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Learning Semantic Scene Models From Observing
Activity in Visual Surveillance

Dimitios Makris, Member, IEEE, and Tim Ellis, Member, IEEE

Abstract—This paper considers the problem of automatically
learning an activity-based semantic scene model from a stream of
video data. A scene model is proposed that labels regions according
to an identifiable activity in each region, such as entry/exit zones,
junctions, paths, and stop zones. We present several unsupervised
methods that learn these scene elements and present results that
show the efficiency of our approach. Finally, we describe how the
models can be used to support the interpretation of moving objects
in a visual surveillance environment.

Index Terms—Motion analysis, site security monitoring, TV
surveillance systems, unsupervised learning.

I. INTRODUCTION

V IDEO surveillance has become a ubiquitous feature of the
modern urban landscape, located in a wide variety of envi-

ronments including shopping malls, railway stations, hospitals,
government buildings and commercial premises. In some cases
surveillance functions as a deterrent, discouraging unacceptable
social behavior that can no longer be engaged in anonymously,
recording and logging events for evidential purposes, or pro-
viding remote observation of sensitive locations where rigid ac-
cess control is important.

These video monitoring systems typically deploy multiple
video cameras, channeling the video signals to a central moni-
toring room, where multiplexing is used to display a subset of the
images to security personnel. Event detection and recognition
employ theperceptualcapabilitiesofahumanoperator toobserve
(detect and identify) objects moving within the field-of-view
(FOV) of the cameras and to infer their actions. However vigilant
the operators, manual monitoring inevitably suffers from infor-
mation overload, as a result of periods of operator inattention
due to fatigue, distractions and interruptions. In practice, it is
inevitable that a significant number of the video channels are
not regularly monitored, and potentially important events are
overlooked. In addition, fatigue increases dramatically as the
number of cameras in the system is increased. Automating all or
part of this process would obviously provide significant benefits,
ranging from a capability to alert an operator to potential events
of interest, through to a fully automatic detection and analysis
system. However, the reliability of automated detection systems
is a paramount issue, since frequent false alarms induce skepti-
cism in the operators, who quickly learn to ignore the system.
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Automation requires the development of sophisticated com-
puter vision algorithms to detect, locate and follow a target (gen-
erally either a pedestrian or a vehicle) as it moves through the
environment. Simple video motion detection (VMD) has been
used to provide a means of alerting operators, typically based
on manually located regions of interest, which are triggered
through some perceived change in the image data. While they
are widely deployed in commercially available surveillance sys-
tems, VMDs have many drawbacks. They can be falsely trig-
gered by nonmotion events such as those due to weather-related
changes or variations in the illumination; they are unable to de-
termine the context of a particular event, e.g., a valid individual
entering a restricted area or a merely boisterous group enjoying
an evening out.

More advanced motion detectors attempt to track moving ob-
jects throughout the camera FOV, maintaining tracking through a
variety of noise-related interference. Much of previous research
has focused on determining the trajectory of objects in single
camera views [1], [2]. More recently, effort has focused on ro-
bustly tracking targets through complex environments viewed
by multiple cameras [3], addressing the problems of combining
corresponding information where the FOVs are overlapped.

However, it is desirable that visual surveillance systems not
only can detect and track objects, but also understand the ac-
tivity of the scene, ideally in a way that is consistent with that of
a human observer. The task of automating the interpretation of
the video data is a complex one and can depend on a wide range
of factors, including location, context, time, and date. This in-
formation relates to where objects are and what they may be
doing as they are observed, and attempting to characterize typ-
ical behaviors. Such information can be used to enrich the raw
trajectory data, and provide higher level descriptions of activity.

Our aim is to provide visual surveillance systems with an ac-
tivity-based semantic scene model that supports high-level un-
derstanding and analysis of the observed activity. An unsuper-
vised approach is preferred because it allows automatic configu-
ration of the visual surveillance systems. This concept of learning
from the data is particularly appropriate for video surveillance,
since it is possible to allow the system to construct the models
simply by observing activity over long periods of time.

