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Abstract 

Proteins play critical biochemical roles in all living organisms; in human beings, 

they are the targets of 50% of all drugs. Although the first protein structure was 

determined 60 years ago, experimental techniques are still time and cost consuming. 

Consequently, in silico protein structure prediction, which is considered a main 

challenge in computational biology, is fundamental to decipher conformations of 

protein targets. This thesis contributes to the state of the art of fragment-assembly 

protein structure prediction. This category has been widely and thoroughly studied due 

to its application to any type of targets. While the majority of research focuses on 

enhancing the functions that are used to score fragments by incorporating new terms 

and optimising their weights, another important issue is how to pick appropriate 

fragments from a large pool of candidate structures. Since prediction of the main 

structural classes, i.e. mainly-alpha, mainly-beta and alpha-beta, has recently reached 

quite a high level of accuracy, we have introduced a novel approach by decreasing the 

size of the pool of candidate structures to comprise only proteins that share the same 

structural class a target is likely to adopt. Picking fragments from this customised set of 

known structures not only has contributed in generating decoys with higher level of 

accuracy but also has eliminated irrelevant parts of the search space which makes the 

selection of first models a less complicated process, addressing the inaccuracies of 

energy functions. In addition to the challenge of adopting a unique template structure 

for all targets, another one arises whenever relying on the same amount of corrections 

and fine tunings; such a phase may be damaging to “easy’ targets, i.e. those that 

comprise a relatively significant percentage of alpha helices.  Owing to the sequence-

structure correlation based on which fragment-based protein structure prediction was 

born, we have also proposed a customised phase of correction based on the structural 

class prediction of the target in question. After using secondary structure prediction as a 

“global feature” of a target, i.e. structural classes, we have also investigated its usage as 

a “local feature” to customise the number of candidate fragments, which is currently the 

same at all positions. Relying on the known facts regarding diversity of short fragments 

of helices, sheets and loops, the fragment insertion process has been adjusted to make 

“changes” relative to the expected complexity of each region. We have proved in this 

thesis the extent to which secondary structure features can be used implicitly or 

explicitly to enhance fragment assembly protein structure prediction.   
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Glossary of Terms 

3-mers/9-mers 

3-mers and 9-mers represent protein substructures, also known as fragments, of length 3 

and 9 respectively. Such fragments are extracted from proteins of known structures and 

represent the main building block used in fragment-based protein structure prediction 

computational tools. 

 

Amino acid 

A protein’s building block which comprises besides the side chain (R) two main groups: 

amine (NH2) and carboxyl (COOH). The side chain is the only part that differs amongst 

the twenty amino acids. The important atom that links all the three groups together is 

called C-alpha, denoted as Cα. 

 

Alpha helix 

The most common and regular secondary structure motif found in proteins. It has a 

spiral-like shape stabilised by hydrogen bonds between each couple of amino acids that 

are located on the top of the other in the spiral, i.e. 3 to 4 amino acids away. An alpha 

helix has an average length of 10 amino acids.  

 

Best decoy 

The decoy that corresponds to the highest GDT TS score with the native structure 

regardless of the value of the energy function. 

 

Beta strand 

It is a “zig zag” shape motif found in proteins. When two or more beta strands are 

pleated on each other, they form the second most abundant secondary structure, beta 

sheet. Beta sheets are either parallel or antiparallel based on the orientation of the 

strands and, as alpha helices, are stabilised by hydrogen bonds however between 

amino acids of different strands. Average length of beta sheets is approximately 6 

amino acids.  

 

Coil 

Any secondary structure that is neither an alpha helix nor a beta sheet is called a coil. A 

coil has no well-defined shape and it serves as either a terminal or a connecting “part” 

between two alpha helices, two beta strands, or an alpha helix and a beta strand. Its 

length can reach up to 15 amino acids and it is consequently very hard to predict its 

structure due to its high degree of spatial flexibility. 

 

Chaperone 

A special kind of proteins that help other proteins to fold. 

 

Correlation coefficient  

It describes the correlation between two datasets of GDT. Whereas the first dataset is 

related to the standard predictions, the second one is related to the customised ones; for 
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a list of 25 targets, for instance, each dataset comprises 25 values. Correlation 

coefficient ranges from -1 to +1; values that are less than -0.5 and greater than +0.5 are 

believed to reveal strong relationships.  

 

Decoy 

In order to cope with the large search space, most protein structure prediction 

computational tools rely on generating thousands of candidate structures, known as 

decoys, where each decoy represents, in principle, a different search trajectory. 

Typically, the decoy(s) with the lowest energy score is(are) then considered as the best 

prediction(s).  

 

Denaturation 

During the denaturation process, a protein loses its tertiary structure that corresponds to 

the native state due to external factors such as radiation, heat or strong acid/base. In 

cases when the original protein structure can be recovered, the reverse process is called 

renaturation. 

 

Dictionary of secondary structures of proteins (DSSP) 

It is a computer program that, when fed with a protein’s spatial coordinates, assigns 

each amino acid to a secondary structure, mainly either helix (H), beta sheet (E) or coil 

(C). 

 

Dihedral angles 

Also known as torsion angles, they are mainly two angles, phi φ and psi ψ, that describe 

two important rotations in each amino acid. Protein’s dihedral angles are able to define 

the backbone’s fold. Since Rosetta keeps all remaining local structural parameters such 

as bond lengths and remaining angles at their “ideal” values during the sampling 

process, the only degrees of freedom/change are the torsion angles.  

 

Domain  

For relatively small proteins, the whole conformation is often considered a domain. 

Some larger proteins may comprise more than one domain if each domain can be seen 

as an independent folding unit that has its own hydrophobic core and its own 

function(s), i.e. has the characteristics of a typical globular protein. 

 

E-value 

E-value (Expect value), which is associated with the results of sequence alignment 

using PSI BLAST tool, is a statistical measure that is calculated via the score, i.e. the 

measure of similarity of aligning two sequences, the size of the protein in question and 

the size of the database being hit. It is the estimated number of times one would expect 

to see the same score, however, by chance. In the broad sense, the lower e-value, the 

more significant the hit is.  
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Electrostatic force 

The electrostatic force between two atoms could be attractive or repulsive as a result of 

different or similar charges respectively. 

 

Entropy 

A thermodynamic metric that measures the amount of “randomness” or disorder in a 

certain system. During the folding process, a protein’s entropy decreases. 

 

Enzyme 

Enzymes are the largest category of proteins. Their key role is to catalyse, i.e. 

accelerate, chemical reactions. 

 

Eukaryotic cells 

Eukaryotic cells contain a nucleus surrounded by a membrane. Organisms who have 

such cells are called Eukaryotes; humans are amongst this group.  

 

Family 

A protein’s family is the set of proteins that are likely to have a common evolutionary 

origin. This is evidenced by either a sequence identity that typically exceeds 30% or a 

lower sequence identity, however, associated with similar function and/or structure.  

 

First model 

The decoy that corresponds to the lowest energy score. 

 

Free energy 

Also known as Gibbs free energy, free energy is a thermodynamic potential. Once a 

protein reaches a chemical equilibrium, typically, after the folding process ends, free 

energy’s value reaches a minimal value. 

 

Free modelling (FM) targets 

Proteins that do not have explicit template structures due to the low sequence similarity 

between the target on a side and the entries belonging to the database of proteins of 

known structures on the other side. Such targets are typically computationally predicted 

using either ab initio or fragment-based approaches. They are considered quite 

challenging in the field of protein structure prediction. In this study, we may refer to FM 

targets as “hard” targets.  

 

Heuristic 

In large optimisation problems, a heuristic is an approach to reach an approximate 

solution by employing, for instance, an informative function to help exploring the 

search space. Whilst heuristics are usually designed for each specific problem, 

metaheuristics can be applied to a broad range of optimisation problems.  
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Hydrogen bond 

A hydrogen bond is a non-covalent bond that is formed as an electrostatic attraction 

force between a hydrogen atom and another electronegative atom.  

 

Globular protein 

Such a protein is called so because of its “globe-shape”. Globular proteins are water-

soluble whereas the fibrous and membrane ones are not. 

 

Monte Carlo methods 

In optimisation problems, Monte Carlo methods are based on generating a relatively 

high number of random samples for the sake of attaining the optimal or near-optimal 

solution(s). A simple analogy can be described by randomly throwing several balls in 

the hope of reaching the lowest point in a landscape containing hills and valleys. 

 

Native structure 

The native structure of a protein is the conformation that corresponds to the lowest free 

energy; without reaching that unique structure, a protein, in principle, cannot perform its 

function(s), 

 

p-value 

Throughout this thesis, p-value or probability value, which is the probability of 

obtaining corresponding results by chance, is calculated as the probability that is 

associated with the Student’s t-test value. The latter is obtained as a paired two-tailed 

distribution of both datasets: GDT of standard predictions and their corresponding GDT 

of our customised predictions.  

 

Peptide  

The main difference between a protein and a peptide is the size as peptides are typically 

shorter than proteins and consequently are not involved in as many biochemical 

reactions as proteins do.  

 

Peptide bond 

A covalent bond that links two amino acids together. 

Polypeptide  

A protein may consist of more than one polypeptide/chain and a polypeptide may not 

have a well-defined compact shape. All proteins are polypeptides, but the inverse is not 

always true; for instance, nylon is classified as a polypeptide, but it is not a protein. 

 

Profile 

A protein family’s profile is considered as a kind of pattern that shows how conserved 

each position in the amino acid sequence is. It is the result of a multiple sequence 

alignment of query protein’s sequence against a certain database. Usage of profile can 

be further extended whenever additional search iteration(s) are employed; a sequence’s 

profile can be used instead of a single sequence to conduct wider search in a database.  
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Quality assessment tools 

These tools are developed to help users to select the “best” candidate structure(s) 

amongst a large number of generated decoys. Such tools are considered an alternative to 

selecting the decoy(s) with the lowest energy score. They allow dealing with the 

inaccuracies of energy functions.  

 

Protein data bank (PDB) 

The protein data bank is the world’s largest repository of proteins of known structures. 

Structures of the deposited proteins are represented as the spatial coordinates of the 

atoms which are determined via wet laboratory techniques such as X-ray 

crystallography, nucleic magnetic resonance, and electron microscopy.  

 

Ramachandran map probability 

Each amino acid has an associated probability for each possible range of value for each 

dihedral angle, namely phi φ and psi ψ, based on the statistical data collected from the 

PDB.  

 

Residue 

Throughout this thesis, residue and amino acid are used interchangeably. 

 

Root mean square deviation 

A metric that evaluates the structural similarity between two proteins’ conformations. It 

includes an optimisation superimposition of both proteins. The value of the root mean 

square deviation is the average of the Euclidean distances between each pair of atoms.  

 

Rotamer 

A rotamer represents the “ideal” coordinates of side-chains of proteins, i.e. low-energy 

conformations of side chains collected from statistical data of proteins of known 

structures.   

 

Similar amino acids 

In contrast to “identical amino acids”, which requires two amino acids to be exactly the 

same, “similar amino acids” can be associated to a pair that shares some physiochemical 

properties such as hydrophobicity. 

 

Structural class 

A structural class is a high-level structural classification for proteins that is based on the 

abundances of the secondary structure elements and their organisation. A domain is 

usually classified into three main classes: mainly-alpha, mainly-beta or alpha-beta.  

 

Template-based modelling (TBM) targets 

Proteins that have at least one explicit template structure due to the relatively high 

sequence similarity between the target on a side and the template structure(s) on the 

other side. Such targets are typically computationally predicted using comparative 
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modelling. They are not considered not challenging in the field of protein structure 

prediction. In this study, we may refer to TBM targets as “easy” targets.  

 

Tertiary structure 

Three-dimensional (3D) structure and tertiary structure are used interchangeably in this 

thesis. 

 

Turn 

A short coil - no longer than 5 amino acids – that is stabilised by hydrogen bonds. The 

main difference between a coil and a turn is that the former has no well-defined shape 

and its length can reach up to 15 amino acids. Throughout this thesis, secondary 

structure predictions are based on the well-known three-state: h for helix, e for beta 

sheet and c for everything else, i.e. turns are not treated differently; everything different 

from helices and sheets are simply coils. 
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1 Introduction 

Everyone has heard of DNA; it is a long chain that comprises our genetic code, 

believed to be unique for each of us and sometimes referred to “the secret of life”. 

Around 1.5% of human DNA codes for protein sequences; proteins have much shorter 

chains, but they are more structurally and functionally diverse and complicated. The 

origin of the word ‘Protein’ is Greek (“proteios”). It means “of primary importance” 

and it was suggested in the 19th century. Despite the fact that very little was known 

about proteins then, eventually the name proved quite appropriate; proteins are the cell’s 

basic building blocks, constitute 20% of our human body, are involved in more than 

4,000 biochemical reactions, are targets of more than 50% of drugs and when misfolded 

may lead to fatal diseases.  Although critical biological functionalities have been found 

to be associated to the non-coding sequences of DNA (Sloan et al., 2016), a better 

understanding of the products expressed by the 20,000 human genes is certainly 

required to improve human health.  

Protein-related fields of research include prediction of functions, structures, 

interactions and interfaces. However, a protein’s 3D structure may be seen as the key to 

most protein mysteries since it determines its function and dictates possible interactions. 

The main topic of this thesis is to predict a protein’s structure via computational means. 

A protein is originally a linear sequence of amino acids that folds into a generally 

unique conformation where free energy is believed to be minimal. This process 

typically takes place inside a cell, i.e. in vivo; since scientists cannot accurately monitor 

that process, they try to “replicate” it in wet laboratories, i.e. in vitro so they can capture 

the spatial coordinates of the native structure. Despite advancements in computational 

biology for more than two decades, in silico – i.e. using computer simulations - 

techniques for protein structure prediction haven’t been classified as “trusted” by 

biologists and drug designers yet (Moult, Fidelis, Kryshtafovych, Schwede, & 

Tramontano, 2018).  

From a drug design perspective, determination of a protein’s native structure 

represents a crucial step since it allows gaining important insights of the molecular 

mechanisms involved in many diseases (Ramirez-Alvarado, Kelly, & Dobson, 2010). 

Despite the advancements achieved in both wet laboratories and computational 

techniques, protein structure determination still faces many challenges. Bioinformatics 

is usually considered as “the last chance” when neither X-ray crystallography, nor 
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Nuclear Magnetic Resonance (NMR), nor Electron Microscopy (EM) can be used due 

to time, cost or/and experimental constraints. Whereas performing protein folding 

simulation conforming to Newton’s second law may appear as an attractive approach, it 

is only practical when applied on very small targets while using state-of-the-art 

supercomputers and/or grid computing (Baker, 2014). Consequently, many current 

computational methods rely on Monte Carlo simulations and heuristic search techniques 

besides reduction of amino acids and energy functions’ representations (Kmiecik et al., 

2016). 

In this study, we will be exploring the different state-of-the-art methodologies 

used to predict a protein’s structure, especially fragment-based approaches. We propose 

three different novel ideas applied to a state-of-the-art tool, called Rosetta, which are 

supported by tangible improvements.  

The rest of this short chapter is organised as follows. The next section introduces 

the core of our research area: protein folding and structure prediction. Afterwards, we 

present concisely the aim and objectives and our scientific contribution in sections 1.2 

and 1.3 respectively. The outline of the structure of the whole thesis is presented in the 

last section of the chapter.  

1.1 Protein Folding and Structure Prediction 

Typically, a protein is useless, sometimes harmful, unless it folds into its 

generally unique shape. Such a process takes place over a timescale of microseconds in 

nature although the number of all possible conformations is tremendous; such dilemma 

has been under question till now (Dill & Chan, 1997; Dill & MacCallum, 2012; 

Levinthal, 1968; Zwanzig, Szabo, & Bagchi, 1992). Although the final structure is the 

most “crucial part”, the folding pathway has been under thorough study since it may 

reveal important clues, mainly to help computational biologists mimic the real trajectory 

towards the native structure (Dill, 1985; Voelz, Bowman, Beauchamp, & Pande, 2010). 

