe-traffic and 

the cross-traffic. (This was the approach originally used by 

Melander et al. [5].) 

 

Model 2:  The probe-traffic is considered discrete, while the cross-traffic 

is assumed to be fluidic. 

 

Model 3:  The probe-traffic and cross-traffic are both considered to be 

composed of discrete packets. 

 

Models 1 and 2 are simple and are dealt with in the remainder of this section. Model 3 

is more problematic and forms the main thrust of this paper.  

 

2.2 Single-Hop Network Paths 

 

During a probing event, packets are offered at a rate r bits/s and received at a 

measured rate m bits/s. Under the assumptions of Model 1, if the link capacity is l 

bits/s and the cross-traffic is c bits/s (Figure 1(a)), then the following relationship 

should hold: 
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(2) 

 

i.e. packets are carried frictionlessly unless the aggregate arrival-rate exceeds the link 

capacity, in which case the bandwidth is shared proportionally between the competing 

streams. (This assumes a policy of proportional fair queuing.) By combining Eqns.1 

and 2 we obtain: 
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(3) 

 

Thus a can be detected as a “knee” in the graph of  mr  vs. r , and l can be 

determined from the slope for r > a (Figure 1(b)). 

 

Model 2 requires that probe-packet arrivals be considered discrete events. The packet-

pair technique employs sequences of just two probe-packets spaced in  seconds 

apart, such that the offered rate inpSr   (where pS is the probe packet size in 

bits). If the same two packets arrive out  seconds apart at the network output, then the 

measured rate outpSm   and inoutmr  . This is the dispersion ratio, the 

factor by which the packets’ temporal separation is increased by the link. 

 



Figure 2(a) shows the queue-size profile during the processing of a packet-pair: If the 

cross-traffic packets are much smaller than the probe packets (the fluid assumption) 

then they are served almost immediately on arrival and the equilibrium queue size is 

practically zero. If Probe Packet #1 arrives at time 0t ,  the queue suddenly acquires 

pS  bits which are subsequently processed at a rate l  bits/s and the packet completes 

service when lSt p  seconds. Meanwhile, cross-traffic arrives at a rate c  bits/s 

such that at time t seconds the buffer contains     )0,max( tclStn p   bits. If 

Packet #2 arrives at int   seconds, its service time must be    lSn pin   and 

therefore 
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(4) 

 

 

Substituting     0,max inpin clSn   and re-arranging yields 
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which (remembering that inpSr  , inoutmr   and alc  ) is identical to 

Eqn.3. Models 1 and 2 are therefore mathematically equivalent and will be 

collectively referred to as the “fluid approximation”. 

 

Figure 3(a) shows the results of a simulated packet-pair probing of a single-hop path. 

(Probe packet size 500bytes and cross-traffic packet size 1cS byte
2
 were used to 

justify the fluid approximation.) Least-square analysis of the upper portion of the 

graph yields link capacity and available bandwidth estimates accurate to within 1% of 

their true values. 

 

2.3 Multiple-Hop Network Paths 

 

While the results of Figure 3(a) were obtained using a single link in isolation, a real 

network-path may have two or more congestible links, each with its own available 

bandwidth. Consider the path A-B in Figure 4(a): Node 1 forwards data at 1l  bits/s 

and Node 2 at 2l bits/s. Node 1 has the lowest link capacity ( 1l =1Mbit/s) and is termed 

the narrow-link of the path. However, Node 2 carries 2c 1.5Mbit/s cross-traffic so 

its available bandwidth 2a  is only 500kbit/s (compared with 800kbit/s at Node 1). 

Node 2 is therefore the tight-link, which dictates the overall effective bandwidth. 

 

In a multi-hop path, each congestible link may generate its own characteristic slope-

change in the inout   vs. r  curve. Park et al. [7] suggested that the characteristics of 

any link downstream of the tight-link will be unobservable since the probe-packet 

separation is too wide to be further expanded. However, this is not necessarily true if 
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the tight-link capacity is greater than the available bandwidth of downstream links. 

Melander et al. [5] used this principle to analyse multi-link paths by iterative 

application of Eqn.2: Using the notation employed in Figure 4, the rate offered to 

Node 2 (when Node 1 is congested) is  11 crrl   which is potentially capable of 

exceeding 2a . If Node 1 (which lies closer to probe-source than Node 2) is the tight-

link, the model becomes: 

 














































































21

11
2

2

2

1

1

21

2

21

21

11
211

1

1

1

;11
11

;1
1

;1

al

al
ar

l

a

l

a
r

ll

a

ll

al

al
aral

a
r

l

ar

in

out . 