The scene structure influences, directly or indirectly, the way
that targets act. Therefore, specific types of events may be asso-
ciated with specific regions. For instance, roads constrain vehi-
cles to move along specific lanes in a particular direction; gates
and doors are related to entrance/exit events where targets ap-
pear or disappear; bus stops indicate where people should wait
for the bus. The activity-based semantics learnt in our frame-
work aims at recognizing generic activities. For instance, our
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method does not rely on distinguishing between a pedestrian
pavement and a traffic lane, but it describes both as “paths,” i.e.,
areas within which targets move.

The input to our algorithms is motion-tracking data, derived
from an online surveillance system we have been developing
[2]–[5]. Using trajectories extracted over long periods of obser-
vation (hours/days), we identify regions or zones in the camera
FOV where objects appear and disappear, paths that they follow
through the scene, junctions where they might change their route
and stopping areas, where they might wait for a friend or queue
for a bus. Learning and encoding these regions allows subse-
quent trajectories to be classified online. A track database is used
to manage and record the results of tracking and the annotations
associated with the semantic activity models [5].

The paper is structured according to the following: Section II
reviews previous research related to activity analysis. In Sec-
tion III we briefly describe the algorithms that extract the mo-
tion-tracking data from video data. In Section IV, the scene
model is described. In Sections V–VII we introduce the algo-
rithms that are used to construct the models of each of the scene
elements and in Section VIII we evaluate the operation of these
algorithms. In Section IX, we describe how these models can
then be utilized in a video surveillance context. Conclusions are
outlined in Section X.

II. PREVIOUS WORK

Extracting semantics from images has long attracted the at-
tention of computer vision researchers. The VISIONS system
by Hanson and Riseman [6] aimed to segment static images into
semantically consistent regions, according to their pixel values.
In the visual surveillance domain, Neumann [7] and Mohnhaupt
and Neumann [8] tried to learn paths by accumulating speed and
orientation information in a spatio-temporal buffer.

Howard and Buxton [9] identified the lack of an explicit se-
mantic model of the scene and they proposed a spatial, polygon-
based model. Howard [10] used these models to segment new
scenes manually.

Fernyhough et al. [11] used the same model as a basis for
a learning algorithm that can automatically determine object
paths by accumulating the trace of tracked blobs. The benefits of
his method are that it is unsupervised and auto-initialized. How-
ever, it requires full trajectories, it cannot handle occlusions and
the results are dependent on the shape and size of the blobs, as
they appear on the image plane.

Johnson and Hogg [12] proposed a method for learning be-
havior models using a vector quantization method to learn typ-
ical routes taken by pedestrians from representative trajecto-
ries. However, no high-level semantic information is derived and
their method requires the knowledge of entry/exit areas of the
scene, which are defined manually.

Koller-Meier and Van Gool [13] accumulate observed tra-
jectories to produce average descriptions of similar trajectories,
which then can be used for atypical activity detection.

Grimson et al. [14] describe activity in a six-dimensional
(6-D) space (position, velocity, size, aspect ratio). They use two
different methods to classify activities: a) clustering of obser-
vations in the 6-D space to Gaussian models by using the Nu-
meric Iterative Hierarchical Cluster (NIHC); and b) accumu-

lating co-occurrence statistics in a quantised 6-D space. In their
former method, they retrieve activity-related areas by backpro-
jecting Gaussian clusters with specific characteristics on the
spatial ( ) plane.

Stauffer [15] accumulated observations to reconstruct a rough
depth map of the scene, using the line-of-sight constraint.

In our earlier work, we proposed path spatial modeling and
learning in [16], [17]. Our path model was enriched by proba-
bilistic information and Hidden Markov Model theory was used
to analyze the pedestrian activity [18]. In [19], entry/exit zones
modeling and learning is presented. More recently, Stauffer [20]
has proposed a similar technique to estimate entry/exit zones.