Probably the first finding in this regard for globular proteins notes that hydrophobic 

amino acids tend to be in the centre of the structure to avoid the surrounding water 

molecules, whilst the hydrophilic ones prefer to stay in contact with the external 

aqueous environment, see Figure 1.1. 
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Studies and proposed theories on protein folding have been published from 

different scientific perspectives: chemical, physical and biological (Dill, Ozkan, Shell, 

& Weikl, 2008; Luo, 2014; Scheraga, 2015). Computational techniques have played a 

key role by running simulations of that process to mimic nanosecond by nanosecond 

how atoms interact according to the “standard” Newton’s second law. Although 

successful attempts have been recorded, only very powerful supercomputers and grid 

computing systems were able to achieve success to such experiments (Tyka et al., 2011; 

Voelz et al., 2010). 

Christian Anfinsen – one of the pioneers in the field of protein structures – has 

formulated two notable theories: the first one states that the native structure is the one 

that has the lowest free energy value (Anfinsen, Haber, Sela, & White, 1961), the 

second describes protein folding as a pure physical process, i.e. the tertiary structure can 

be solely determined by the sequence of amino acids (Anfinsen, 1973), see Figure 1.2. 

The above two principles represent the basis for the most challenging computational 

technique known as ab initio protein structure prediction. From the first theory’s 

perspective, Protein Structure Prediction (PSP) is an optimisation problem where the 

energy function plays the role of heuristic as an attempt to reach the global minimum 

energy in the tremendous search space. Anfinsen’s second theory has paved the way to 

computationally represent an approximate value of the interactions that take place 

Figure 1.1: Pictorial description of globular protein folding. The left part 

represents the primary sequence, i.e. the linear chain of amino acid whereas the 

right part shows the folded structure. The black-filled, white-filled, dark grey-

filled, and light grey-filled spheres represent the hydrophobic, hydrophilic amino 

acids, C terminal and N terminal respectively. For the sake of simplicity, the figure 

is shown in 2D.  
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amongst the atoms and amino acids without taking into consideration any external 

effects.  

Computational approaches used to determine a protein’s structure can be 

categorised into two main groups: template-based and template free modelling; whereas 

the first one relies mainly on the known proteins structures deposited in the world’s 

largest repository – the Protein Data Bank (PDB) -  by trying to find either some level 

of sequence-sequence similarity or sequence-structure compatibility between a template 

conformation and the target in question, the second group, i.e. template free – also 

known as ab initio – relies solely on both of Anfinsen’s theories. Ab initio approaches 

are closer to the natural case than template-based methods where most advances have 

been focusing on detecting more remote homologues and better modelling sequence-

structure compatibility. In their turn, template-based techniques are divided further into 

to sub-categories: homology modelling and threading.  

Homology modelling or comparative modelling is considered the simplest way 

to build the target in question and it is based on a quite old hypothesis: similar 

sequences infer similar structure (Browne et al., 1969). Whenever sequence similarity 

exceeds 30%, models with good accuracy are typically expected (Lam, Das, Sillitoe, & 

Figure 1.2: A depiction of Anfinsen’s experiment; the native structure (top left) 

was denatured to form two inactive shapes (bottom left and top right). Both were 

again biologically activated (renatured) and the protein returned to its native 

shape. Taken from (Amani & Naeem, 2013). 
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Orengo, 2017). Figure 1.3 shows the process of comparative modelling; the sequence 

alignment was performed using ClustalW (Larkin et al., 2007) and the model was built 

using MODELLER (B Webb & Sali, 2014).   

Fold recognition or threading is a more complicated and computationally 

expensive template-based modelling and is typically used whenever comparative 

modelling fails; even if no remarkable sequence similarity has been detected, a target 

may still fit into one of the known structures (Chothia, 1992).  Threading techniques 

rely on fitness scores as target’s amino acids are placed on known structures to evaluate 

how convenient and compatible those structures are. Most threading techniques do not 

model the whole target, rather the core regions only; see Figure 1.4.   

 

Figure 1.3: A simplified pictorial illustration of the homology modelling process. 

The top left part shows the target sequence as well as a template structure that 

was chosen due to the high sequence alignment similarity shown on the top right. 

The native structure of the target T0295 is shown between square brackets 

whereas the built one using the template is displayed next to it. Taken from (di 

Luccio & Koehl, 2011). 
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Figure 1.4: Simplified threading process. The best core template is chosen based on 

the score of the energy function. The size of the query sequence is n, whereas the 

size of the core template used for threading is m. Since n is larger than m, the 

remaining regions are built using different techniques such as ab initio. Taken 

from (Ngom, 2006). 

 Ab initio methods are by far the hardest approach for PSP. As their name 

implies, in these approaches, proteins are built from scratch. “Standard” ab initio 

algorithms mimic the natural folding process by using Force Fields (FF) – an 

approximation of the quantum mechanical representation of the interactions amongst 

atoms - however, due to the high computational cost their usage has been limited to 

small proteins (Khoury, Smadbeck, Kieslich, & Floudas, 2014). 

 An in-between approach that combines the strength of both template-based and 

ab initio modelling is fragment-based protein structure prediction. It is able to predict 

template-free targets but is not as computationally expensive as “pure” ab initio 

methods. Instead of having a single amino acid as the unit of construction, a short 

sequence of amino acids – treated as a rigid part – is taken into consideration. Such 

approaches have been the target of very active research for the sake of their 

enhancement and improvement as they were ranked the best in the latest blind 

competition: Critical Assessment of the Structure Prediction of proteins – round 12 –

(CASP12) in 2016.  

1.2 Aim and Objectives 

 The main aim of this study is to improve fragment-based protein structure 

prediction, taking advantage of the state-of-the-art Rosetta tool (Leaver-Fay et al., 

2011), by incorporating new parameters and criteria whenever template structures and 
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fragments are chosen to build complete conformation models. The fundamental 

objectives are concisely presented as follows. 

• Creating smaller but more relevant template structure sets, i.e. allowing focusing 

on the most promising parts of the search space: 

For the sake of sampling as many decoys as possible and therefore covering as 

much of the search space as possible, fragment-based approaches rely on a 

relatively large set of PDB’s structures. For instance, Rosetta uses a group of 

16,800 template structures of average size 257 amino acids; such a number has 

been able to let Monte Carlo simulations cover a large number of possible 

conformations (Gront, Kulp, Vernon, Strauss, & Baker, 2011). However, out of 

the decoys produced, it turned out that many of them are quite far from the 

native structures although they represent local energy minima (Kim, Blum, 

Bradley, & Baker, 2009). In this thesis, we will show that in many cases using 

only 20% of Rosetta’s standard set of template structures allows not only 

producing decoys of better quality, but also reducing the number of irrelevant 

regions where search trajectories end. 

 

• Incorporating proteins’ structural class prediction as an additional and valuable 

criterion for selection of fragments: 

In all state-of-the-art fragment-based tools such as I-TASSER (Y. Zhang, 2008), 

FragFold (Jones, 2001) and Rosetta (Das & Baker, 2008), the procedure for the 

selection of fragments relies mainly on different techniques of sequence 

alignment and additional criteria, such as secondary structure prediction and 

Ramachandran map probabilities. In this thesis, we present a new factor that 

restricts the usage of fragments based on the structural class of their sources, that 

should match with the target’s structural class prediction.  Such a factor was able 

to play the role of a “preliminary filter” of all fragments before Rosetta’s 

standard filters are applied; tangible improvements were recorded over state-of 

the-art prediction methods.  

• Taking advantage of a proteins’ sequence-structure correlation associated with 

the various secondary structures to create customised fragment files, where the 

number of candidate fragments varies based on the predicted secondary structure 
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so that the effort in modelling each target’s region is customised according to its 

needs: 

Rosetta uses 25 9-mers and 200 3-mers for each position in the target to be 

chosen randomly whilst the conformations are being built. Such a strategy – to 

adopt the same number of fragments at each position - is common amongst all 

popular fragment assembly methods. However, independent and thorough 

studies have shown that the sequence-structure relationship is not static for all 

secondary structures, specifically not for short sequences (Bystroff, Simons, 

Han, & Baker, 1996; de Oliveira, Shi, & Deane, 2015; Fiser et al., 2000; 

Sibanda & Thornton, 1985; Vanhee et al., 2011). Owing to that known fact, we 

have developed a novel approach to build fragment files so that, for instance, the 

number of candidates falls sharply whenever an alpha helix – an easier protein 

substructure to predict – is predicted to occur along the length of the fragment.   

• Applying an appropriate “amount” of corrections and tuning to an initial model 

to prevent excessive changes which may have a damaging effect: 

Rosetta uses 200 3-mers for each position in the target of interest as an attempt 

to explore neighbouring regions. However, we will demonstrate in this thesis 

that for a category of targets such a large number of fragments of size 3 cause 

“damage” to some parts of the conformation that had already reached a decent 

accuracy during the coarser structure prediction phase.  

 

• Tackling energy function inaccuracies by narrowing the size of the explored 

area: 

Exploration-exploitation trade-off is a common issue in all optimisation 

problems, especially in protein structure prediction using fragment assembly 

techniques (Simoncini, Schiex, & Zhang, 2017). However, reaching a fair 

compromise between these does not only raise the probability of reaching 

“good” regions in the search space but also narrows the gap between the decoys 

with low energy scores and decoys with high accuracy. In this research, we have 

decreased the level of exploration in our three contributions. However, each time 

this was done in a different way, which makes the selection of the first models – 

models that are associated with the lowest energy score – a more accurate 

process. 
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1.3 Scientific Contribution 

 In this thesis, novel ideas are presented leading to improvements over the 

standard Rosetta protein structure predictions. Our novel ideas result in the following 

scientific contributions: 

 

• A novel fragment selection process where usage of template structures is 

restricted to those who share the same structural class prediction as the target 

(chapter 4). This novel idea was the basis of our contribution to CASP12 – under 

the name of “Rosetta_at_Kingston” group – as we had the opportunity to 

compete against the formal Rosetta research group and were able to show better 

results for 40% of the targets despite the huge gap between their computational 

and human resources and ours.  

 

• A structure refinement process depending on a target’s structural class prediction 

(chapter 5). We have shown that the standard number of 3-mers, i.e. 200, which 

is used in the structure refinement phase, is not only unnecessary but also 

destructive for alpha and alpha-beta proteins. Indeed, for those classes, the main 

9-mers insertion phase is sufficient to “deliver” conformations close to the 

native-like structure. As a consequence, refinement only requires being light 

touch.  

 

• A protein structure prediction process which takes advantage of the sequence-

structure correlation which is present amongst the three different secondary 

structures to select the number and diversity of possible fragment alternatives 

(chapter 6). The sequence-structure correlation amongst the three different 

secondary structures has been established for a long time (Sibanda & Thornton, 

1985); alpha helices are very “conservative” whilst loops tend to have a large 

range of structural variety and beta strands are somewhere in between. As a 

consequence, it is proposed that fragments that are predicted to be either pure 

helices, strands or loops should have an increasing number of available 

candidates. Adopting this novel approach to create fragment files allows the 

structure prediction process to focus on complex regions by conducting 

extensive fragment insertions, while limiting the number of the insertions in the 

simpler regions.  
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1.4 Thesis Outline 

 This thesis is divided into 7 chapters as follows: 

 In this chapter, we have presented a concise description of the novelty of our 

findings after a short definition of the problem.  

 Chapter 2 is dedicated to a thorough literature review of protein folding and 

protein structure prediction. An earlier version of this chapter was published as a book 

chapter by John Wiley and Sons (Abbass, Nebel, & Mansour, 2013). 

 Chapter 3 describes a popular and challenging fragment-based protein structure 

prediction method called Rosetta (Lyskov et al., 2013) that has been ranked the best 

amongst its competitors.  

 Chapter 4 proposes the adoption of a small but customised template structures 

set for each group of targets that share some “global” properties. We have demonstrated 

that based on the target’s structural class prediction, an ad hoc fragments library should 

be built to produce better decoys by exploring less but exploiting deeper regions that are 

likely to be near the native-like structure. This work has been published as an article in 

BMC Bioinformatics (Abbass & Nebel, 2015). 

 Chapter 5 relies on the same principle as chapter 4, i.e. the structural class of the 

target is predicted first. However, the standard fragment library is kept but the number 

of 3-mers has been adjusted accordingly. This contribution has been published in a 

journal paper in Protein Peptides and Letters (Abbass & Nebel, 2017). 

 Chapter 6 illustrates how secondary structure prediction can play an additional 

role besides its original one as a factor whenever it comes to choosing a fragment; the 

number of available fragments varies between the target’s positions based on the 

secondary structure that it is likely to adopt starting at those positions. This work will be 

the core of a future publication in a bioinformatics journal.   

 Chapter 7 presents the conclusions, discussion and future works. 
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2 Literature Review 

2.1 Introduction 

This chapter presents an exhaustive review of protein structure prediction 

starting from an introduction to the structure of proteins (section 2.2), an overview of 

the main theories of protein folding (section 2.3) and ending in a thorough investigation 

of the different means of protein 3D structure determination (section 2.4).  Section 2.4 

comprises three sub-sections; experimental techniques (section 2.4.1), protein 3D 

structure prediction (section 2.5) and CASP competition (section 2.4.3). Protein 3D 

structure prediction (section 2.5) is the largest one, which discusses the most common 

computational means used in this regard, such as comparative modelling (section 

2.5.4.2), fold recognition (section 2.5.4.3), ab initio modelling (section 2.5.4.4) and 

fragment-based techniques (section 2.5.4.5). Sections related to different ab initio and 

fragment-based techniques are described in greater detail.  

2.2 Overview on Protein Structures 

Proteins represent approximately 20% of a eukaryotic cell’s weight, that is, the 

largest percentage after water. They are involved in the most critical functions:  

structural proteins are an organism’s basic building blocks; enzymes, the largest class of 

these, are known to be involved in 4,000 biochemical reactions (Bairoch, 2000), and 

transmembrane proteins are essential in maintenance of the cellular environment. 

Proteins are sequences of amino acids which fold through a high-speed 

spontaneous process into a unique conformation; this conformation typically represents 

a global energy minimum (Anfinsen et al., 1961). Proteins are so small that they cannot 

be seen via optical microscopes.  Typically, the sizes of proteins range from about 3 to 

10 nanometres, and finding their structure experimentally is relatively difficult and 

expensive. Such experiments are usually conducted by using either X-ray 

crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy or Electron 

Microscopy (EM). Proteins are initially built from a sequence of amino acids; however, 

the length of this chain varies from tens to many thousands of amino acids. For instance, 

insulin is a protein of 51 amino acids only, while another protein called titin has an 

approximate length of 28,000. 
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Besides amino acids and primary structures that are discussed in the next 

subsections, secondary structure and tertiary structures are elaborately described in 

sections 2.2.3 and 2.2.4 respectively. 

2.2.1 Amino Acids 

All amino acids have the same molecular structure; a central carbon atom called 

Cα, an amine group NH2, a carboxyl group COOH, a hydrogen atom H, and a side 

chain denoted as R (See Figure 2.1). Amino acids differ in structures of their side 

chains.  

Figure 2.1: A template structure of an amino acid. All components, except for the 

side chain, are common amongst all amino acids. Taken from (“Proteomics,” 

2007). 

There are 20 different amino acids; the only differences are the chemical 

structures and characteristics of their side chains (See Table 2.1 for a list of all amino 

acids). Amongst those characteristics, polarities and charges are the most important, 

since they determine the way they interact with other chemical compounds and the 

surrounding water molecules. According to their polarity and their charges, any amino 

acid can be classified into one of two main categories. (1) Nonpolar amino acids: have 

no or little connection with water molecules and for this reason they are also called 

“hydrophobic”. Accordingly, hydrophobic amino acids try to occupy the space inside 

the protein molecule, in an attempt to avoid any contact with any surrounding H2O 

molecules. In many proteins, such amino acids are dominant. (2) Polar amino acids, also 

known as hydrophilic, are, as the name implies, more soluble in water and tend to be 

placed on the exterior of proteins to be in contact with water; Table 2.1 shows all 20 

amino acids along with their chemical properties.   
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Table 2.1: List of the 20 amino acids’ names, abbreviations, symbols and chemical 
characteristics. 