 

 

 

 

(6) 

 

 

The assumption that 12 aa   (called “smallest surplus first” of SSF) [5] implies that 

the second slope-change occurs at a rate higher than 2a , which is clearly the situation 

in Figure 4(b). However, if Node 2 is the tight-link then it congests before Node 1 and 

the model becomes: 
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which is the situation illustrated in Figure 4(a). We shall call this the LSF or “largest 

surplus first” model. 

 

Figure 3(b) compares the results of a simulated probing of the LSF (Figure 4(a)) 

network with the predictions of Eqn.7, showing close agreement within the three rate-

domains for near-fluid traffic ( pc SS 002.0 ). However, without any knowledge of 

the network configuration, the data could just as easily be interpreted in terms of the 

SSF model, in which case the topology shown in Figure 4(b) would be inferred. (This 

network, when simulated under near-fluidic conditions, produces results almost 

identical to those of Figure 4(a)). 

 

Melander’s solution to this ambiguity was always to assume the SSF configuration 

[5]. This produces worst-case results, since the available bandwidths of the upper 

bottlenecks tend to be lower than those inferred from any alternative model. 

Fortunately the most important inference, namely the tight-link bandwidth, is the 

same under both models. Though the model can be extended to include any number of 

congestible links, the current paper will be limited to one and two-hop scenarios. 



2.4  Limitations of the Fluid Model 

 

The fluid approximation requires that cross-traffic packets be far smaller than the 

probe packets; if this is not the case, a greater-than-predicted dispersion is observed 

when ar  . This effect, sometimes called “probing bias” [6], is visible in the 

simulation results in Figure 5: Applying linear regression to such data tends to 

produce an overestimation of l  and an underestimation of a . 

 

To understand the origin the probing bias it is necessary to consider how Model 3 (the 

“true” scenario of discrete probe-traffic and discrete cross-traffic) differs from the 

fluid approximation. Firstly, discrete cross-traffic packets take a finite time to be 

serviced, so finite queues form even when ar  . This gives rise to an average 

“background” or equilibrium queue-size eqn , which raises the zero reference-level of 

the queue-size profile (Figure 2(b)). Secondly, since traffic arrives in discrete 

randomly-timed packages, the queue-size profile  tn  acquires a stochastic variability 

and it is necessary to talk in terms of the mean queue-size profile  tn  (which would 

be observed over many repeated probing events), together with a corresponding 

variance function. Thirdly, this variance creates a finite empty-queue probability once 

the probe-packet has been serviced, slowing the mean emptying rate as the queue 

approaches equilibrium and thus giving rise to the concave  tn  profile shown in the 

inset of Figure 5. This makes the service time of the second packet greater than it 

would have been under the linear (fluid) model, increasing the rate of dispersion. 

 

Probabilistic models have provided more accurate predictions of the queuing response 

under discrete traffic: Park et al. [7] used the transient M/D/c model developed by G.J. 

Franx [8] to predict the evolution of the state probability vector and hence the mean 

expected queue-size. This model assumes that cross-traffic arrival is governed by a 

stationary Poisson process, though the introduction of equivalent-rate Pareto ON-OFF 

traffic produced no major changes in system behaviour. Though highly accurate, the 

model is both complex and computationally intensive. 

 

In the current paper we develop a simpler model of the queuing dynamics and apply it 

to the analysis of the packet-pair probing event. The model, which includes both 

intuitive reasoning and empirical observation, agrees quite closely with simulation 

data under moderate (≤70%) utilisation when cross-traffic packets are relatively small 

( pc SS 2
1 ). We believe that with its relative simplicity, the model will be readily 

extendible to more complex probing situations. 

 

3. Discrete Queuing Dynamics 

 

3.1  Discrete Cross-Traffic Model 

 

If a queue contains 0n  bits at time 0t  then at any time 0t  there be 

 0,max 0 tln   of the original 0n  bits remaining, while a number of new bits may 

have arrived. If we assume (along with Park et al. [7]) that the packet inter-arrival 

time is exponentially distributed and that all packets contain exactly cS  bits, then the 

number of arrived packets must be Poisson-distributed with a mean of cSct and a 



standard deviation of cSct . Therefore the number of arriving bits must have a mean 

value ct  and a standard deviation tcS c . Before there is any significant probability of 

the queue becoming empty, the mean queue length is given by  tcln 0  with 

standard deviation tcS c , and can be approximated by a Gaussian distribution: 

 

 
  











 


tcS

tclnn

tcS
nf

cc

t
2

exp
2

1
2

0


. 