A recent paper by Buxton [21] summarizes a number of
models and methods that have been used to represent activity
in the visual surveillance domain.

III. MOTION TRACKING

The first steps in motion tracking require the separation of
objects of interest from the background. When the video data
source is a static camera, background subtraction provides an
efficient and sensitive method for detection. To operate reli-
ably in an outdoor environment, with the vagaries of illumina-
tion change and weather variations, it is essential to employ a
robust method for background adaptation. We use a sequence
of video frames to define an adaptive pixel-wise model for the
background based on a Gaussian mixture model for each pixel,
in either the intensity, RGB [22] or normalized rgb space [4].

At each frame, pixels are classified as either foreground or
background, according to the most likely Gaussian model. A
connectivity algorithm is then applied to identify possible ob-
jects in motion. Undersegmentation (e.g., due to low contrast)
can cause the detected objects to fragment, so morphological op-
erations can be applied to improve the connectivity of the fore-
ground objects. A detected foreground object is known as blob
and is characterized by its boundary, position (centroid) and
mean color. Velocity information is added during the matching
process. Fig. 1 summarizes the motion detection process.

At each frame, new blobs are matched to blobs detected in
previous frames to describe a tracked object (also referred to as
a target). The matching process is assisted by a Kalman filter1

which models the position, the velocity and the size of each
blob [2]. Unmatched blobs may indicate new objects that have
just appeared in the view. Previously detected blobs that do not
match new blobs may indicate objects exiting the scene, or ob-
jects in occlusion (i.e., hidden from view).

The output of the motion tracking process is a set of trajec-
tories. A trajectory aims to describe the location history of a
target moving through the scene. Information for the position,
velocity, size and color of the corresponding blob is held for
each frame over which the object was tracked.

Unfortunately, motion detection and tracking in a cluttered
environment experience many problems due to a variety of rea-
sons: Illumination changes (local-global, slow-fast), static oc-
clusions, self-occlusions, and “semistationary” motion may re-

1Strictly speaking, the targets’ motion cannot be assumed linear due to the
perspective effect of the camera and Kalman filter is not appropriate. However,
the performance of the Kalman filter is satisfactory because of the high frame
rate that allows us to assume that motion is linear for short time intervals.
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Fig. 1. Motion detection. (a) Original frame. (b) Background model. (c) Foreground pixels. (d) Detected objects.

sult in either falsely detected blobs, or undetected objects. Addi-
tionally, the presence of multiple targets may cause errors to the
blob matching process. We can identify different types of system
noise that are manifested as incomplete trajectories, false trajec-
tories and trajectories corresponding to apparent motion (e.g.,
associated with moving vegetation, curtains, computer screens,
reflections on windows and other surfaces, background motion)
that are of no direct interest. Many techniques have been devel-
oped to improve the reliability of motion detection and tracking
(see, for example, [2]). However, because a surveillance system
is expected to operate for extended periods of time, under very
different conditions, it seems that there is no guarantee for per-
fect tracking.

We can visualize a trajectory on the image plane as a sequence
of points, where the points indicate the positions of the object
centroid (Fig. 2). Alternatively, the object positions can be con-
verted from image coordinates to ground plane coordinates by
using geometric camera models and the ground plane constraint.
In this case, trajectories are visualized on a ground plane map.
Ground-plane trajectories have the advantage that they are not
affected by the viewpoint and the perspective of the camera.

IV. SCENE MODEL

In many surveillance applications (see for example [23]), ac-
tivity analysis is based on a manual segmentation of the scene.
However, this implies that each surveillance system must be spe-
cially configured to allow event analysis. In multicamera sys-
tems, configuration of every camera of the network would be a
tedious task and must be repeated each time that either the view
of the camera changes (because the camera has been moved) or
the scene itself has been changed. Therefore, automatic, unsu-
pervised learning of a semantic model of the scene is desirable.