Amino acid 3-letter abbreviation 1-letter symbol Chemical characteristics 

Alanine  ALA  A  Nonpolar, hydrophobic 

Arginine  ARG  R Polar, hydrophilic 

Asparagine  ASN N Polar, hydrophilic 

Aspartic acid  ASP D Polar, hydrophilic 

Cysteine  CYS C Polar, hydrophilic 

Glutamine  GLN Q Polar, hydrophilic 

Glutamic acid  GLU E Polar, hydrophilic 

Glycine  GLY G Polar, hydrophilic 

Histidine  HIS H Polar, hydrophilic 

Isoleucine  ILE I Nonpolar, hydrophobic 

Leucine  LEU L Nonpolar, hydrophobic 

Lysine  LYS K Polar, hydrophilic 

Methionine  MET M Nonpolar, hydrophobic 

Phenylalanine  PHE F Nonpolar, hydrophobic 

Proline  PRO P Nonpolar, hydrophobic 

Serine  SER S Polar, hydrophilic 

Threonine  THR T Polar, hydrophilic 

Tryptophan  TRP W Nonpolar, hydrophobic 

Tyrosine  TYR Y Polar, hydrophilic 

Valine  VAL V Nonpolar, hydrophobic 

Two amino acids can be joined together to form one molecule called a dipeptide, 

through a peptide bond between the carbon atom of the carboxyl group COOH of the 

first amino acid and the nitrogen atom in the amine group NH2 of the second one. 

Figure 2.2 shows how a dipeptide can be formed by a peptide bond between two amino 

acids.  

  

 

 

Figure 2.2: Dipeptide formation and release of a water molecule. The peptide bond 

takes place between the carbon atom in the carboxyl group of the first amino acid 

and the nitrogen atom in the amine group of the second amino acid.  
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2.2.2 Primary Structure 

Many peptide bonds lead to the formation of a chain of amino acids, formally 

known as polypeptide. Except for some cases where a polypeptide doesn’t satisfy a 

protein’s characteristics, a polypeptide is often used as another name of what it is called 

linear, or primary, structure of a protein. By convention, primary structures are 

represented as sequences of one-letter symbols where each symbol stands for an amino 

acid in the chain. Also by convention, the left end is the N atom and the right end is the 

C atom. The chain of carbon and nitrogen atoms connected by peptide bonds is called 

the backbone of the protein. The upper part of Figure 2.5 shows an extended primary 

structure as well as the freedom of movement of the chain which are discussed in 

section 2.2.4. 

2.2.3 Secondary Structure 

A protein can be seen as a sequence of secondary structures, as they constitute 

the main components of the tertiary structures. Most often, secondary structures are 

formed due to the occurrence of hydrogen bonds between oxygen and hydrogen atoms 

that maintain their spatial stabilities. There are two common substructures that can be 

found in folded chains; alpha-helices and beta-strands, and they are joined by structures 

called loops.  Alpha-helices, beta-strands, and loops constitute the secondary structure 

elements. Discovery of alpha helices and beta sheets took place in 1950 by Linus 

Pauling and co-workers (Pauling, Corey, & Branson, 1951). Automated/computerised 

classification of secondary structures is back to 1983 when the Dictionary Secondary 

Structures of Proteins (DSSP) was published (Kabsch & Sander, 1983); this was slightly 

improved in 2002 (Andersen, Palmer, Brunak, & Rost, 2002). However, DSSP is still 

the standard tool used in the Protein Data Bank (PDB) (P. W. Rose et al., 2017) to 

classify secondary structures of proteins based on the coordinates of the amino acids’ 

atoms.  

2.2.3.1 Alpha Helices 

An alpha helix is a spiral-like structure where the side chains of the amino acids 

occupy the exterior part. The number of amino acids per turn is approximately 3.6 and 

the rotation of each amino acid is estimated as 100°. Since an alpha helix has a structure 

similar to a screw, amino acid number i + 4 is located approximately above amino acid 

number i. Therefore, the hydrogen bonds are between oxygen atoms in the CO group on 

amino acid i and hydrogen atoms of the NH group in amino acid i+ 4. Accordingly, 
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such a type of alpha helix is often known as 4-alpha helix and its structure is presented 

in Figure 2.3.  

There are also two rare types of alpha helices called 310 and Π alpha helices, 

having the 3 or 5 amino acids per turn respectively.  The direction of the spiral 

determines whether an alpha helix is right-handed or left-handed, abbreviated 

respectively as αR-helix and αL-helix. However, the latter is very rare.  

2.2.3.2 Beta Sheets 

A beta sheet is formed by two expanded sequences of amino acids and is also 

maintained by hydrogen bonds between oxygen atoms in the CO group in the first 

sequence and hydrogen atoms of the NH groups in the other sequence. A beta sheet can 

be either parallel or antiparallel based on the directions of the amino acid sequences 

(See Figure 2.4). Beta sheets can contain more than two amino acid sequences, 

increasing the width of the structure. Antiparallel beta sheets are slightly more stable 

due the shorter distance between the hydrogen and oxygen atoms which makes the 

hydrogen bond stronger. 

Figure 2.3: Illustrates a right-handed alpha helix in detail (left side) and symbolic 

representation (right side). Note: Side chains are not shown for clarity purposes. 

Taken from (“Proteomics,” 2007). 
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Figure 2.4: Antiparallel beta sheet structure (left side) and parallel beta sheet 

structure (right side). Note: Side chains are not shown for clarity purposes. Taken 

from (“Proteomics,” 2007). 

 

2.2.3.3 Turns  

Turns are also known as loops and are considered as the third dominant 

secondary structure type, however, in contrast to alpha helices and beta sheets, turns are 

non-repetitive motif elements. They are in charge of the globular shapes of proteins and 

of reversing the direction of the amino acid chain. Turns contain polar and charged 

residues and are found mainly on the surface of a protein. According to the number of 

residues that constitute a turn, it can be classified into 5 types: delta-turn, gamma-turn, 

beta-turn, alpha-turn, and pi-turn. Gamma-turns, can be divided into two subcategories: 

inverse and classic (Bystrov, Portnova, Tsetlin, Ivanov, & Ovchinnikov, 1969), and are 

believed to be the most common in proteins and play a critical role in the folding 

process. Furthermore, they are responsible for stabilizing beta-strands before they 

transfer into beta-sheets (Milner-White, 1990). 
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2.2.3.4 Coils  

Coils are simply unordered secondary structures; they have no defined 

arrangement in the DSSP. In the DSSP legend on the PDB website, such regions are 

defined as “empty: no secondary structure assigned” 

2.2.4 Tertiary and Quaternary Structures  

Tertiary structure is essential since it is the final three-dimensional conformation 

of a protein. It has been shown that the tertiary structure is unique for a protein and 

typically corresponds to a global minimum energy (Anfinsen et al., 1961). The heart of 

the protein folding problem lies in predicting the appropriate tertiary structure.  The 

peptide bond that connects the carbonyl C of the ith amino acid to the alpha amine N of 

the (i+1)th amino acid forms with the four neighbouring atoms a planar arrangement. 

Accordingly, these 6 atoms reside and move in a plane. Cα-C, as seen in Figure 2.5, 

serves as an axis of rotation for the first plane and Cα-N serves as an axis of rotation for 

the second plane. These two angles, which are independent of each other, are called phi 

(φ) and psi (ψ) respectively and they can vary from -180o to +180o. They are also 

known as dihedral angles or torsion angles. The side chain can also rotate around the Cα 

with an angle called chi (χ).  Other rotations may also take place within the side chain 

itself and are referred as chi1 (χ1), chi2 (χ2), and chi3 (χ3). (Further information 

regarding restrictions of the degree of freedom of the main angles is explained in section 

2.3.3 – Ramachandran plot). Figure 2.6 shows the tertiary structure of conjugative 

transfer protein (PDBID: 4EW7). 

Not all proteins are composed of one polypeptide chain; actually, many of them 

are made up of two, three, four, five, six or even more chains and are known as dimers, 

trimers, tetramers, pentamers, hexamers and so on. The structural assembly of more 

than one chain is known as the quaternary structure of a protein. The subunits that make 

up such complex structures, also known as monomers, are not necessary identical, as 

shown in the bottom three template structures in the left part of Figure 2.7.  On the other 

hand, when the subunits are the same, the quaternary structure is likely to be symmetric, 

as shown in the right part of Figure 2.7. 
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Figure 2.6: The crystal structure of conjugative transfer PAS_like domain from 

the Salmonella enterica organism. Colours are shown based on the secondary 

structures: red for helices, yellow for beta sheets and green for loops. Image 

produced using PyMol (Schrödinger, LLC, 2015). 
 

Figure 2.5: Extended chain of five residues showing the six atoms that stay in a 

planar conformation as well as the rotations that correspond to phi (φ) and psi (ψ). 

Taken from (“Proteomics,” 2007). 
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Figure 2.7: Left: Schematic representation of some possible assembly of 

monomers. Taken from (Petsko & Ringe, 2004). Right: Crystal structure of a 

homotrimer (PDBID: 1FQ0) where the three subunits are identical and thus a 

symmetric architecture is formed. Image produced using PyMol. 

 

2.2.4.1 Disulphide Bonds  

A disulphide bond is a covalent bond, sometimes referred to Sulphur Sulphur 

bond (SS-bond) or Disulphide Bridge, between two thiol groups. In proteins, thiol is an 

active side chain of an amino acid called cysteine. A disulphide bond takes place 

between two cysteines. Two residues of that kind and the corresponding disulphide 

bond are often called cystines. Such bonds are created during the process of folding and 

play a critical role in the stability of the tertiary structure since they cause the nucleus of 

the hydrophobic core to be constituted; a crucial step towards the compact shape, i.e. a 

dramatic decrease in terms of entropy (Hatahet, Nguyen, Salo, & Ruddock, 2010; 

Ruoppolo, Vinci, Klink, Raines, & Marino, 2000). 

 However, formation of such bond depends on the final conformation itself; it is 

the final structure that determines how close two cysteines residues are to each other 

and, therefore, whether they are able to establish a disulphide bond between them. 

Studies have proved that mis-pairing of cysteine residues may stop proteins from 

reaching their native conformation, and therefore lead to a misfolded structure (Tu & 

Weissman, 2004). 
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2.3 Protein Folding Milestones at a Glance 

The notions of polypeptide bond, dipeptide, tripeptide, and polypeptide were 

first introduced by Emil Fischer, a German Chemist at the University of Berlin, in 1894. 

He looked for new methods to identify individual amino acids and discovered a new 

type called cyclic amino acid. Later, he proposed the “Lock and Key Model” regarding 

interaction between enzymes. He said that enzymes would completely ignore any non-

rigid molecules. He is considered as the first scientist to mention that a rigid 3D 

structure determines a protein’s function (Kunz, 2002; Lichtenthaler, 2002).  

The Chinese biochemist Hsien Wu is believed to be the first who introduced the 

concept of protein denaturation in 1931. He showed that denaturation was purely due to 

an unfolding process and not to any chemical alteration of the protein, and that a wrong 

fold could lead to a loss of protein’s function (Wahid, Ahmad, Nor, & Rashid, 2017; H. 

Wu, 1995). 

Myoglobin, an Oxygen-binding protein found mainly in muscles (Ordway, 

2004), was the first protein whose structure was revealed using X-ray crystallography in 

1958. John Kendrew, an English biochemist, and co-workers in Cavendish laboratory in 

Cambridge described that milestone in details in three publications in Nature (Kendrew 

et al., 1958, 1960; Perutz et al., 1960). Kendrew and Perutz won the Nobel Prize in 

Chemistry in 1962 for their notable work. 

Besides the above three findings, the next three subsections introduce four main 

milestones regarding protein folding, namely, Anfinsen’s theory, Levinthal’s paradox, 

the Ramachandran plot and Anfinsen’s dogma. 

2.3.1 Anfinsen’s Theory  

In 1961, Christian Anfinsen et al. proposed a theory concerning the native 

structure of proteins (Anfinsen et al., 1961). They stated that the correct conformation 

has the lowest potential energy among all possible structures. Although this theory has 

not been proved and seems to be contradicted by a few experimentally determined 

structures, it has been widely accepted. This is the basis of ab initio protein structure 

prediction which searches for the optimal solution using heuristics. 

2.3.2 Levinthal’s Paradox  

In 1969, Cyrus Levinthal raised the question as to why and how a sequence of 

amino acids can fold into its functional native structure despite that the number of 
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geometrically possible structures is extremely large (Levinthal, 1968). This 3-page 

article has been known as Levinthal’s Paradox (Zwanzig et al., 1992). He compares the 

quite large number of possible conformations with the folding time in nature which is 

measured using millisecond or even microsecond time scales. Even if a protein had the 

ability to fold into 100 billion different structures per second, hundreds of billion years 

would be required by a small protein to explore all possible conformations. 

2.3.3 Ramachandran Plot  

Another milestone was the Ramachandran plot that was first developed in 1963 

(Ramachandran, Ramakrishnan, & Sasisekharan, 1963) and further elaborated in 1968 

(Ramachandran & Sasisekharan, 1968). It reveals the possible local conformations in 

protein structures which lead to their secondary structure, i.e. the presence of α-helices 

and β-sheets. This is illustrated in Figure 2.8. The main importance of such a plot is 

narrowing the search space of the angles phi (φ) and psi (ψ) since some values are not 

possible due to steric collisions. Allowed ranges of values and their corresponding 

secondary structures are shown in Figure 2.9. 

 

Figure 2.8: Structure of a fragment of the human hepatocyte growth factor 

(pdb:3hms) and positions of each amino acids on the Ramachandran plot 

according to their main rotation angles, i.e. phi and psi in degrees. The yellow and 

pink colours represent beta sheet and alpha helix configurations, respectively.   
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Figure 2.9: Ramachandran plot showing the most favoured regions (dark green) 

and allowed regions but rare (light green) for the torsion angles in alpha helices 

and beta sheets. Regions in white are not possible due to stric collision. Taken from 

http://laborant.pl/index.php/mapa-ramachandrana-narzedzie-do-okreslania-

jakosci-struktur-peptydow-i-bialek) with permission. 

 

2.3.4 Anfinsen’s Dogma  

In 1973, Anfinsen demonstrated that the conformation of a protein can be 

inferred only from its sequence of amino acids (Anfinsen, 1973). He introduced his 

thermodynamic hypothesis, later known as Anfinsen’s dogma, which says that protein 

folding is a pure physical, not biological process, that depends only on the specific 

amino acid sequence and the surrounding solvent. This theory has been considered the 

main support and motive for advocates of ab initio protein structure prediction. 

2.4 Protein 3D Structure Determination  

A protein’s lack of structure, or mis-fold, may be harmful, since a protein’s 

biological function is highly related to its three-dimensional structure.  It has been 

shown that many serious diseases like Alzheimer’s, Parkinson’s, Creutzfeldt-Jakob 

disease, cystic fibrosis, and many cancers are linked to protein mis-folding (Dobson, 

2001; Prusiner, 1998; Thomas, Qu, & Pedersen, 1995), see Figure 2.10. Thus, 

determining or predicting the native structure of proteins may not only contribute to a 

better understanding of the biochemistry of diseases, but also have an invaluable 
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contribution to drug design. Consequently, predicting a final structure from a sequence 

of amino acids has been described as deciphering “the second half of the genetic code” 

(Kolata, 1986) and referred to the “holy grail of computational 

biochemistry”(Hansmann & Okamoto, 1999). This quest has attracted researchers from 

many disciplines including biology, biochemistry, biophysics and computer science. 