 

(8) 

 

However, this only applies for 0n  (since the queue cannot empty below zero) and 

the contribution to the mean occupancy from the transient queue-emptying phase is 

given by: 
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(9) 

 

The 0n  portion of the Gaussian distribution (Eqn.8) represents the set of 

possibilities in which the queue has already completely emptied and is recovering its 

equilibrium behaviour (see Figure 6). The latter may be modelled as a standard M/G/1 

queuing system, for which the first and second moments of the waiting time w  are 

given by: 
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where cSc  is the arrival rate of packets per second, st  is the packet service time 

and lc  is the utilisation [9]. Since for an M/D/1 system the packet service times 

are all equal ( lSt cs  ), the mean equilibrium queue-size is  
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and the standard deviation 
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Since equilibrium is not achieved at the instant the queue becomes empty we make a 

further assumption; namely that the equilibrium queue-size is restored abruptly eqt  

seconds (the effective equilibrium time) after n reaches zero. (In other words, 

   eqeq tHnn    where   is the time since the queue became empty and  tH  is 



the unit step function.) Thus the contribution to mean occupancy from equilibrium 

recovery for eqtt   is given by: 

 

   
  

  






























 





eqc

eqeq

tteqeq
ttcS

ttclnn
dnnfntn

eq

2
erf1

2

0

0

 

 

(12) 

 

and the overall mean queue-occupancy becomes: 
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Of course, the transition between the empty and equilibrium conditions is in reality 

gradual; replacing  tn  with an abrupt step function (see inset in Figure 7) is 

equivalent to replacing its first derivative  tn   with a delta-function positioned at its 

centroid. Thus we define the effective equilibrium time as follows: 
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Profiles for  tn  were obtained for various combinations of l  and cS  by averaging 

the results of 1,000 independent simulations. To determine eqt , the integral in Eqn. 14 

was computed between zero and the earliest instant at which  tn  exceeded eqn . 

Figure 7 shows the results normalised in terms of the corresponding numbers of 

packet service-times seq ttg   which is a function of utilisation only. Thus 

  

 g
l

S
t c

eq   where  
  19.2
1

333.0





g  

 

(15) 

 

where the expression for  g  was obtained empirically from the data. 

 

3.2 Response to a Probe Packet Arrival 

 

Suppose that the first probing packet (arriving at time 0t ) encounters the queue in 

its equilibrium condition, such that 0n  has a mean value  
eqp nS   and a variance 

2

eq . Eqns.9 and 12 can now be rewritten: 
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which may be inserted into Eqn.13 to obtain the overall mean profile  tn . We have 

assumed of course that the convolution of the Poisson arrival distribution and the 

equilibrium occupancy distribution is approximately Gaussian and that the stepwise 

model for equilibrium recovery is valid under all loading conditions: The validity of 

these assumptions was tested a posteriori by comparing the model’s predictions with 

simulation data: Figure 8 shows that the model loses accuracy under very heavy 

utilisation, and that the error increases as cS  approaches the magnitude of pS . The 

fact that  tn  is under-predicted in regions where according to the model equilibrium 

recovery should not yet have begun (the onset of equilibrium-recovery is visible as a 

slight “glitch” in the curve) suggests that the abrupt-step approximation is partly 

responsible for the error. However, for all pc SS
2
1  and 7.0  the model agrees 

very closely with the simulation data.  

 

4. Discrete Packet-Pair Model: Single Hop Scenario 

 

We return now to the discrete-traffic packet-pair mechanism illustrated in Figure 2(b): 

Packets #1 and #2 arrive in  seconds apart, and the time-separation between their 

departures out  is measured. It is clear from the figure that: 
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which yields the following expression for the packet dispersion as a function of the 

probing rate inpSr  : 
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where the function n  is obtained by substituting Eqns.16 and 17 into Eqn.13. Figure 

9 compares simulation data obtained using 500byte probe packets with 250 and 

100byte cross-traffic with the predictions of Eqn.19 and the fluid approximation. For 

the 100byte data, the discrete model is near-perfect, and converges with the fluid 

model for both large and small r. For the 250byte data the discrete model is mostly 

accurate but fails to converge with the fluid model under large r. The reasons for this 

will be addressed below: 

 

4.1 The Limit as 0pc SS  

 

As cS  becomes infinitesimal relative to pS , 0,, eqeqeq tn   (Eqns.10 11 and 15) and 

Eqn.13 becomes: 
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(since    1lim 


xerf
x

). Under these conditions it is easy to show that 
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which is identical to Eqns. 3 and 5, so the discrete and fluid models converge (as 

expected) under near-fluid conditions. 