Fig. 2. Set of 752 trajectories for a particular scene visualized on the image
plane.

We require a scene model that can represent the spatial nature
of the scene, so that events can be localized with respect to actual
scene features (e.g., doorways, seats). Additionally, the model
must have a probabilistic nature, so it can support a probabilistic
framework for the activity analysis.

We introduce an activity-based semantic scene model that
consists of the following primitive elements (examples are taken
from Figs. 3 and 4):

1) entry/exit zones, e.g., A, C, E, G, H;
2) junctions, e.g., B, D, F;
3) paths, e.g., AB, CB, BD, DE, FH;
4) routes, e.g., ABDFH, EDFG, CBDE;
5) stop zones, e.g., I, J.



400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005

Fig. 3. Topographical representation of the scene model.

Fig. 4. Topological representation of the scene model.

We use two levels of representation for the scene level:

1) a topographical representation that shows the spatial
extent and the location of the scene elements (see
Fig. 3);

2) a topological representation that shows the scene ele-
ments as nodes of a network (see Fig. 4). The topo-
graphical representation focuses on the spatial nature
of the model, whereas the topological representation
is associated with the probabilistic nature of the model
which can be used as the basis of a Bayesian belief net-
work (BBN).

The structure of the scene affects the behavior of the targets
around the scene. Therefore, in our approach, the scene is learnt
by observing typical patterns of activity. In the following sec-
tions, we describe how the elements of the scene model are
learnt using an unsupervised approach from observed trajecto-
ries extracted by the motion-tracking algorithm.

V. ENTRY/EXIT ZONES

A. Modeling

Entry/exit zones represent areas of the scene where targets
normally appear and disappear. They can be distinguished as
either scene-related features, such as doors and gates, or they
can be view-related, for instance, occurring at the borders of the
camera FOV. We distinguish between these different types of
entry/exit zones because in multicamera systems, the scene-re-
lated zones remain fixed with respect to the environment, while

the view-related zones may change according to the camera lo-
cation. Entry and exit zones may be spatially coincident, e.g., in
most pedestrian environments where paths are bidirectional, or
sepatated, such as in road traffic environments, where vehicles
are constrained to drive on one side of the road (i.e., either on
the left or right).

We choose to encode both the spatial and probabilistic char-
acteristics of the zones using two-dimensional (2-D) Gaussian
mixture models (GMMs), which provides a more compact
representation than say, a simpler, purely spatial model using
polygons.

B. Learning

Our learning method is multistep and uses the expectation-
maximization (EM) algorithm [24]. An entry-point dataset con-
sists of the start points of each trajectory, as derived by the mo-
tion-tracking algorithm. Similarly, the end points of a trajectory
form the exit-point set.

One of the benefits of EM is that it can successfully model
overlapped distributions. Therefore, if noise is overlapped onto
signal, then it is possible to generate separate clusters for the
signal and the noise, if they have different statistics. Two types
of noise are recognized in the dataset.

1) Tracking failure noise: Tracking failure noise is due to
the failure of the motion-tracking algorithm to track a
target successfully for its whole activity in the scene. It
may appear in the form of false trajectories (trajectories
where the motion history of more than one target have
been mixed), or split trajectories (trajectories that rep-
resent only a portion of the motion history of a target).
In the entry-point/exit-point datasets, tracking failure
noise appears as false positive points, distributed over
all the activity areas. In general, the greater the activity
in an area, the more false positive points will be gen-
erated.

2) Semistationary motion noise: If sources of semis-
tationary motion noise are present (such as trees,
curtains, window reflections), then an apparent high
activity is detected in the vicinity of the source of the
semistationary motion noise. The characteristic of this
apparent activity is that the trajectories start and end
in the same local region. In the entry-point/exit-point
datasets, semistationary motion noise appears as a
dense distribution of false positive points.