This section contains three subsections: Experimental techniques (section 2.4.1), 

protein 3D structure prediction (section 2.4.2) and evaluation metrics (section 2.4.3).  

The section on protein 3D structure prediction is particularly detailed since it is at the 

core of the research presented in this thesis.  

 

 

Figure 2.10: Structures of a normal prion protein (PrPc) and the corresponding 

disease-causing prion (PrPSc). The misfolded molecule is believed to be responsible 

for Creutzfeldt–Jakob  disease. (Retrieved 

from:http://www.cmpharm.ucsf.edu/cohen/media/pages/gallery.html). 

 

2.4.1 Experimental Techniques  

So far, the only trusted and formal way to determine a protein’s 3D structures is 

via experimental techniques, namely, X-Ray crystallography, Nuclear Magnetic 

Resonance (NMR) and Electron Microscopy (EM). Only structures resolved by those 

means can be deposited in the PDB. As shown in Table 2.2, it is clear that 

advancements in experimental techniques have led to a dramatic increase of the number 

of available structures during the last two decades when compared to the previous two. 

Moreover, those data extracted from the PDB show that X-ray crystallography is the 

most widely used method as it represents more than 89% of the protein database’s 

entries.  



24 

 

Electron microscopy, which is the least used experimental technique, has 

recently been gaining importance. Since 2017 till mid 2018, 862 strucutres were 

deposited using EM, which represent ~40% of the number deposited in the past two 

decades (from 1998 till 2018). Articles and reviews describing this approach to structure 

determination can be found in the following publications (Jonic & Vénien-Bryan, 2009; 

Murata & Wolf, 2018; Nannenga & Gonen, 2014; Saibil, 2000; Unwin & Henderson, 

1975). The next two sections describe concisely the two main techniques and their 

implications on the frequency of proteins deposited in the PDB. 

Table 2.2: Number of structures deposited in the PDB over the last 4 decades. 

Year 1978 1998 2018a 

Number of 

structures 

Total 42 8,607 141,415 

X-Ray Crystallography 42 7,190 126,588 

NMR 0 1,376 12,254 

Electron Microscopy 0 1 2,186 

a as of June 21, 2018 

2.4.1.1 X-Ray Crystallography  

 In 1958, X-ray crystallography succeeded in resolving the first 3D structure of a 

protein called Myoglobin (Kendrew et al., 1958). Before 1958, there had been many 

interesting studies, attempts and findings concerning the birth of X-ray crytallography 

starting from 1927 (Ott, 1927) up to 1954 (Woolfson, 1954); the complete history of 

that period can be found in a review (Hauptman, 2015). As mentioned in the previous 

section, this technique has benefited from a lot of research, advancements and 

improvements; more than 15 Nobel prizes have been awarded in related topics (Galli, 

2014). Accordingly, it has been the dominant experimental way to determine the spatial 

structure of proteins in the PDB. 

 This experimental technique can be divided into two main phases: (1) the first 

one is called crystallisation, which involves converting a solution of a given protein into 

a well-organised solid, known as crystal. It can be seen as a solid-liquid separation 

process, where proteins (or any other molecules) can cause an X-ray to diffract, (2) in 

the second phase X-rays are launched onto the molecule from different angles. The 

diffraction technique whose theory was pioneered by Bragg and Bragg (Bragg & Bragg, 
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1913), allows to eventually determine the coordinates of all atoms based on the 

scattering angles resulting from diffracted rays (Pechkova & Nicolini, 2003b; 

“Proteomics,” 2007). See Figure 2.11 for a simplified diagram of the process. Advanced 

technical details about X-ray crystallography are beyond the scope of this thesis and can 

found in many key publications (Ladd & Palmer, 2013; Pechkova & Nicolini, 2003a; 

Rondeau & Schreuder, 2015; Sherwood & Cooper, 2011; Y. Shi, 2014; Smyth & 

Martin, 2000a; Su et al., 2015). 

 

Figure 2.11: Simplified picturial description of the X-ray crystallography process 

to determine the spatial coordinates of proteins’ atoms. Taken from (J. M. Berg, 

Tymoczko, & Stryer, 2002). 

Despite the success this tecnique has gained, many challenges still hinder some 

experiments and therefore, their corresponding results’ accuracy. The first problem is 

related to the time, effort and even errors whenever it is applied to membrane proteins 

and protein complexes. The second one is the inability to crystallise the protein in the 

first place, which might be caused by several factors such as presence of some 

contaminants or the concentration of the protein (Smyth & Martin, 2000b). The third 

one is the likelihood of radiation damage due to the x-rays whenever the crystal are 

either not large enough or not well ordered (Bill et al., 2011; Nannenga & Gonen, 

2014).  

2.4.1.2 Nuclear Magnetic Resonance  

 Nuclear Magnetic Resonance (NMR) spectroscopy has the ability to determine 

the atomic structure of macromolecules and, consequently, the spatial coordinates of 

proteins, by relying on the magnetic properties of proteins’ nuclei. The sample protein 

should first be purified and dissolved in a watery environment. Afterwards, 

multidimensional nuclear magnetic resonance is performed thousands of times. Owing 

to the fact that each nucleus reacts differently in the varying magnetic field, the 
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structure of the protein can be inferred. Further technical details of this technology can 

be found in the following publications (Cavanagh, Fairbrother, Palmer III, Rance, & 

Skelton, 1996; Downing, 2004; Jahnke & Widmer, 2004; Montelione, Zheng, Huang, 

Gunsalus, & Szyperski, 2000; Rule & Hitchens, 2006).  

This technique has some limitations regarding determining alone the 3D 

structure of proteins (Rehm, Huber, & Holak, 2002); one of them is related to the 

weight of the molecules as this should not exceed a certain threshold for the sake of an 

experiment’s success (Pechkova & Nicolini, 2003b). Such issues explain the small 

percentage of the total contributions in the deposited structures in the PDB produced by 

NMR (around 9%). Nevertheless, NMR has made very important contributions to 

structural biochemistry, including secondary structure determination, the dynamics of 

proteins, the structure-function relationship, and most importantly, screening of protein 

samples to find out which ones are suitable for structure determination either by X-ray 

crystallography or NMR spectroscopy (Rehm et al., 2002; Renner & Holak, 2001; Rossi 

et al., 2010; Shuker, Hajduk, Meadows, & Fesik, 1996; Staunton, Owen, & Campbell, 

2003).  

2.5 Protein 3D Structure Prediction  

It is estimated that about 100,000 different proteins can be found in the human 

body (Dunker & Kriwacki, 2011). However, fewer than 4% of them have been 

deposited so far in the PDB. From a drug design perspective, determination of a 

protein’s native structure represents a crucial step, since this allows to gain important 

insights into molecular mechanisms involved in many diseases (Knowles, Vendruscolo, 

& Dobson, 2014; Ramirez-Alvarado et al., 2010). Since experimental techniques for 

protein structure determination, as mentioned in the previous section, are very 

expensive and time consuming and sometimes not possible, there is a great incentive in 

generating such knowledge via computational means. Therefore, Bioinformatics is 

usually considered as “the last chance” and probably “the only promising hope” to 

overcome such a dilemma.  

Whereas performing protein folding simulations conforming to Newton’s 

second law may appear as an attractive approach, it is only practical when applied to 

very small targets while using state-of-the-art supercomputers and grid computing 

(Baker, 2014), since even for short protein sequences, the search space is enormous and 

is computationally intractable (an NP-hard problem) (Zwanzig et al., 1992). The field of 
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protein structure prediction (PSP) aims at predicting computationally the three-

dimensional (3D) structure of proteins from their sequences of Amino Acids (AAs). 

This has been claimed to be one of the most complicated optimisation problems 

computer scientists have ever faced (Dill & MacCallum, 2012). 

2.5.1 Introduction  

The approaches used to predict the final 3D structure of a protein are usually 

classified into three categories: comparative, threading, and ab initio modelling. 

Whereas ab initio modelling is based solely on amino acid sequences, the first two 

classes rely on the PDB as they infer new structures from previous known structures. 

Consequently, these two approaches are also referred to as template-based modelling 

(H. Zhou & Zhou, 2005). The main difference between comparative modelling and 

threading is that the former requires the existence of the structure of a homologous 

sequence in the PDB. In other words, comparative modelling relies on sequence–

sequence alignment, while threading is based on a sequence–structure alignment. Both 

comparative and threading modelling methods are further discussed in sections 2.54.2 

and 2.54.3 respectively. 

In principle, ab initio approaches do not rely on previous known structures. 

They are based on thermodynamic rules expressing interactions amongst atoms and 

energy functions and, thus, the most stable structure is found by determining the 

minimum energy configuration through one of the Force Field (FF) energy models. For 

this reason, ab initio approaches can also be referred as physics-based methods (Dill et 

al., 2008), Free Modelling (FM) (Hagler, Huler, & Lifson, 1974), or de novo (Song et 

al., 2005). An FF model aims at evaluating structures using an energy-scoring function. 

This function usually quantifies chemical interactions and physical forces that occur 

within the conformation. Initially, when the PDB was relatively small and thus the 

chance of finding the sought structure was low, ab initio methods were seen as a “fall-

back position” when both comparative modelling and threading failed (Jones, 1997). 

However, this view is changing in light of the progress achieved by ab initio methods. 

Different ab initio approaches and related topics are described in greater detail in the 

“Computational Means” section. 

In order to evaluate and stimulate the development of computational methods 

that attempt to predict the native structure of a protein, a biannual community-wide 

experiment called Critical Assessment of protein Structure Prediction (CASP) was 
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created in 1994 by John Moult (Moult, Pedersen, Judson, & Fidelis, 1995). This event is 

now the benchmark for research groups that work in the field of PSP: Prediction 

methods are evaluated through blind tests of proteins structures. In the latest edition – 

CASP12 (2016) - more than 37,000 3D models were submitted in the category of 

Tertiary Structure (TS) predictions. In principle, targets are classified as either 

Template-Based Modelling (TBM) or Free-Modelling (FM). The former – known as 

“easy” targets – have homologs in the PDB whereas, the latter - known as “hard” targets 

- lack such templates, therefore, computational techniques should predict their structures 

“from scratch”, i.e. using ab initio techniques. The results of the competition are 

publicly available on the website of the community (predictioncenter.org) and published 

as a special issue of a journal (Moult, Fidelis, Kryshtafovych, Schwede, & Tramontano, 

2014). At the end of this chapter, a whole section (Section 2.4.4), is dedicated to 

CASP’s general rules, results, analyses and discussions about the latest competition. 

2.5.2 Computational and Biological Challenges  

Although more and more protein 3D structures have been resolved 

experimentally - in April 2018, the PDB contained 129,211 entries - and this number 

increases at a roughly linear pace, the gap between the number of available sequences 

and known structures continues to widen dramatically; see Table 2.3. Consequently, 

computational techniques remain essential to protein structure prediction. 
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Table 2.3: Comparison of Growth of the size of PDB and UniProtKB/TrEMBL over the past 10 
years. 

Year Number of Nonredundant Sequence 

Entries in UniProtKB/TrEMBLb 

Number of Known 

Structures Found in PDBa 

2018 c 111,425,245 129,211 

2017 87,291,332 126,659 

2016d 71,002,161 116,320 

2015 89,451,166 106,306 

2014 88,589,455 97,732  

2013 48,701,576 88,993 

2012 28,395,832 80,216 

2011 18,510,272  72,049 

2010  12,347,303  64,603 

2009  8,926,016  57,340 

2008  6,964,485  50,441 

2007 5,072,048 43,919 

 
a http://www.rcsb.org/stats/growth/protein  
b http://www.ebi.ac.uk/uniprot/TrEMBLstats/. 
c March 28, 2018: date of UniProtKB/TrEMBL latest release. 
d In 2016, a thorough review was made to remove “similar” entries. 

 

Despite the enormous advances that have taken place in the three types of 

computational approaches during the past two decades, they all suffer from 

inconsistency: although they may be successful at predicting some particular targets, 

they fail for others (Kmiecik et al., 2016; Moult et al., 2014). All the latest blind 

assessments - mainly CASP - of state-of-the-art PSP computational packages have 

shown that relying on such computerised tools instead of experimental means for 

depositing structures of proteins in the PDB is a somewhat “hopeless goal” (Dill & 

MacCallum, 2012; Kryshtafovych, Monastyrskyy, & Fidelis, 2016). For instance, 

reliability of predictions for large- and medium-size proteins (i.e. with 300+ residues) 

tend to be far from acceptable levels. Moreover, models whose accuracy can be 

considered as equivalent to experimental techniques are still limited to template-based 

modelling associated with very high sequence identity (Kryshtafovych et al., 2016). 
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Furthermore, even in the latter “easy” cases where extremely high scores were 

generated by trusted sequence similarity tools such as PSI-BLAST (Altschul et al., 

1997) and HHsearch (Söding, Biegert, & Lupas, 2005), exceptions have been recorded 

(Alexander, He, Chen, Orban, & Bryan, 2009; Yanan He, Chen, Alexander, Bryan, & 

Orban, 2008; Jones et al., 1996). Some of those exceptions were found as a 

consequence of a challenge known as Paracelsus challenge (G. D. Rose & Creamer, 

1994). Authors had launched a competition for scientists to find two different proteins 

with high sequence similarity, but having different architecture/fold/structure. 

Contributors’ findings were probably beyond Rose and Creamer’s expectations 

especially when Bryan and co-workers designed a protein resulting from a single amino 

acid mutation which displayed a totally different fold from the initial protein (Alexander 

et al., 2009).  

Ab initio approaches have been always associated with a wide range of searching 

and sampling techniques such as molecular dynamics (McCammon, Gelin, & Karplus, 

1977), Monte Carlo (Hansmann & Okamoto, 1999; Metropolis, Rosenbluth, 

Rosenbluth, Teller, & Teller, 1953), simulated annealing (Kirkpatrick, Gelatt, & 

Vecchi, 1983) and genetic algorithms (Holland & H., 1992). However, since all such 

similar ways are classified under the category of Explore-and-Exploit (Christen & Van 

Gunsteren, 2008; Perez, Morrone, & Dill, 2017), they all suffer from the associated 

trade-off (Berger-Tal, Nathan, Meron, Saltz, & Houston, 2014; Zimmerman & 

Bowman, 2015). Such a trade-off, as well as the tremendous size of the search space has 

caused such algorithms to get stuck at local minima. A pictorial folding funnel by Ken 

Dill revealed two decades ago the difference between the ideal and the real funnels (Dill 

& Chan, 1997); see Figure 2.12. It is worth noting that Dill himself published a recent 

paper describing a Bayesian method called MELD that aims to accelerate molecular 

dynamics simulations by using external experimental data as attempt to solve the 

exploitation/exploration dilemma (Perez et al., 2017).  

Most current PSP methods, regardless of their category, comprise a final phase 

called “refinement”, where structures are subject to fine tuning. Such a process is 

supposed to increase the accuracy of the predicted conformations; structure refinement 

has unexpectedly been found to be a task as complicated as structure prediction since 

the results of refinement stage have often been disappointing (Khoury et al., 2014; 

Maccallum et al., 2011; Modi & Dunbrack, 2016; Nugent, Cozzetto, & Jones, 2014). 
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Figure 2.12: Ideal versus real funnel showing the energy landscape where path(s) 

to reach the native state face too many local minima. Taken from (Dill & Chan, 

1997). 

 

Since current computational tools often generate thousands or even tens of 

thousands of candidate structures, an attractive compromise would be to, at least, be 

able to assess a priori the quality of generated models, i.e. detect the conformation 

which is the closest to the native structure among those candidate conformations. As a 

consequence, the development of Quality Assessment (QA) programs (Elofsson et al., 

2017; Kalman & Ben-Tal, 2010; Konopka, Nebel, & Kotulska, 2012) has become an 

important field of research. Although they are quite accurate at ranking a set of 

alternative models according to their accuracy, their ability to evaluate the quality of a 

single model is still limited (R. Cao & Cheng, 2016; Kryshtafovych, Fidelis, & 

Tramontano, 2011).  