 

4.2 The Limit as 0r  

 

This corresponds to the limit as t  in Eqn.13, which requires     eqeq ntntn   

(Eqn.17) and hence 1 inout  (Eqn.19). This is consistent with Figure 9 which 

shows the discrete and fluid models converging under low probing rates. 

 

4.3 The Limit as r  

 

This corresponds to the limit as 0t  in Eqn.13, which requires that  tn  be 

identical to  tntrans  (Eqn.16). For small cS  ( pS5
1 ) this is almost undistinguishable 

from the fluidic queue-size profile  tclnS eqp  , and hence the discrete and fluid 

models converge (Figure 9(b)). However, Figure 9(a) suggests that the discrete and 

fluid models do not converge exactly for larger cS  ( pS2
1 ), under which conditions 

the queue-size profile predicted by Eqn.16 has a steeper slope than that of the fluid 

approximation causing an upward shift in the asymptotic dispersion rate. However, 

this weakness in the model is only significant under very high utilisation, and when 

the probe packets are not significantly larger than those of the cross-traffic.   

 

5. Discrete Packet-Pair Model: Multiple-Hop Scenarios 

 

To extend the analysis to multiple-hop scenarios we follow Melander et al. [5] in 

applying the one-hop model iteratively. Figure 10 illustrates this idea for a two-hop 

path: The input probe gap in  is substituted into the model for Hop 1, the output of 

which ( 1

out ) becomes the input gap ( 2

in ) of Hop 2. This is perfectly valid under the 

fluid-traffic assumption (Section 2.2) where all the links behave deterministically. 

However, this is not the case with our discrete-traffic model, which takes a 

determinate in  and calculates the mean value of the resulting output-gap 

distribution. To make 21

inout   is to treat the latter as a determinate quantity, which 

is not strictly valid since nonlinearity within the Hop 2 may cause the resulting 2

out  

to differ from the true mean value. (To understand this, consider that 

     xfExEf   when   0var x  and  xf  is a nonlinear function.) We 



nonetheless proceed with the approach, knowing that it is not altogether rigorously 

correct. 

 

Figure 11 compares the model’s predictions with simulations of the network path of 

Figure 4(a) and its “alias” topology of Figure 4(b), using 500byte probe packets and a 

variety of cross-traffic packet sizes. Despite its imprecise assumptions, the model 

agrees quite closely with the data for cS =50 and 100bytes, even when the effects of 

the two slope-changes overlap. However, the introduction of 200 and 250byte packets 

yields more significant errors, which can be explained by the greater statistical 

variation created by the larger packets.  

 

It is interesting to consider a third scenario where the two links have equal available 

bandwidth, and there is no single identifiable tight-link. Figure 12 shows an example: 

Although Node 1 is the narrow-link, both nodes have exactly 700kbit/s of available 

bandwidth. Again 500byte probe packets were used in conjunction with 100 and 

250byte cross-traffic packets: The model agrees closely with the 100byte simulation 

results, while the 250byte simulation yields a significantly greater dispersion than the 

model. 

 

6. General Discussion and Conclusions 

 

This paper began by considering the probing of single and multi-hop network paths 

under the packet-pair algorithm. Having demonstrated the breakdown of this model 

under finite packet-sized cross traffic, an approximate stochastic model was 

developed and tested. This model was shown to produce accurate results for single-

hop networks, though errors appeared when the utilisation was high (80-90%). 

Furthermore, these errors became more severe as the cross-traffic packet size 

increased: For 80% utilisation the model was reasonably accurate when pc SS 5
1  

but significantly inaccurate when pc SS 2
1 . When applied to two-hop network 

paths, the model proved accurate only for smaller cS  (typically 10
1  to pS5

1 ). Such 

errors are to be expected, given the underlying assumptions: Firstly the “true” Poisson 

and approximate Gaussian distributions are only similar when the standard deviation 

is small relative to the mean (which ceases to be true when cS  approaches pS .) 

Secondly, high utilisation causes the queue-size profile to decay over longer time-

periods, over which a better representation of equilibrium recovery than the simple 

step-model (Figure 7) is required. Finally the iterative application of the model to 

two-hop paths requires that statistical variation in the output-gap of the first hop be 

small. Increases in cS  tend to increase this variability, thus reducing the accuracy of 

the prediction. However, if pS  is kept relatively large (say 1500bytes in an Ethernet 

network) the model should be usable for typical average packet sizes and practical 

levels of utilisation (≤60%). 