We model both types of noise, as they appear in the
entry-point/exit-point datasets, using Gaussian distributions.
The tracking failure noise is represented by wide Gaussian
distributions over the activity areas, whereas the semistationary
motion noise is usually represented by narrow Gaussian distri-
butions at the noise sources. Because of the different nature of
the two types of noise, different methods are used to filter them
out.

We developed a multistep learning algorithm that first dis-
cards the semistationary noise and then the tracking failure
noise. Since we have no information on the actual number of
entry/exit zones in the scene, we overestimate the number of
entry/exit zones in the scene then estimate the number of the
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Fig. 5. Entry-point dataset (4250 samples) with both types of noise present.

Fig. 6. GMM derived by first run of EM (N = 6). The upper left cluster is
caused by the semistationary of the tree branches.

signal clusters by eliminating the noisy ones. We describe the
algorithm for the entry-point dataset; the same method is used
for the exit-point dataset.

1) The EM algorithm with model order is applied
to the entry-point dataset (Fig. 5) and a GMM is
derived (Fig. 6). High-density Gaussian clusters cor-
respond to either entry zones or semistationary motion
noise. Low-density clusters correspond to tracking
failure noise.

2) All the trajectories are checked if they are semista-
tionary, according to the GMM extracted in the pre-
vious step. If so, they are discarded from the dataset
and a new cleaned entry-point dataset (Fig. 7) is
created.

3) The EM algorithm with model order is applied to
the clean entry-point data-set (Fig. 8).

4) Gaussian clusters are classified as either signal clus-
ters or noise clusters, according to a density criterion
(Fig. 9). More specifically, if is the prior probability
of a cluster and is its covariance matrix, where

Fig. 7. Clean entry-point dataset (1767 samples) after discarding stationary
motion noise.

Fig. 8. GMM after second run of EM (N = 8).

Fig. 9. Three entry zones derived by the multistep algorithm.
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TABLE I
CLUSTERS OF FIG. 8

Fig. 10. Entry-point dataset (13223 samples).

, then a measure of the density is given
by

(1)

A threshold value is defined by the clean entry-point dataset
and the model order

(2)

where is a user-defined weight , (which we have ex-
perimentally set to 0.1) and is the covariance matrix of the
dataset .

The selection of the threshold is justified as follows:
is a measure of the area over which dataset is dis-

tributed. Therefore, is a measure of the area of
an “average” cluster. If indicates an acceptable popularity
for a signal “average” cluster, then indicates the density of
an “average” signal cluster. Table I lists the densities of the
clusters of Fig. 8 and separate them to signal and noise clusters
according to the threshold pixels , as esti-
mated by (2).

Our method is relatively insensitive to the model order selec-
tion at steps 1) and 2). is selected to ensure that any possible
motion source noise is not multimodeled. Similarly, must
be large enough to ensure all the zones can be modeled, while
not over-modeling the data. Therefore, if is the number of

Fig. 11. Three detected entry zones.

Fig. 12. Exit-point dataset (13223 samples).

Fig. 13. Three detected exit zones.

real entry zones, is the number of the semistationary mo-
tion sources and we allow (usually 1–5) clusters to model
the tracking failure noise, then and

. The values of are quite flexible, thanks to
the fact that in most cases, extra clusters tend to model tracking
failure noise.
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Fig. 14. Entry-point (12746 samples) dataset in a road traffic environment.

Fig. 15. Two detected entry zones in a road traffic environment.

Fig. 16. Exit-point dataset (12746 samples) in a road traffic environment.

The algorithm has been tested on data extracted from two out-
door scenes, containing both pedestrian and vehicle trajectory

Fig. 17. Two detected exit zones in a road traffic environment.

Fig. 18. Stop events (9455) on the ground plane.