Besides the computational issues stated above, it is important to realize that even if 

they were solved, PSP would remain a challenge for many classes of proteins. Indeed, 

nature has evolved proteins whose folding includes additional biological complexities 

which are rarely considered by any existing computational method. Here we will 

discuss four of these classes: membrane proteins, proteins whose folding is chaperone-

assisted, proteins with more than one stable structure, and intrinsically unstructured 

proteins. 

While PSP methodologies generally target proteins located within the cell, 

membrane proteins are located in the membrane of the cell, which presents a very 

different chemical environment. Therefore, membrane proteins, except for some 

peripheral enzymes, are not water soluble and their environment is heterogeneous and 

complicated, see Figure 2.13b (Cross, Sharma, Yi, & Zhou, 2011). These proteins are 
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particularly important because not only do they represent around 30% of proteins found 

in eukaryotic cells (Hopkins & Groom, 2002) but also they are the target of more than 

50% of current drugs (Ahmad et al., 2010; Venko, Choudhury, & Novič, 2017; White, 

2009). Consequently, a deep understanding of their structure and function has been 

assessed as invaluable for the world of drug design. However, the fact they are not 

water soluble represents a serious obstacle to determine their structures experimentally 

(Cross et al., 2011; C. Zhou, Zheng, & Zhou, 2004). As a consequence, up to April 

2018, only 3000 structures have been recorded by MemProtMD (Thomas D. Newport, 

Mark S.P. Sansom and Phillip J. Stansfeld, found on 

http://memprotmd.bioch.ox.ac.uk.), which represents only 2.27% of the total number of 

proteins found in the PDB. The small number of high-resolution templates available so 

far has limited advances in computational approaches, especially comparative modelling 

techniques which rely on the availability of templates (Forrest, Tang, & Honig, 2006). 

As a consequence, prediction of membrane proteins is currently excluded from CASP. 

Attempts have been made to predict these proteins using ab initio methods. However, 

this means that, besides the AA sequence, a detailed structural and thermodynamic 

knowledge of the membrane environment is also required (Pollack, Scheiber, Pfaller, & 

Schramek, 1997). Ab initio methods with membrane database information, such as 

ROSETTA (Barth, Schonbrun, & Baker, 2007; Barth, Wallner, & Baker, 2009; Yarov-

Yarovoy, Schonbrun, & Baker, 2006) have been proposed but with limited success. The 

most recent update was published under the name of RosettaMP (Alford et al., 2015). 

Recently, a research group in Germany combined CS-Rosetta – the special version of 

Rosetta that is fed with chemical shifts – to predict alpha-helical membrane proteins 

aided by external information such as chemical shifts and NOE distance restraints and 

RosettaMP. Although their dataset comprised only 5 targets, their approached showed 

quite promising results. Their results have demonstrated, not only how complicated it is 

to apply de novo protein structure prediction to membrane proteins, but also that 

additional data are needed to derive decent levels of accuracy (Reichel et al., 2017). One 

would conclude that the main limitations of the current state-of-the-art protein structure 

prediction tools lies in handling such category of targets.  

Examples of notable attempts to develop ad hoc computational tools to predict the 

topology of membrane proteins are (1) TopPred (von Heijne, 1992) followed by an 

improved version called TopPred II (Claros & Heijne, 1994). (2) TopCons  (Bernsel, 

Viklund, Hennerdal, & Elofsson, 2009; Tsirigos, Peters, Shu, Käll, & Elofsson, 2015). 

(3) TMHMM (Krogh, Larsson, Von Heijne, & Sonnhammer, 2001). (4) SCAMPI 
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(Bernsel et al., 2008). (5) MEMSAT developed by David Jones and co-workers at UCL 

(Jones, 2007; Jones, Taylor, & Thornton, 1994). (6) HMMTOP (Tusnády & Simon, 

2001). (7) Phobius (Käll, Krogh, & Sonnhammer, 2007).  

Some researchers developed algorithms that try to predict the type and/or location 

of such proteins (K.-C. Chou & Cai, 2005; K.-C. Chou & Elrod, 1999). 

 

 

 

Figure 2.13: (a) The 3D structure of a protein called calcineurin. The discrete part 

shows a 95-residue disordered region. Taken from (Dunker et al., 2001). (b) The 

bilayer and surrounding solvent region of membrane proteins is divided into four 

layers: Water-exposed, interface, outer hydrophobic, and inner hydrophobic. 

Taken from (Yarov-Yarovoy et al., 2006). 

In addition to membrane proteins which fold in a non-aqueous environment, some 

proteins are not able to fold correctly on their own. They require the assistance of a 

specific type of proteins, called chaperones, to conform to their proper 3D structures 

(Bukau, Weissman, & Horwich, 2006) or to prevent them from aggregating (Hartl & 

Hayer-Hartl, 2002). Those molecular chaperones can distinguish between folded and 

unfolded proteins by their ability to recognize hydrophobic AAs in the unfolded forms 

(Engin & Hotamisligil, 2010). Since the role of chaperones is not well understood 

biologically and they create folding environments which are several orders of 

magnitude more complex than those currently modelled (see Figure 2.14), existing PSP 

methods do not consider chaperone assisted folding and are unlikely to do it for the 

foreseeable future. 
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Figure 2.14: Model of chaperone-assisted folding. Taken from (Young, Agashe, 

Siegers, & Hartl, 2004). 

 

Whereas PSP methods attempt to find the structure of a protein, it has been shown 

that some proteins can have more than one partially folded intermediate state that may 

play a critical biological role (Laidig & Daggett, 1996; Pande & Rokhsar, 1998). The 

molten globule (MG) is a distinct intermediate but not very thermodynamically stable 

conformational state, that takes place between the unfolded state (U) and the native one 

(N) for most proteins (Bhattacharyya & Varadarajan, 2013); see Figure 2.15 (Ptitsyn, 

1995). An MG is characterized by its compact size with the presence of significant 

amounts of most secondary structures, however with the absence of a specific tertiary 

structure due to the tight packing of side chains and high mobility of the loops (Regan, 

2003). A popular study suggests that MG can be seen as a third phase (Pande & 

Rokhsar, 1998) where the N/U/MG diagram of protein phases is similar to the 

solid/vapor/liquid diagram of fluid phases. In other words, each state has its own 

thermodynamic phase which corresponds to a local minimum of the free energy. MG 

along with the jagged surface of the energy landscape represents a real obstacle, 

especially for heuristic algorithms in ab initio methods. MGs are currently not 

addressed by PSP.  
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Figure 2.15: (Left) The free energy of the MG state is lower than that of the 

unfolded state but higher than that of the native one. (Middle and right) Native 

and molten globule structures of cytochrome b562. Taken from (Laidig & Daggett, 

1996). 

 

Finally, the intrinsically unstructured proteins (IUPs), also known as natively 

unfolded or intrinsically disordered proteins (IDPs), may be the most interesting type of 

proteins in terms of breaching the standard wisdom about proteins (Dunker et al., 2013; 

Dyson & Wright, 2005; Seshadri, Salma, & Chhatbar, 2009). They simply lack, 

partially or completely, stable tertiary structure but are able to perform their functions in 

the cell (see Figure 2.13a). Such a finding was first seen in 1996 (Kriwacki, Hengst, 

Tennant, Reed, & Wright, 1996) and has been considered so far the first experimental 

evidence that the lack of structure does not necessarily make some kind of protein 

harmful or even useless, and thus these are exceptions to the conventional rules of 

proteins (Dunker & Kriwacki, 2011). It has been suggested that 32% of all human 

proteins could have some unstructured regions in which the lock-and-key concept 

cannot be applied (Y. Cheng, LeGall, Oldfield, Dunker, & Uversky, 2006). To date, 

around 803 partially or totally unstructured proteins have been recorded in the Database 

of Protein Disorder (http://www.disprot.org) (Piovesan et al., 2017; Sickmeier et al., 

2007). Unstructured parts of proteins are indeed a problem with respect to predicting the 

structure of such molecules; however, they play a critical role in many biological 

functions. For this reason, the CASP community has created a special category since 

CASP5 to predict the disordered regions in proteins (Melamud & Moult, 2003). Since 

then, this category has been gaining importance; more than 94 targets were released and 

28 groups submitted their predictions in CASP10 (Monastyrskyy, Kryshtafovych, 

Moult, Tramontano, & Fidelis, 2014). 

 

http://www.disprot.org/


36 

 

2.5.3 Evaluation Metrics  

The standard score used to evaluate the similarity of two protein structures is the 

Root Mean Square Deviation (RMSD) (Coutsias, Seok, & Dill, 2004; Kabsch, 1976, 

1978). Although typically, RMSD calculates the minimum average distance of each pair 

of atoms between the two superimposed conformations, it can be calculated by taking 

into account Cα atoms only, denoted as Cα-RMSD. The weakness of RMSD, in 

addition to its correlation with the length of proteins, is that any deviation of a fragment 

would dramatically change the score even when the remaining regions show a perfect 

superimposition. More extensions have appeared, such as weighted RMSD (wRMSD) 

to focus on specific sets of atoms (Kufareva & Abagyan, 2012) and distance variant of 

RMSD, RMSDd  which can be considered a more “global” metric where each protein is 

represented by its internal distance matrix (Liebert

The global distance test-total score (GDT_TS) was introduced as a part of the 

LGA (Local Global Alignment) method and since then it has been widely accepted in 

the community mainly due the fact it is less sensitive to outliers than the RMSD (Zemla, 

2003). GDT_TS is the formal criterion CASP uses in order to qualify and assess 

Tertiary Structure (TS) prediction. It is defined as the average of the percentage of 

residues that are less than 1, 2, 4, and 8 angstroms. Besides GDT_TS, GDT_HA (High 

Accuracy) is sometimes used for homology modelling results where high quality 

superimpositions are expected. It is defined as the average of the percentage of residues 

that superimpose to within 0.5, 1, 2, and 4 angstroms.  

Whilst the GDT_TS overcomes the problem of RMSD in terms of the effects of 

outliers, the Template Modelling Score (TM-score) (Y. Zhang & Skolnick, 2004b) 

overcomes the dependence of RMSD on the length of the proteins being aligned. TM-

score has become as popular as GDT_TS since it focuses on fold similarities rather than 

local structural alignments by taking into account all atom pairs rather than those that 

are below a certain distance cut-off. 

MaxSub was introduced by Siew and co-workers by maximising the regions that 

are close within a standard threshold of 3.5 Å; that is, to detect the MAXimum 

SUBstructure (Siew, Elofsson, Rychlewski, & Fischer, 2000). Other structural 

alignment metrics include: FlexE (Perez, Yang, Bahar, Dill, & MacCallum, 2012), 

Contact Area Distance Score (CAD-score) (Olechnovič, Kulberkyte, & Venclovas, 

2013) and Local Distance Difference Test (LDDT) (Mariani, Biasini, Barbato, & 
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Schwede, 2013). Some structural similarity metrics are dedicated to fragments rather 

than whole conformations such as the Amplitude Spectrum Distance (ASD) (Galiez & 

Coste, 2015), and Binet-Cauchy (BC) score (Guyon & Tufféry, 2014). The main metric 

used to assess structure prediction during the course of this thesis is the global distance 

test-total score (GDT_TS). Metrics were calculated using MaxCluster, a tool for protein 

structure comparison and clustering (Siew et al., 2000). 

2.5.4 Computational Methods  

As discussed earlier, experimental techniques are still time and cost consuming; 

consequently, computational techniques are essential to produce proposed 

conformations of protein targets. While excellent results can be produced in silico when 

homologous structures are available, despite advancements in the field of 

Bioinformatics, structure predictions remain far from being accurate and reliable when 

attempting to identify a protein’s native conformation from its sequence alone (Dill & 

MacCallum, 2012); See Table 2.4.  

Ab initio methods (also known as de novo, template-free, or physics-based 

modelling) mimic Anfinsen’s thermodynamic principle by seeking the lowest possible 

energy conformation that a sequence can adopt. Initially, physics-based methods were 

proposed, sampling the conformation space until reaching that minimal energy. 

Although successful predictions have been achieved using Monte Carlo methods and 

molecular dynamics simulations (Jooyoung Lee et al., 2000; Lindorff-Larsen, Piana, 

Dror, & Shaw, 2011; Shaw et al., 2010), their extensive computational requirements 

have limited their application to small proteins. Usage of approximations and heuristics 

has been a strategy to reduce computational costs; however, this has led to the 

production of less accurate models.  

The classification of PSP approaches into three categories, that is, comparative 

modelling, threading, and ab initio methods, is becoming more and more blurred 

especially for those techniques that are classified under the ab initio category. Some 

scientists believe that any usage of information about known structures may breach the 

“classical” rule of ab initio: the sequence of amino acids should be the sole source of 

data. For example, although some methods don’t explicitly employ any template 

structures or even substructures from the PDB, they use knowledge extracted from 

known secondary, super-secondary and tertiary structures, for instance to predict the 

secondary structures or derive some terms in the energy functions. However, the big and 
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endless debate has focused on hybrid and fragment-based protein structure prediction 

pipelines. This arose for two main historical reasons: (1) when a fragment-based method 

was first introduced in CASP in 1996, it was assessed to be ab initio since it was 

applied in the discovery of new folds (Jones, 1997). For this reason, the “New Fold” 

term replaced “ab initio” in CASP4 as an attempt to avoid any confusion and include 

techniques that, to some extent, use the PDB (Klepeis & Floudas, 2003a; Moult, Fidelis, 

Zemla, & Hubbard, 2001); (2) Some early attempts in this category used relatively short 

fragments (Bowie & Eisenberg, 1994; Rohl, Strauss, Misura, & Baker, 2004). 

Consequently, the term “coarse grained ab initio protein structure predictors” was 

accepted based on the perspective that the unit of construction was a set of amino acids 

rather than a single amino acid (Abbass & Nebel, 2015, 2017). However, the launch of 

similar pipelines that involve longer fragments such as ROBETTA (Chivian & Baker, 

2004), I-TASSER (Pandit, Zhang, & Skolnick, 2006) and QUARK (Xu & Zhang, 2012) 

has widened the gap between fragment-based and ab initio modelling. Although global 

template information is not used, these cannot be considered as a direct implementation 

of Anfinsen’s hypothesis since they do not use the protein sequence as sole input. In the 

literature, there have been different categorisations to differentiate between fragment-

based and biophysics-based methods. They have been called, respectively, ab initio 

approaches relying on sequence and structural databases and true ab initio approaches 

(Klepeis & Floudas, 2003a), or first-principles methods that employ database 

information and first principles methods without database information  (Floudas, 2007), 

or physics-based & knowledge-based or simply de novo or ab initio (Punta et al., 2007), 

and ab initio with database information and pure ab initio methods (Abbass et al., 

2013). Since fragment-based approaches, such as Rosetta, are at the core of this thesis, 

to prevent any confusion, the term “Fragment-based Approaches” will be used in this 

chapter to describe all such modelling techniques regardless of the size of the fragments. 

They will be reviewed in a separate sub-section (Section 2.5.4.10) rather than within the 

“Ab initio Modelling” section. 

The rest of this section will be as follows: Section 2.5.4.1 provides an overview of 

the early and popular computational techniques like the “Lattice Model” and “LINUS”. 

“Comparative Modelling” and “Fold Recognition” will be covered subsequently in 

Sections 2.5.4.2 and 2.5.4.3. “Ab initio Modelling” in Section 2.5.4.4 covers all 

important fundamentals of this category ranging from Molecular Dynamics, Force 

Fields, Monte Carlo Simulation and so on. The last Section (2.5.4.5) is dedicated to 

Fragment-based approaches along with their successful pipelines. 