 

The paper has mostly addressed the modelling of the probing experiment rather than 

the extraction of network-path information from packet-pair data. The latter is more 

challenging, and will be addressed in a separate paper. One particular challenge 

concerns the large stochastic variance of individual packet dispersions: Since many 

readings (100+) are often needed to obtain a reliable average, measurements must be 

spread over large time-windows and short time-scale behaviour (particularly 



variations in the cross traffic c ) cannot be observed. The measurement window can of 

course be reduced by bunching the packet-pairs closer together, but this introduces 

problems of its own; namely the interference between probing events compromises 

their statistical independence and the probe traffic takes an unacceptable share of the 

bandwidth being measured. 

 

The software used to test the model was based on simple queuing assumptions which 

may not perfectly represent many real network components: In particular, a single raw 

bandwidth and FIFO-queuing at each node, assumptions which are not universally 

valid in access networks and wi-fi [4]. The model (and its successors) will need to be 

verified using a more realistic network simulator and/or hardware components. 
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Figure 1: Interaction of fluidic traffic in a link of finite capacity l bits/s. (a) The offered probe rate r 

bits/s is reduced to a measured rate m bits/s by its passage through the link. (b) The “dispersion ratio” 

r/m  is equal to 1 when there is no congestion (r < a = l - c) but increases linearly when the available 

bandwidth is exceeded.  
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(a) Fluid Cross-Traffic 

 
(b) Discrete Cross-Traffic 

 
Figure 2: Queue-size profiles during a packet-pair probing event. Packet #1 creates a disturbance in 

the mean queue size which decays over time. The remnant is sensed in terms of the additional time 

taken to service Packet #2. 
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(a) Single-Node Network Path 

 
(b) Two-Node Network Path 

 
 
Figure 3: Simulated dispersion-rate profiles obtained by probing (a) a single-hop and (b) a two-hop 

path under near-fluidic conditions (500byte probe packets with 1 byte cross-traffic). The broken lines 

indicate the fluid predictions for the different domains of Eqns. (3) and (7). 
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(a) LSF (Node 2 is the tight-link) 

 
 

(b) SSF (Node 1 is the tight-link) 

 
Figure 4: Two-hop network paths: (a) Largest Surplus First (LSF) and (b) Shortest Surplus First (SSF). 
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Figure 5: Simulated dispersion rate profiles for a single-hop path carrying 1 and 100byte cross-traffic 

packets, compared with the corresponding fluid approximation. (Each data point represents the average 

of 500 measurements.) While the 1byte results are almost identical to the fluid model, the 100byte 

results show a consistent upward bias when the offered rate is close to the available bandwidth 

(1Mbit/s). The inset shows the corresponding average queue-size profiles during the passage of a probe 

packet. (Each graph represents the average of 1000 simulations.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tunnicliffe, M.J., Figure 6 

 

TOP OF FIGURE 
 

 
Figure 6: Schematic representation of the Gaussian queue-size pdf’s during queue-emptying, showing 

the transient and equilibrium components.  The equilibrium time teq represents the effective time-lag 

between the queue becoming empty and returning to its equilibrium mean occupancy. 
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Figure 7: Effective equilibrium time (transition time for the step approximation, see inset) as a 

function of utilisation. Results were obtained using three combinations of packet size and server rate. 

Each data point represents the mean of five runs of 1,000 independent simulations. 
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(a) pc SS
2
1  

 

 
(b) pc SS

5
1  

 
Figure 8: Simulated mean queue-size profiles observed during the passage of a 500byte probe packet, 

using (a) 250byte and (b) 100byte cross-traffic, compared with the model’s predictions. (Each data-

point represents the average of 1000 simulations.)  
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(a) pc SS
2
1  

 
(b) pc SS

5
1  

 
Figure 9: Comparison of analytical and simulated dispersion ratios using available bandwidth 0.3 and 

0.7Mbit/s (70% and 30% utilisations respectively) and cross-traffic packets (a) one half and (b) one 

fifth the size of the probe packets. Each data point represents the average of five runs of 500 packet 

pairs each, and the error bars indicate ±1.96 times the standard mean error (95% confidence interval).   
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Figure 10: Iterative application of single-hop model in the analysis of a multiple-hop topology. 
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(a) LSF Configuration 

 

(b) SSF Configuration 

Figure 11: Simulated and analytical dispersion rate profiles obtained for a two-hop network path in (a) 

largest surplus first and (b) shortest surplus first configuration. Error bars indicate ±1.96 times the 

standard mean error (95% confidence interval). 
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Figure 12: Comparison of analytical and simulated dispersion ratio profiles for a two-hop network 

path with equal available bandwidth at each hop (0.7Mbit/s). Error bars indicate ±1.96 times the 

standard mean error (95% confidence interval). 

 