Fig. 19. Five stop zones as derived by the EM algorithm.

data. For example, Figs. 10 and 12 show entry/exit point datasets
for the scene of Fig. 2 and the extracted entry/exit zones are il-
lustrated in Figs. 11 and 13. Similarly, Figs. 14 and 16 show
entry/exit point datasets for a road scene (note that “driving
on the left” regulations are applied to the specific scene) and
Figs. 15 and 17 show the extracted entry/exit zones.
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Fig. 20. Stop event duration diagrams. The x axis indicates the duration of a stop event and the y axis the number of detected stop events with the specific
duration. Results are given for the two most popular stop zones.

VI. STOP ZONES

Stop zones are areas where the targets appear stationary for
some time. Pedestrians are stationary when they stop to sit, rest,
queue, wait to access a resource, merely observe the scene or
just wonder around. Although the majority of research in video
surveillance has focused on detecting and tracking motion, it is
when objects stop and interact with some fixed element of the
scene that the system is more likely to be interested in them, for
instance at a bus stop, an ATM machine, a park seat, or a shop
window.

We detect a stop event when a targets speed is lower than
a predefined threshold. A stop-event dataset is formed by
checking the target trajectories for stop events. We form
the stop-event dataset, using ground plane coordinates (see
Fig. 18) because apparent speed may be strongly affected by
the perspective of the camera viewpoint; therefore, the image
coordinate system is less reliable.

As with the entry/exit zones, we use a GMM to model the
spatio-probabilistic characteristics of the stop zones and EM to
learn them (Fig. 19). However, stop zones have an additional
property that we want to model: the duration of the stop events.
We want to know for how long an object may be stopped. From
our experiments (see Fig. 20), it seems that stop event dura-
tion can be adequately approximated by an exponential func-
tion; therefore, we can cheaply model the stop event duration of
each stop zone by adding an additional parameter.

VII. ROUTES

A. Modeling

In road traffic environments, vehicles must follow specific
predefined routes. In pedestrian environments, people normally
walk on well-prescribed pathways. Even in cases where no pre-
defined routes exist, the structure of the scene affects the be-
havior of pedestrians and route-patterns of activity can be esti-
mated.

A model was required to represent routes. We differentiate
between paths and routes in order to represent where tracked ob-
jects may change their predicted destinations as they approach
a junction. This model must represent the physical extent of the
route and its usage by the targets. More specifically, the model

Fig. 21. Depiction of the route model.

represents the main axis of the route, its borders (or envelope)
along the route and its usage along and across the route.

The model that we propose is depicted in Fig. 21. It uses a
spline-like representation and consists of a sequence of equidis-
tant nodes, where each node is characterized by:

1) a 2-D position vector , which is part of the
main axis;

2) a weight factor that shows the usage of the node;
3) a normal vector defined as the unit

vector perpendicular to the local spline direction, as
defined by the sequence of the nodes;

4) two bound 2-D points along the normal vector line, the
left boundary and the right boundary

. The two bound points encode the width
of the route at the specific position. They can be set
according to either the extremes of the matching tra-
jectories, or a Gaussian distribution around the node
position;

5) a probability density function (pdf) of the usage
of the node, across the route, where x is the signed
distance from the node position. could be repre-
sented as a set of samples. However, as results indicate
(Fig. 22), can be adequately approximated by a
Gaussian distribution.

B. Learning

We have developed an unsupervised algorithm for learning
a set of route models from trajectories. The algorithm has two
parameters: a) a resample factor of the route model, which
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Fig. 22. Sample-based pdfs of the usage across the route, for some selected nodes. The dotted vertical lines indicate the location of the route borders at the node.

Fig. 23. Matched trajectory. The MaxSD of the trajectory from the route model
is smaller than the MinAD of the algorithm.

defines the distance between two consecutive nodes of a route
and b) the minimum allowed distance (MinAD) between
two routes.

The resample factor defines the spatial resolution of the
route model, whereas MinAD defines when two route models
should be merged into one. MinAD does not define model order
explicitly, but implicitly.