39 

 

2.5.4.1 Early Techniques  

2.5.4.1.1 Lattice Model 

The lattice model is considered as one of the earliest techniques used for protein 

modelling and protein structure prediction; it was first introduced by Ken Dill in 1985 

(Dill, 1985; Lau & Dill, 1989) and has been under study since then (Himu, Jahangir, 

Ridoy, Dhar, & Shatabda, 2015; Jana, Sil, & Das, 2017; Maher, Albrecht, Loomes, 

Yang, & Steinhöfel, 2014). Such a model is another way to simplify proteins’ 

representation: atoms are represented by dots/points either in two (2D) or three 

dimensions (3D) and their motions are simulated using optimization algorithms. 

Although such a model offers low accuracy, it has succeeded in revealing some modest 

properties and features contributing to a better understanding of protein folding 

problems (Pande & Rokhsar, 1999) and the computation of minimum energy 

conformations (Hart & Newman, 2006).  

A popular lattice model is the hydrophobic-hydrophilic lattice model, often 

abbreviated as the HP model. As the name implies, such model primarily focuses on 

hydrophobic and hydrophilic interactions which constitute the main source for 

computing minimum energy. In this model, each amino acid is considered to be either 

hydrophobic, i.e. non-polar (H), or hydrophilic, i.e. polar (P). The energy of a specific 

conformation can be evaluated as the number of HH contacts, however, excluding 

contacts between adjacent amino acids, if any. A degree of hydrophobicity was 

introduced in the HP model to improve accuracy (Agarwala et al., 1997). The most 

dominant lattice models for 2D and 3D are respectively the square and simple cubic 

lattices. However, other lattices have been studied as well such as the triangular lattice 

(Agarwala et al., 1997), the face centred cubic (FCC) (Agarwala et al., 1997; Hart & 

Newman, 1997), the cubic lattice with diagonal edges on each face (Heun, 1999), and 

other crystallographic lattices (Hart & Istrail, 2000). Popular lattice models are shown 

in Figure 2.16. 
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Figure 2.16: Popular 2D and 3D lattice models. (a) Simple cubic, (b) diamond, (c) 

cubic with planar diagonals, (d) hexagonal, (e) triangular, and (f) face-centred-

cubic. Taken from (Hart & Newman, 2006). 

In two-dimension HP model, each amino acid is labelled either as hydrophobic 

or hydrophilic on a 2D grid. The Best model is defined as having the highest 

hydrophobic pair interactions and thus the lowest energy, see Figure 2.17.  

 
Figure 2.17: An example of a 2D square lattice. Circles represent hydrophilic 

residues: filled circles represent hydrophobic residues, and red dashed lines 

represent an HH contact. This lattice is the optimal conformation (4 contacts) of 

the sequence PPHPHPPPPHPHHPHP. Taken from (Hart & Newman, 2006). 

 

Although HP lattice models are simple and, as a consequence, save 

computations associated with finding the minimum energy conformation, PSP using 

various lattice models were shown to be NP-hard more than two decades ago: this 

includes the cubic (Fraenkel, 1993; Paterson & Przytycka, 1996), diamond (Ngo & 

Marks, 1992), and cubic with planar diagonals (Unger & Moult, 1993a) lattices. 

Accordingly, many approximation and optimisation algorithms were used such as  

Monte Carlo simulation (Kolinski & Skolnick, 2004; Thachuk, Shmygelska, & Hoos, 

2007), simulated annealing (Teso, Di Risio, Passerini, & Battiti, 2010), tabu search (T. 

Jiang, Cui, Shi, & Ma, 2003; Lesh, Mitzenmacher, & Whitesides, 2003), genetic 

algorithms (GA) (König & Dandekar, 2001; Unger & Moult, 1993b), and ant colony 

optimization (ACO) (Shmygelska & Hoos, 2003, 2005). 
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In HP, when side chains are considered, they are modelled using three different 

symbols: backbone, hydrophobic side chain, and hydrophilic side chain. Only contacts 

between hydrophobic side chains are taken into consideration when calculating the 

energy of a specific conformation. (Bromberg & Dill, 1994).  

Similar to the HP models, off-lattice models represent proteins’ conformations 

as a set of tangent spheres (in case of 3D) or tangent circles (in case of 2D) of equal 

radius. Consequently, an HH contact is counted when two circles/spheres representing 

hydrophobic amino acid/side chain are tangent. A picture showing a representation of a 

2D off-lattice HP model with side chains can be seen in Figure 2.18. As in 2D a circle 

may have at most 6 different tangent circles, a circle that corresponds to a hydrophobic 

amino acid may be tangent to at most 4 other hydrophobic amino acids (Hart & 

Newman, 2006). As shown in Figure 2.18, adjacent amino acids are taken into 

consideration only when there is a contact interface amongst them. In 3D, each sphere 

may have at most 12 different tangent spheres; therefore, a sphere representing a 

hydrophobic amino acid may be tangent to at most 10 other hydrophobic amino acids 

and a sphere representing a hydrophobic side chain may be tangent to 11.  

 

 

 

 

 

 

Figure 2.18: (a) The standard 2D HP square lattice model. (b) HP side chains 

lattice model. (c) Off-Lattice HP model (with side chains). White circles represent 

hydrophilic amino acid/side chain, circles filled with black represent hydrophobic 

amino acid/side chain, and circles filled with grey represent backbone element. 

Taken from (Hart & Newman, 2006). 

In an alternative model, the accessible surface area lattice model, the energy for 

a specific conformation is calculated by evaluating hydrophobic burial instead of HH 

contacts. Accessible surface area (ASA) aims to quantify the area of the surface of 

protein that is in contact with the solvent. As a concept, quantifying hydrophobic burial 

via solvent accessible area was first studied by Lee and Richards (B. T. Lee & Richards, 

1971). Similar to most HP lattice models, amino acids/side chains are represented by 

either an H or P. Many potential criteria were introduced to calculate the ASA for a 

specific protein’s conformation and improve it. They include (1) minimizing the 
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number of empty lattice points that are in contact with all hydrophobic amino acids and, 

(2) maximizing the number of covered hydrophobic amino acids (Hart & Istrail, 2000).  

2.5.4.1.2 Folding by Hierarchic Condensation  

In 1995, Rose and Srinivasan introduced an ab initio Monte Carlo–based 

method called LINUS which stands for Local Independently Nucleated Units of 

Structure (Srinivasan, Fleming, & Rose, 2004; Srinivasan & Rose, 1995). LINUS relies 

on a hierarchical procedure that simulates the folding process as discrete hierarchical 

phases. The rationale behind this approach comes from the decomposition of globular 

protein structures into secondary structures, super secondary structures and domains 

(Crippen, 1978; G. D. Rose, 1979). The term “folding by hierarchic condensation” was 

first introduced by Rose himself in 1979. He had proposed that close chain sites interact 

to form small structures, which in turn interact iteratively to form larger structures. 

The essence of the hierarchical approach lies in constraining some favourable 

conformations found in previous stages, so that good structures are accumulated. The 

algorithm works as follows: it starts from an initial extended conformation where both 

the ϕ and ψ angles are set to 120◦ with a small interval of allowed interactions. After 

each iteration, this interval increases and a new conformation is chosen using the 

Metropolis criterion (Metropolis et al., 1953). Each iteration involves the random 

selection of three residues whose torsion angle values are amended, whereas bond 

angles and length are kept constant to “ideal” values (Engh & Huber, 1991). At each 

stage, a simplified energy function is used to assess the most favourable conformation 

amongst a set of candidates. The function only considers three main types of 

interactions: steric overlap, hydrogen bonds, and polarity, that is, hydrophobic burial. A 

protein’s geometric representation in LINUS can be seen as “medium grain”, where all 

non-hydrogen atoms are taken into account. 

In 2000, LINUS participated in CASP4 when “new fold” approaches were 

considered to be in their infancy (Srinivasan & Rose, 2002). Although their overall 

RMSDs ranged from 8.7 to 16.2 Å, some fragments of around 50 AAs displayed 

RMSDs of around 4Å, which highlighted the strength of the method. Furthermore, from 

a secondary-structure prediction perspective, α-helix predictions were evaluated as one 

of the best among all competitors. Unfortunately, LINUS’s latest contribution to the 

competition was in 2002 and no further publications/improvements have been released 

since 2004.  



43 

 

2.5.4.2 Comparative Modelling  

The idea of comparative modelling, also known as homology or sequence 

alignment, is quite simple and based on the old principle saying that sequence similarity 

leads to structure similarity (Browne et al., 1969; Chothia & Lesk, 1986; Evers & 

Klebe, 2004). In other words, homology methods compare the amino acid sequence of 

the protein of interest with the sequences of known proteins stored in the PDB. The first 

successful structure revealed using comparative modelling was lysozyme in 1969 

(Browne et al., 1969). Despite all advances in the remaining approaches, homology is 

still the best one in terms of accuracy when appropriate conditions are met. This success 

is due to two facts: first, the database of proteins of known structure is expanding and 

thus the probability to find homologues increases, and second, small changes in the 

sequence often also yield just small changes in the structure (Martí-Renom et al., 2000). 

For instance, if identity exceeds 50%, the results of comparative modelling are usually 

expected to be of high quality. Moreover, for a 30-50% sequence identity, predictions 

are shown to have more than 80% of the Cα- atoms within 3.5 Å of their true positions. 

It is worth noting that even for sequence similarity around 30%, some excellent results 

have been recorded (Rost, 1999). For less than 30% sequence identity, results will 

probably display major errors (Kopp & Schwede, 2004; Vitkup, Melamud, Moult, & 

Sander, 2001).  

Comparative modelling approaches, at a high level, are in general composed of 

two phases (Floudas, Fung, McAllister, Mönnigmann, & Rajgaria, 2006): the first one 

involves selection of the potential templates from the database based on their alignment 

to the target sequence, and the second one refines side chain geometry and regions of 

low sequence identity. The first step, often called template identification, is achieved 

using many algorithms and packages, namely, pair-wise sequence alignment methods 

like basic local alignment search tool (BLAST) (Altschul, 1990), multiple-sequence 

alignment methods such as position specific iterative basic local alignment search tool 

(PSI-BLAST) (Altschul et al., 1997), profile based approaches (Gribskov, McLachlan, 

& Eisenberg, 1987; Marti-Renom, Madhusudhan, & Sali, 2004) and Hidden Markov 

Models (HMM) (K Karplus, Barrett, & Hughey, 1998; Kevin Karplus, 2009). Use of 

HMM for profile-based search is considered one of the most important advances that 

have taken place in sequence comparison techniques (Deng & Cheng, 2014; Johnson, 

Eddy, & Portugaly, 2010; Remmert, Biegert, Hauser, & Soding, 2012). For easy targets, 
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the refinement phase is less important and the difference between average and best 

predictions is not critical (Tramontano & Morea, 2003).  

At a lower level, homology can be seen as either a four-phase (Martí-Renom et 

al., 2000) or a five-phase procedure (Floudas, 2007). The latter, described by Floudas, 

can be summarized by the following five points: (a) selection of potential sequences in 

PDB, (b) an alignment procedure, (c) modelling regions with high accuracy, (d) 

modelling regions with low accuracy including side chains and loops and (e) refining 

and assessing the accuracy of the generated model. Examples of popular computer 

software that implement different homology modelling methods are 3D-JIGSAW 

(Bates, Kelley, MacCallum, & Sternberg, 2001), SWISS-MODEL (Biasini et al., 2014; 

Schwede, Kopp, Guex, & Peitsch, 2003), MODELLER (Sali & Blundell, 1993; 

Benjamin Webb & Sali, 2016), NEST (Petrey et al., 2003), OPLS (Jacobson et al., 

2004), SABERTOOTH (Teichert, Minning, Bastolla, & Porto, 2010), and FUGUE (J. 

Shi, Blundell, & Mizuguchi, 2001). A comprehensive comparative study of several 

sequence alignment tools is available (Yan, Xu, Yang, Walker, & Zhang, 2013).  

2.5.4.3 Fold Recognition  

Fold recognition or threading can be seen as a more general but more 

complicated approach than comparative modelling in protein structure prediction. In 

practice, fold recognition is applied when comparative modelling fails. In other words, 

no homologous template is found in the database. The motive behind using fold 

recognition techniques comes from the observation that the number of structures is 

much smaller than the number of sequences, that is, the space of different folds is much 

smaller than the space of different sequences (Chothia, 1992; Govindarajan, 

Recabarren, & Goldstein, 1999; Z X Wang, 1998; Zhi Xin Wang, 1996; C. T. Zhang, 

1997; Chao Zhang & DeLisi, 1998). That observation is based also on the fact that 

different sequences may share the same structure (Sippl & Flöckner, 1996). The set of 

different folds is built applying clustering techniques to the proteins of known structure 

and then labelled into families (Andreeva, Howorth, Chothia, Kulesha, & Murzin, 2014; 

Berman et al., 2000; Sillitoe et al., 2015).  The last point is very important since it is 

based on an investigation over the new protein structures being deposited in the PDB: 

they could all be classified in one of the current set of folds determined by structural 

classification databases such as SCOP (Andreeva et al., 2008) and CATH (Sillitoe et al., 

2015) (SCOP and CATH will be revisited in detail in Chapter 4). 
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Threading methods, which are computationally expensive, are often referred to 

sequence-structure alignment since they try to fit the target sequence to a known 

structure using statistical knowledge. Simply, they work by placing an amino acid from 

the target sequence into a known structure and try to evaluate its “fitness”.  In this 

regard, advanced sequence comparison approaches have been used such as Hidden 

Markov Models (Kevin Karplus et al., 1999) and PSI-BLAST searches (Altschul et al., 

1997) – the same methods used in homology techniques – however, to detect remote 

homologues. Although there is no specific “threshold” to consider to use threading 

instead of homology modelling which makes the decision to move from the former to 

the latter methods somewhat blurred (Floudas et al., 2006), a 30% sequence similarity is 

typically seen as an approximate boundary between homologues and remote 

homologues. Under that threshold, proteins are said to be “in the twilight-zones” and 

building an accurate structure is quite challenging (Khor, Tye, Lim, & Choong, 2015; 

Mihăşan, 2010). The main challenge of threading is gaining the ability to find suitable 

protein templates; profile-profile alignment techniques have been proved to be the best 

choice due to their strength to detect very weak homologues (Khor et al., 2015). A 

recent review shows that a combination of several matches is needed to build a 

relatively successful scoring function, though accurate results are not guaranteed (Lam 

et al., 2017). An additional challenge comes from the fact that, even when threading 

succeeds in finding a suitable template, it may not cover the whole target. Regions that 

are missing from the template are typically built using another threading “process” or 

even ab initio modelling. Consequently, an assembly methodology is needed.  

Another set of techniques that relies on secondary structure prediction has also 

been used in threading. Klepeis and Floudas showed that there are cases where 

secondary structure similarity might reach 80% whilst their corresponding sequence 

similarity does not exceed 10% (Klepeis & Floudas, 2003b). Those results have given 

more motivation to adopting secondary structure prediction results besides the score of 

the fitness of a particular known structure relative to the sequence in question 

(Przybylski & Rost, 2004).  However, global optimal protein threading was shown to be 

an NP-complete problem (Lathrop, 1994). For this reason, many threading algorithms 

discard residue pair-wise interaction whenever the fitness score is calculated in order to 

decrease the amount of computation (Bates et al., 2001).  
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2.5.4.4 Ab initio Modelling  

Ab initio approaches are motivated by three important points. First, they are a 

direct implementation of Anfinsen’s thermodynamics hypothesis since they consider the 

protein sequence the sole source and they search for the minimum free energy of the 

protein in its environment. Second, whenever comparative and threading modelling fail, 

that is, homologues and remote homologues were not detected, only an ab initio method 

can, in principle, derive the native structure. Third, these methods, if the natural folding 

trajectory is followed, give researchers some insights into the folding mechanisms and 

pathways that are essential to biochemists.  

Since some ab initio methods attempt to replicate in silico the folding process, 

quantum mechanics should be used to model and estimate the interactions that take 

place among atoms. Currently, despite the availability of high-performance computing 

facilities, the computational complexity is such that no comprehensive protein structure 

prediction systems which are based on quantum mechanics have been recorded. Instead, 

ab initio methods rely on force fields (FF) or energy functions which attempt to express 

a variety of atomic interactions such as van der Waals, torsion angles, electrostatics, and 

bond length. Energy functions are usually associated with a search procedure in order to 

locate the conformation with the minimum-energy function value. The most popular 

optimization methods are molecular dynamics (Alder & Wainwright, 1957, 1959) and 

Monte Carlo simulations (Metropolis, 1987; Metropolis et al., 1953). 

Despite the usage of FF, ab initio techniques remain computationally expensive, 

which has limited their scope to the prediction of the structure of small protein chains 

(Jooyoung Lee, Wu, & Zhang, 2009). To address this limitation, researchers have 

proposed ways of simplifying the PSP task. First, they suggested simplifying the atomic 

representation of a protein by considering only some atoms (Pillardy et al., 2001; Sun, 

1993) or using lattice models (Agarwala et al., 1997; Hart & Newman, 2006). Second, 

they investigated the narrowing of FF terms by considering few dominant forces 

(Srinivasan et al., 2004). Finally, protein conformational space was reduced using 

dihedral angle restrictions to limit their motions (Klepeis, Pieja, & Floudas, 2003; Rohl, 

Strauss, Chivian, & Baker, 2004). 

Despite the variety of the proposed ab initio methods, they all rely on minimization 

of an energy function over the conformation parameters. A general approach for ab 

initio methods is based on a four-step procedure aiming at finding the conformation 

which has the lowest energy: (1) Start with an unfolded/arbitrary folded conformation; 
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(2) generate alternative conformations using some heuristics; (3) estimate their 

corresponding energy; and (4) go to step 2 and repeat until the ending criterion is 

reached. In general, three parameters play critical roles in any ab initio method: energy 

function accuracy, search algorithm efficiency, and selection of the Best models among 

several structures. 

2.5.4.4.1 Force Fields  

The force field models are empirical and attempt to provide an atomic description 

of quantum mechanics; they quantify bonded and non-bonded interactions between 

atoms so that the inner energy of a whole molecular system can be estimated by adding 

the values associated to each interaction between pairs of atoms. Whereas bonded 

interactions, also known as intramolecular or internal terms, are expressed by terms 

related to bonds, angles, and torsion angles, non-bonded ones deal with van der Waals 

and electrostatic interactions and are known as intermolecular forces. Energy functions 

can be classified into two major groups: physics-based and knowledge-based. While the 

latter is based on knowledge and statistics extracted from the known protein structures 

by observing folded protein properties (Arab, Sadeghi, Eslahchi, Pezeshk, & Sheari, 

2010; Skolnick, 2006), the former relies on basic physical theories such as molecular 

mechanics (Boas & Harbury, 2007; Cheatham & Young, 2000; MacKerell, 

Wiórkiewicz-Kuczera, Karplus, & MacKerell, 1995).  Eventually, knowledge-based 

energy functions have become the most popular as researchers in the field consider 

them as a “shortcut” due to their availability and low computational calculations (Tian 

et al., 2011).  

 ECEPP (Arnautova, Jagielska, & Scheraga, 2006), CHARMM (Brooks et al., 

1983), AMBER (Pearlman et al., 1995), UNRES (Oldziej et al., 2005), GROMOS 

(Schmid et al., 2011), MARTINI (De Jong et al., 2013) and the one used in ASTRO-

FOLD (Klepeis & Floudas, 2003a) are physics-based. On the other hand, CABS 

(Kolinski, 2004), DOPE (Shen & Sali, 2006), dDFIRE (Y. Yang & Zhou, 2008), GOAP 

(H. Zhou & Skolnick, 2011), ROTAS  (J. Park & Saitou, 2014) and the energy 

functions used in TASSER (Y. Zhang & Skolnick, 2004a), Chunk-TASSER (H. Zhou 

& Skolnick, 2007), and I-TASSER (S. Wu, Skolnick, & Zhang, 2007) are knowledge 

based. ROSETTA (Rohl, Strauss, Chivian, et al., 2004) is a popular example of a PSP 

methodology where the energy function is a combination of terms of both types. 
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Besides the classification of force fields terms as physics-based and knowledge-

based, they can be classified also as either coarse-grained or fine-grained (also known as 

all-atom). Obviously, a coarse-grained energy function doesn’t produce accurate scores, 

but it makes the energy landscape easier to navigate, therefore, easier to avoid local 

minima; See Figure 2.19.   

 

 

 

 

2.5.4.4.1.1 Physics based energy functions 

A typical physics-based energy function comprises 3 bonded and 2 non-bonded 

terms: bond lengths, bond angle geometry, dihedral angles, electrostatic forces 

(Coulombic term) and van der Waals (vdW) (Lennard-Jones) terms respectively. Most 

of those terms are calculated via quantum mechanics (QM). Ranging from all-atom to 

coarse-grained physics-based force fields, computational cost may dramatically vary 

(from high level coarse-grain atomic representation such as two beads per amino acid: 

Cα and side chain centroid to full-atom representation) and some terms might be added 

or removed/simplified respectively (Kmiecik et al., 2016).  

Bond lengths term, simply, increases whenever the bond length increases or 

decreases beyond the equilibrium bond length. Bond angle geometry term, also known 

as valence angles term, works in the same manner as the first term; it tries to keep 

angles close to the preferred value. Torsion angles terms are counted for four atoms and 

its degree of freedom is more “flexible” than the first two; there is more than one 

equilibrium value that yield minimum value. The non-bonded terms that calculate 

intermolecular interactions need much more computational time, since theoretically, 

Figure 2.19: All-atom versus coarse-grained energy landscape. The figure 

illustrates the effect of the smoothening of the energy landscape in a coarse-grained 

model as compared to an all-atom model. The flattening enables efficient 

exploration of the energy landscape in search for the global minima, while avoiding 

traps in the local minima. Taken from (Kmiecik et al., 2016).  
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such interactions take place between any pair or more of atoms that are not bonded, no 

matter if they are within the same molecule or not. Electrostatic forces, which are 

typically calculated using Coulomb's law, result from at least two electric charges; 

therefore, they can be either repulsive or attractive. Taking into account a group of 3, 4 

and more atoms to calculate that force is computationally extremely costly as each term 

for each group will require a nested loop of N3, N4… time complexity. As a result, an 

atom-pair formula is taken into consideration instead. Furthermore, since their values 

vanish quickly over distances, a threshold is usually set, beyond which no calculation is 

carried out. Van der Waals forces are mostly attractive unless atoms are very close then 

the interaction turns out to be suddenly repulsive. The Dutch scientist has shown that 

the electron clouds surrounding each atom create such a force. The Lennard-Jones term 

presents an estimated and simplified value of van der Waals interactions, both repulsive 

and interactive, as a pairwise atom interactions form. 

Regardless of the classifications of physics-based force fields as coarse-grained 

or fine-grained, a huge amount of research has been deployed for the sake of an 

optimised weighted-term force field (Arnautova, Vorobjev, Vila, & Scheraga, 2009; 

Krupa et al., 2015; Leaver-Fay et al., 2013; O’Meara et al., 2015; Wroblewska, 

Jagielska, & Skolnick, 2008). In the next two paragraphs, CHARMM and UNRES have 

been selected to be concisely introduced; further details describing each term in each 

force field are beyond the scope of this thesis and can be found in the literature. 

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is considered 

one of the oldest and pioneered physics-based force fields that started in 1983 (Brooks 

et al., 1983) and its latest update, CHARMM36, was in 2014 when two additional 

bonded terms were added (S. Lee et al., 2014). CAHRM36m is a special version of the 

latest release launched in 2016 that is designed specifically for intrinsically disordered 

proteins (Huang et al., 2016). Concisely, the latest version comprises 6 bonded terms 

and 2 non-bonded ones and the threshold used for electrostatic and van der Waals 

interactions is 12 Å. Changes in the latest release can be found in the following 

publication (Vanommeslaeghe & Mackerell, 2015).  

UNRES (UNited RESidue) is a protein model representation that is considered a 

very reduced one (two beads only per amino acid) associated with its corresponding 

coarse-grained force fields (Liwo et al., 2014; Liwo, Czaplewski, Pillardy, & Scheraga, 

2001). UNRES force fields have been employed in several successful attempts in 

protein folding and structure prediction (Kachlishvili et al., 2014; Liwo, Khalili, & 
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Scheraga, 2005; Maisuradze, Senet, Czaplewski, Liwo, & Scheraga, 2010; R. Zhou et 

al., 2014) and achieved excellent results in CASP (Yi He et al., 2013). Moreover, it has 

shown competing results whenever used in loop prediction and protein-protein 

interaction.  

2.5.4.4.1.2 Knowledge-based energy functions 

Owing to the thorough observation and statistical analysis of the experimentally 

determined structures’ features such as distances amongst atoms and molecules, 

potentials of knowledge-based force fields are determined. First work in this regard is 

believed to be credited to Tanaka and Scheraga in 1976; they came up with a term that 

describes the interaction between two amino acids (Tanaka & Scheraga, 1976). In the 

same context, Moult and Samudrala created a function which, when fed with pairwise 

atomic distance data, has the ability to provide a probabilistic value that describes the 

likelihood of a given sequence and structure to be correlated (Samudrala & Moult, 

1998). Although such a function can be considered a simple quality assessment score, 

an energy score can be derived from it. Rosetta’s statistical potentials were derived in 

almost the same way (Simons, Ruczinski, et al., 1999; Simons, Kooperberg, Huang, & 

Baker, 1997). Similar to physics-based, knowledge-based force fields can be 

decomposed into more than one term; each one is related to a specific spatial feature 

such as ideal torsion angles (Amir, Kalisman, & Keasar, 2008; Gront & Kolinski, 2005; 

Levy-Moonshine, Amir, & Keasar, 2009).  

2.5.4.4.2 Pure Physics-based Approaches  

Physics-based approaches can be considered the only computational mean that, in 

principle, is guaranteed to reach a native-like conformation, since they mimic 

nanosecond by nanosecond the natural folding process that occurs in vivo using 

molecular dynamics. All-atom (protein and solvent) physics-based protein folding 

simulations need humongous computational resources to be performed even for very 

small proteins. Accordingly, this kind of ab initio techniques is the least used by 

research groups, especially when contributing in CASP as the time needed to complete 

a comprehensive folding simulation exceeds by far the time between the release of the 

sequence and the deadline to submit spatial coordinates. The next section describes 

molecular dynamics’ principles, applications to physics-based protein modelling and 

successful attempts using supercomputers and grid computing systems. 
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2.5.4.4.2.1 Molecular Dynamics  

Molecular dynamics (MD) simulation is a computational method that calculates 

the time-dependent behaviour of a molecular system. It attempts to mimic a protein’s 

motion based on Newton’s equation of motion, F = ma, where F is the force applied on 

the particle, m and a are respectively the particle’s mass and acceleration. Motions 

occurring in a protein can be classified into four categories according to scale and time: 

Local motions involve atomic fluctuation and side-chain motions, medium-scale 

motions include loop and helices motion, large-scale motions describe motions between 

domains, and finally global motions include helix–coil transition and the 

folding/unfolding process. 

Originally, MD was introduced to study hard-sphere interactions (Alder & 

Wainwright, 1957, 1959), simulation of liquid argon (Rahman, 1964), and phases of 

liquid water (Stillinger & Rahman, 1974). Protein MD simulation was conducted for the 

first time in 1977 on the bovine pancreatic trypsin inhibitor (BPTI) (McCammon et al., 

1977). Since then, MD has given valuable information regarding protein fluctuations, 

stability, conformational changes, folding pathways and contribution in experimental 

methods like X-ray crystallography and NMR. The main limitation of MD is its 

tremendous computational time. Typically, a single CPU requires around a day to 

simulate a nanosecond, whereas a protein folds generally on the tens of microsecond 

time scale (Voelz et al., 2010). Consequently, whenever massively parallel processing 

capabilities are absent, MD is often used in structure refinement rather than simulating 

the whole folding process starting from a random coil.  

The advancement of supercomputers as well as the grid computing systems 

technologies has allowed a fully MD-based folding simulation using the natural folding 

path to take place; a breakthrough, scientists had waited for. Although the number of 

those successful simulations is still quite limited and the size of targets is very small, 

they have been considered as milestones. The first notable attempt using a 

supercomputer is back to 1998 and credited to Duan and Kollman when a one 

microsecond-simulation was performed using MD yielding a 150-nanosecond stable 

conformation. The protein’s length was 36 and the final conformation was 4.5Å close to 

the native structure (Duan & Kollman, 1998). The same protein – Villin – was also 

predicted with much higher accuracy several years later (Lei & Duan, 2007; Lei, Wu, 

Liu, & Duan, 2007). Another remarkable achievement was the prediction of a 20-

residue protein – Trpcage - that led to approximately 1Å Cα RMSD stable structure by 
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three different research groups  (Chowdhury, Lee, Xiong, & Duan, 2003; Pitera & 

Swope, 2003; Simmerling, Strockbine, & Roitberg, 2002). Shaw and co-workers have 

had a relatively high number of successful predictions, all using all-atoms proteins and 

solvent MD simulations,  (Koldsø, Jensen, Jogini, & Shaw, 2017; Kruse et al., 2012; 

Lindorff-Larsen, Maragakis, Piana, & Shaw, 2016; Lindorff-Larsen et al., 2011; Piana, 

Klepeis, & Shaw, 2014; Sborgi et al., 2015; Shaw et al., 2010; Cheng Zhang et al., 

2012) 

Folding@home, a large distributed grid computing system developed and 

managed by Pande Laboratory at Stanford University, was introduced in 2000 for the 

sake of protein folding simulation using MD (Shirts & Pande, 2000). Volunteers all 

around the world can install dedicated software connected to the server of 

Folding@home that employs unused and idle processors on their PCs. As long as the 

CPU is idle, processes are being downloaded, executed and once finished, uploaded to 

the server. One of the earliest successes was a 300-millisecond simulation (equivalent to 

1000 CPU years) of a 36-mer that led to a 1.7 Å native-like conformation (Zagrovic, 

Snow, Shirts, & Pande, 2002). Since its launch, more than 200 papers have been 

published; notable and interesting achievements can be found  in the following papers 

(Kohn et al., 2004; Ponder et al., 2010; Snow, Nguyen, Pande, & Gruebele, 2002; Sorin 

& Pande, 2005; L. P. Wang et al., 2017; Zagrovic et al., 2002). Folding@home was 

ranked as the most powerful distributed computing network in 2007 by Guinness. 

2.5.4.4.3 Approximation and Randomisation Techniques  

 Instead of aiming at simulating the folding mechanism as physics-based 

approaches do, this category of ab initio methods focuses only on predicting as 

accurately as possible a protein’s final configuration. Such techniques still conform to 

the “standard rules” of ab initio. However, instead of applying the physics-based way 

that relies on MD and thus the real trajectory, randomised and heuristic sampling and 

search paradigms are used instead. Monte Carlo (MC) simulations and heuristics are the 

dominant techniques in this regard. However the trajectories followed by such methods 

are random, therefore, they reveal no information about the folding pathway even if 

they succeed to reach a native-like structure.  

2.5.4.4.3.1 Monte Carlo Simulations  

The Monte Carlo (MC) method was established in the 1940s to approximately 

solve intractable problems (Metropolis, 1987; Metropolis et al., 1953; Metropolis & 
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Ulam, 1949). It is based on generating several random samples of the problem and 

aggregating their results to constitute the final one. In general, Monte Carlo methods 

can be summarized in four steps: (1) definition of the domain of the problem, (2) 

generation of many random samples that cover the domain, (3) calculation of the result 

for each sample, and (4) estimation of the final solution based on the sample results. 