A summary of the learning algorithm is as follows:

1) First trajectory of the dataset initializes the first route
model

2) Each new trajectory is compared with the existing route
models.
a) If a trajectory matches a route model (Fig. 23), then

the route model is updated.
b) If a trajectory does not match to any route model

(Fig. 24), a new model is initialized.
3) The updated route model is resampled, so internode dis-

tances are kept equal to .
a) Each updated route model is compared with the other

route models.
b) If two route models are sufficiently overlapped, they

are merged.
A trajectory matches a route model according to the following

criteria: a) if the trajectory is within the route model envelope;
and b) the maximum separation distance (MaxSD) between the
trajectory and the route model envelope is smaller than MinAD.

Fig. 24. Unmatched trajectory. The MaxSD is too large.

Fig. 25. Case for merging a pair of route models. The MaxSD between the
two routes is smaller that the MinAD.

To update a route model, a sample of the matching trajec-
tory for each model node is derived along the direction of .
The node characteristics are updated cumulatively according to
the sample and the weight factor is increased by one. Sim-
ilarly, two route models are merged if the MaxSD of their en-
velopes is smaller than the MinAD (Fig. 25). When the route is
resampled, all the nodes characteristic values are re-estimated
using linear or bicubic interpolation of the old values.

Because the algorithm was developed to deal with data that
may contain a considerable amount of tracking failure noise, it
is possible for a trajectory to match a shorter route (Fig. 26).
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Fig. 26. Case for extension. The route model is shorter than the matching
trajectory.

TABLE II
AVERAGE LEARNING TIME PER TRAJECTORY WITH RESPECT TO THE

RESAMPLE FACTOR (r)

Fig. 27. Route models learnt from 24 h of trajectory data (752 samples).

In this case, when updating the route model, it is extended ac-
cording to the trajectory. However, if entry/exit zones are known
and tracking failure noise is discarded from the dataset, then tra-
jectories are restricted not to match shorter routes and no route
extension step is required.

Table II shows the average learning time per trajectory for
different values of . The route learning algorithm was imple-
mented in Matlab and running on a Pentium 3–550 Mhz Linux
system with 256 MB RAM. The current implementation can
serve real-time learning of routes with rates of 0.2–0.4 trajec-
tories per second. Implementation of the algorithm in and
deployment in faster processing units would allow real-time
learning of routes, even for high-activity scenes, subject to satis-
factory extraction of data from the motion tracking component.

The route-learning algorithm can be used in either image
plane coordinates (Fig. 27) or ground plane coordinates
(Fig. 28). Working in ground plane coordinates may be benefi-
cial, because results are not distorted by the perspective effect
and models from different camera views can be integrated.

Fig. 28. Route models learned from ground plane trajectory data, derived by
six different cameras.

TABLE III
SUCCESS RATE OF IDENTIFYING ENTRY ZONES FROM NOISE

VIII. EVALUATION

We ran a set of 70 experiments to test the algorithm that de-
tects the entry/exit zones, based on the dataset shown in Fig. 10.
Specifically, the algorithm was tested for different values of

and for each value, it was run five times with
different initialization data. The output Gaussian ellipses were
manually labeled as “signal” and “noise” and these labels were
compared to the ones that our method automatically provides.
The outcome of the automatic method in each experiment was
characterized successful only when all the labels were coinci-
dent with the manual ones. Table III illustrates the success rate
for different values of and the overall success rate which is
85.7%.

We ran the algorithm for a variety of scenes and datasets and
in most cases the results are successful. The algorithm fails, if

. If , then some of the entry/exit zones
may be represented as multimodal. The algorithm fails to dis-
card the stationary motion noise if its source is coincident to a
real entry zone, or if its source is multimodal.

The dataset of Fig. 2 was used to evaluate the route-learning
algorithm. The algorithm was run for different values of r and
MinAD. Because the algorithm is incremental, we re-order the
trajectory dataset to test against any dependency on the dataset
order. In the majority of the experiments, the output of the route
learning algorithm was consistent with a semantic interpretation
of the routes given manually. However, if the MinAD becomes
low (e.g., ), the algorithm tends to produce a large
number of narrow routes.
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For further validation, a test dataset of 100 previous unseen
trajectories was labeled both manually and using the route
matching algorithm and a specific set of routes, which is pic-
tured in Fig. 27. The results were compared and our automatic
method classified correctly 97 out of 100 trajectories.

IX. APPLICATIONS

The scene model we have presented can have many applica-
tions in the area of the visual surveillance ([5], [16]–[19]) and
we provide a brief summary in this section.

Knowledge of a semantic scene model allows a high-level
description of the observed activity. A hierarchical database
has been designed that contains three levels of information:
a) low-level video data; b) middle-level trajectory data; and
c) high-level conceptual description of the activity using terms
derived from the scene model. High-level description of the
activity is beneficial for a surveillance database: it provides
compact representation of the data, allows processing of con-
ceptual queries and can respond to queries much faster than to
queries based on raw trajectory data.2

Elements of the scene model are used to enhance the mo-
tion tracking process. For example, entry/exit zones allow the
motion tracker to localize where objects should be initialized
and terminated respectively. Entry/exit zones that are caused
by stationary noise are indications of stationary motion noise
sources, which can subsequently be ignored. Also, knowledge
of the route models can be used to provide short-term predic-
tions to support blob matching.

Conceptual descriptions of the activity are used to automati-
cally annotate the surveillance video, e.g., “pedestrian #445 en-
ters the scene at entry zone A, moves along the route AB and
exits the scene at exit zone B.” If the scene elements are labeled
manually according to real scene features, then the descriptions
are more meaningful, e.g., “A pedestrian enters the scene from
the Student Union, walks toward the main entrance and exits the
scene at the main entrance.”

Online classification of trajectories to routes can provide
long-term predictions about targets expected destination. More
specifically, a trajectory is classified online, as soon as it is
derived by the motion tracker. For each possible matching of
the incomplete trajectory to a route model, a probability is
assigned which shows the likelihood that the target will follow
the specific route.

As a consequence of the discrete nature of our scene model,
as expressed in the topological representation, activity analysis
can be performed using a BBN, overlaid on the network of the
scene elements. We use a Markovian field, overlaid onto our net-
work and activity analysis is performed using a hidden Markov
model (HMM) theory [25]. However, in our probabilistic model,
the states are not hidden, as they have already been learnt. This
is rather a benefit, as learning the HMM parameters is consider-
ably simplified.

Activity cannot be assumed as a stationary process, as it
is highly dependent on the time of the day. Therefore, we

2The conceptual descriptors can be generated online, in real time, or offline at
times that the system is idle. When a conceptual query is set, the system exploits
the existing conceptual labels to facilitate fast search of the database.

Fig. 29. Typical trajectory according to the HMM model.

Fig. 30. Atypical trajectory, according to the HMM model. Large X notes
where atypicality is detected.

use a time-variant HMM to represent this variation. Using
Observation Evaluation of the HMM theory, trajectories can be
characterized as typical or atypical (see, for example, Figs. 29
and 30). Atypical trajectory identification can be used to alert
the security personnel to incidents that may require a closer
look.

X. CONCLUSION

We have developed an activity-based semantic scene model
for an area that is viewed by a video surveillance system. Se-
mantics of our model include entry/exit zones, paths, routes, and
stop zones.

A set of methods is presented that allow learning of the scene
elements from observations, automatically. The unsupervised
nature of the proposed algorithms allows the implementation
of a visual surveillance system that “observes” and “learns” its
environment.

While the methods have been applied individually to cameras
in a multicamera surveillance system (see Fig. 28), we describe
elsewhere [26] how we can automatically learn the connectivity
of paths between cameras.

The knowledge of such semantic models can have many
applications in the visual surveillance domain, like conceptual
databases, tracking process enhancement, video annotation,
long-term predictions and atypical activity detection.
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