Starting from randomly constructed conformation, random minor changes, such 

as some rotations, within the degree of freedom of the angles are applied. Although, 

such moves involve “minor changes” as just stated, search pathways may achieve a 

relatively long step and probably jump over potential barriers, but, probably miss a 

“good region”. Whenever, fragment-based approaches are carried out, “minor changes” 

are simply random fragment substitutions.   

Monte Carlo simulations are very popular to discover the conformational space 

of proteins. However, since they may converge toward local minima due to the jagged 

surface of the energy landscape, many extensions of MC have been proposed. They 

include multi-canonical ensemble (B. A. Berg & Neuhaus, 1992), entropic ensemble 

(Jooyoung Lee, 1993), replica exchange MC method (REM) (Kihara, Lu, Kolinski, & 

Skolnick, 2001), parallel hyperbolic sampling (PHS) (Y. Zhang, Kolinski, & Skolnick, 

2003), Electrostatically driven Monte Carlo (EDMC) (Ripoll & Scheraga, 1988, 1989), 

conformational family Monte Carlo (CFMC) (Pillardy et al., 2001; Pillardy, 

Czaplewski, Wedemeyer, & Scheraga, 2000) and Monte Carlo with minimization 

(MCM) (Z. Li & Scheraga, 1987). Monte Carlo with Simulated Annealing (SA) 

(Kirkpatrick et al., 1983) has been very popular in protein structure prediction; Rosetta 

has been employing such an optimization algorithm since its birth. 

 2.5.4.5 Fragment-based Approaches 

Fragment-based techniques were in principle meant to be “coarse-grained” ab 

initio method despite the fact that they take advantage of the known 3D structures 

which are held in the PDB. However, unlike comparative modelling and fold 

recognition methods which take advantage of full structures, they only extract peptide 

fragments, secondary structures, and statistical information. The initiative behind these 

methods followed the observation that the ratio of sequence universe/fold universe 

decreases whenever the sequence shortens.  

Typically, all fragment-based methods start by a fully extended chain or simply 

a random conformation followed by random substitutions of fragments from a fragment 

library. The value of the energy function of any changes is the key to acceptance or 
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rejection of the newly generated conformation. Heuristic algorithms, such as simulated 

annealing, may accept a worse conformation using Metropolis criterion for the sake of 

retrieving a better low-energy basin. 

Most fragment assembly paradigms involve several search trajectories that run 

independently to explore low-energy regions and choose a candidate conformation. 

Afterwards, this pool of candidates, also called decoys, which can reach several dozens 

of thousands in some pipelines, is subject to clustering and quality assessment 

techniques to choose the “Best model”.  

The next section – 2.5.4.5.1 - introduces the main concepts and motivation 

behind the success of this kind of protein structure prediction. Section 2.5.4.5.2 

investigates the general principles that govern the main steps from building the 

fragment library to the refinement phase. The five subsequent sections describe notable 

methods. 

 

2.5.4.5.1 Introduction and Motivation 

Motivated by the fact there is a strong correlation between sequence and 

structure at the local level (Lu & Liu, 2007), fragment based protein structure prediction 

methods were first proposed in 1994 by Bowie and Eisenberg (Bowie & Eisenberg, 

1994). They rely on the concatenation of short rigid fragments excised from actual 

protein structures to construct putative protein models. Still, unlike homology and 

threading modelling, fragment-based predictors are able to handle template-free 

modelling (FM) targets; sometimes with very high accuracy, especially for small 

proteins (Song et al., 2005). 

As a “compromise” between ab initio and fold recognition modelling, fragment-

based protein structure prediction packages have been developed (Subramani, Wei, & 

Floudas, 2012). Methods such as FRAGFOLD (Kosciolek & Jones, 2014), Rosetta 

(Leaver-Fay et al., 2011), I-TASSER (J. Yang et al., 2015), and QUARK (Xu & Zhang, 

2012) have demonstrated the strength of such approaches. Regardless of the fragments’ 

length used by those methods, their popularity is supported by five main points: (1) 

since the “smallest element” considered in computation is a set of amino acids instead 

of a single one, entropy in conformational search space is decreased in a dramatic way, 

(2) short sub-sequences converge towards a relatively limited number of sub-structures, 

(3) usage of Monte Carlo simulations instead of Molecular Dynamics has allowed 

making those methods much faster than pure physics-based ones, (4) the fragments used 

are already of low-energy, therefore, local interactions need not to be calculated within 
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the fragments after each substitution; a feature that makes such approaches much less 

expensive than their competitors and (5)  from a short fragment perspective, a structure 

can be built from fragments of other structures that belong to totally different 

architectures/folds/structures; see Figure 2.20. It is worth noting that a thorough study 

by Zhang and Skolnick entitled “The protein structure prediction problem could be 

solved using the current PDB library” has supported such a hypothesis (Y. Zhang & 

Skolnick, 2005). Accordingly, FM targets, which indeed lack any template structures in 

the PDB, do not represent a conformation that has a totally new arrangement and shape 

of secondary structures. Consequently, an ideal short fragment library should be able to 

predict any FM target. That observation is probably the reason that led CASP organisers 

to replace the name of the category of “New Fold” to “Free Modelling” starting at 

CASP6 (Klepeis & Floudas, 2003a). (“Fold” is the second level in the structural 

classification hierarchy of SCOP, however, since 2008 no new folds have been 

identified in SCOP1: 

https://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=fold-scop. The 

corresponding level in CATH is called “topology”, and no new topologies have been 

added since 2010: 

https://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=fold-cath). 

Figure 2.20: Six fragments were taken from a structure (left) to form a small set of 

fragments (centre) and five of them – a fragment may be used more than once – 

were able to construct a part of another structure (right). Taken from 

(Verschueren et al., 2011). 

Besides FragFold, I-TASSER, Quark and Rosetta, there have been a few other 

predictors built following the fragment-based paradigm. Undertaker uses fragments of 

very different length excised from three different libraries: (1) generic fragments whose 

length is 2-4, (2) one that contains 9-12 length fragments and (3) a one that relies on 

fold recognition techniques to extract fragments of larger size.  Sampling is conducting 

using genetic algorithm (Kevin Karplus et al., 2003). PROFESY (PROFile Enumerating 

SYstem) on the other hand, adopts a library of 15-residue fragments and the assembly 

phase is conducted using Conformational Space Annealing (CSA) (Julian Lee, Kim, 

https://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=fold-scop
https://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=fold-cath
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Joo, Kim, & Lee, 2004). Fragment-HMM is a consensus method; it includes threading, 

homology modelling, fragment packing, refinement and quality assessment to generate 

a final candidate model. Position-specific hidden Markov Model is used to sample the 

target sequence (S. C. Li, Bu, Gao, Xu, & Li, 2008). EdaFold (EDA stands for 

Estimation for Distribution Algorithm) relies on iterative and “dependent” sampling: 

fragments that are frequently found in previous low-energy packed conformations are 

reconsidered in subsequent predictions by raising their usage’s probability  (Simoncini, 

Berenger, Shrestha, & Zhang, 2012; Simoncini & Zhang, 2013). 

Nevertheless, fragment-based methods continue to fail reaching reasonable 

accuracy for many CASP’s targets, which has paved the way for further investigations, 

comparative studies, improvements, amendments and tuning (Abbass & Nebel, 2015, 

2017; Baeten et al., 2008; Bhattacharya, Adhikari, Li, & Cheng, 2016; J. Cheng, 

Eickholt, Wang, & Deng, 2012; Guyon & Tufféry, 2010; Helles, 2008; Kandathil, 

Handl, & Lovell, 2016; S. C. Li, Bu, Xu, & Li, 2008; Olson, Molloy, Hendi, & Shehu, 

2012; S.-J. Park, 2005; Trevizani, Custódio, Dos Santos, & Dardenne, 2017; Uziela & 

Wallner, 2016; Vanhee et al., 2009; T. Wang, Yang, Zhou, & Gong, 2016). 

2.5.4.5.2 Principles  

These methods, first, search in the PDB for known structure fragments which 

match sub-sequences of the protein of interest. Once candidate fragments have been 

selected, compact structures can be formed by randomly assembling fragments using 

stochastic techniques such as simulated annealing. Then, with the aid of scoring 

functions the fitness of each conformation is evaluated and the most promising ones are 

optimized. Scoring functions are loosely related to energy functions and fragment 

assembly along with optimization algorithms which are conceptually similar to free-

energy optimization. Besides, it has been shown that including a similarity measure 

between the secondary structure of a candidate fragment and the corresponding 

predicted one in the target improved scoring functions. This justifies the usage of 

external resources to predict the secondary structures of the target sequence in Rosetta 

(Simons, Ruczinski, et al., 1999). 

In order to eliminate the ‘discrete’ nature of the process of associating the best 

sub-structures to given sub-sequences, first, continuous overlapping fragments along the 

sequence are used, second, weighted knowledge-based energy functions are applied to 

measure the fitness of fragments using non-local interactions, and third, all-atom 

refinement is conducted. Such a procedure aims at emulating the actual protein folding 
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mechanism which is believed to follow a ‘local-to-global/divide-and-conquer’ process. 

This would explain the high speed of the folding process observed in nature (Dill & 

MacCallum, 2012; Hockenmaier, Joshi, & Dill, 2007; Voelz & Dill, 2007). Regarding 

the choice of fragment length, several studies concluded that their optimal size should 

be around 10 amino acids (Bystroff et al., 1996; Xu & Zhang, 2013). Moreover, it was 

shown that at least a set of 100 fragments should be explored for each position to 

produce native-like conformations (Xu & Zhang, 2013).  

Success of a protein prediction process using fragment assembly relies on three 

fundamentals: energy function accuracy, search method efficiency and quality of the 

fragment library (Kandathil et al., 2016). Weakness in any of them yields wrong search 

trajectories, thus, inadequate quality of decoys. The majority of fragment packing 

methods use a coarse-grained atomic representation during the sampling phase so that 

the smoothness of the search space may help avoid local minima, see Figure 2.19. Full-

atom representation is then obtained gradually during optimisation and refinement 

phases, mostly using knowledge-based ideal values.  

 

2.5.4.5.3 FRAGFOLD 

Although some researchers refer to Bowie and Eisenberg as being the small-

fragment assembly pioneers (Bowie & Eisenberg, 1994), FRAGFOLD is considered the 

first fragment-based method developed by Jones in 1996 (Jones, 1997). Its results in 

CASP2 (1996) seemed promising for a totally innovative approach and paved the way 

for the development of similar methods. Beside pairwise and solvation potentials, Jones 

took into consideration compactness of low-energy folds, hydrogen bonds, and steric 

overlaps to constitute a weight-based energy function. Its minimization was carried out 

using a simulated annealing approach. FRAGFOLD’s main contribution has been the 

usage of two types of fragments: super-secondary structural motifs (variable length of 9 

to 31 residues) which have been shown to be parts of the polypeptides that form early 

but remain stable during the folding process, and miscellaneous fragments extracted 

from high-resolution proteins (fixed length of 9-mers). The first fragments library 

contains four types of super-secondary structural fragments, that is, α-hairpin, α-corner, 

β-hairpin, and β–α–β unit, which are defined as motifs containing two or three 

sequential secondary structures extracted from a library of protein structures. 

Since its first launch, FRAGFOLD has been continuously improved, including 

an extended library of super-secondary structures (Jones, 2001), several enhancements 

of secondary-structure prediction algorithms, and the removal of the compactness-
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related term in their energy function (Jones & McGuffin, 2003). FRAGFOLD3, the 

version that contributed in CASP6, has included an all-atom representation feature 

instead of the old and simplified one that considered two points only for each amino 

acid. Moreover, in the third version, the number of super-secondary structures has been 

raised to 6 (Jones et al., 2005).  In CASP6, in the Free-modelling sections (called New 

Fold (NF) category then), 4 out of 8 targets FRAGFOLD3 achieved reasonable 

accuracy. Jones achieved excellent results in CASP9, where his system was overall 

ranked in the 24th place out of 174 in terms of the first model. In CASP12, since no 

further publications/improvements has taken place since 2005, no tangible improvement 

was recorded and its overall rank was 23rd amongst 128.  FRAGFOLD’s main 

components, including THREADER (Jones, 1998) and PSIPRED (Jones, 1999), can be 

downloaded at http://bioinf.cs.ucl.ac.uk. 

 

2.5.4.5.4 I-TASSER 

TASSER is another successful fragment-based method and was initially created 

in 2004 by Zhang and Skolnick (Y. Zhang & Skolnick, 2004a). Later, it led to the 

development of two significantly improved versions: Chunk-TASSER (H. Zhou & 

Skolnick, 2007) and I-TASSER (S. Wu et al., 2007), the latter has been the most 

successful version since then and replaced all previous versions (more details on I-

TASSER will be covered in the subsequent paragraphs). TASSER is a hierarchical 

approach that encompasses three phases which gave it its name: 

threading/assembly/refinement. The first step is based on a threading program called 

PROSPECTOR 3 (Skolnick, Kihara, & Zhang, 2004). It is based on an iterative 

sequence–structure alignment algorithm that results in three category targets—easy, 

medium, and hard—that depend on score value and alignment consistency. Note that 

using threading techniques in I-TASSER does not prevent its classification as a 

fragment-based approach since it is only applied on protein sequence subsets to choose 

the appropriate fragments. Then, the assembly step uses parallel hydrophobic Monte 

Carlo sampling by rearranging the fragments (Y. Zhang, Arakaki, & Skolnick, 2005). In 

order to decrease computation, a preliminary model is built using only Cα and side-

chain coordinates. Finally, a refinement stage is performed using a clustering program 

called SPICKER (Y. Zhang & Skolnick, 2004c). The full-atom optimization is 

conducted using the CHARMM22 force field. TASSER achieved an average RMSD of 

5.4 Å on all CASP6’s 90 targets. Further improvements were achieved at CASP7 with 

an average RMSD of 4.9 Å on 124 models (H. Zhou et al., 2007) by using better 

http://bioinf.cs.ucl.ac.uk/
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templates from 3D-jury and applying two additional threading software, that is, SP3 (H. 

Zhou & Zhou, 2004) and SPARKS (H. Zhou & Zhou, 2005).  

Departing from Bowie and Eisenberg’s principles, but still considered as 

belonging to the fragment-assembly category, I-TASSER (Iterative Threading 

ASSEmbly Refinement) combines ab initio modelling and threading (Abbass et al., 

2013). Since the length of the fragments chosen from threading has no upper limit 

(greater than or equal to 5), this method is suitable for both FM and template-based 

modelling (TBM) targets. As Rosetta, I-TASSER initially generates low resolution 

conformations, which are then refined. More specifically, structure prediction relies on 

three main stages (Roy, Kucukural, & Zhang, 2010). First, sequence profile and 

predicted secondary structure are used for threading through a representative set of the 

PDB. The highly-ranked template hits are selected for the next step. Second, structural 

assemblies are built using a coarse representation involving only C-alphas and centres 

of mass of the side chains. While fragments are extracted from the best aligned regions 

of the selected templates, pure ab initio modelling is used to create sections without 

templates. Fragment assemblies are performed by a modified version of the replica-

exchange Monte Carlo simulation technique (REMC) (Y. Zhang, Kihara, & Skolnick, 

2002) constrained by a knowledge-based force field including PDB-derived and 

threading constraints, and contact predictions. Generated conformations are then 

structurally clustered to produce a set of representatives, i.e. cluster centroids. Third, 

those structures are refined during another simulation stage to produce all atom models. 

This mixed strategy has proved extremely successful since the “Zhang-Server” (Y. 

Zhang, 2014), which is a combined pipeline of I-TASSER and QUARK (see next 

section for details about QUARK), has been ranked as the best server for protein 

structure prediction in five successive CASP experiments (CASP7-11) (Roy et al., 

2010; Y. Zhang, 2014; Y. Zhang et al., 2002), when all target categories are considered. 

However, when only FM targets associated with ab initio approaches are taken into 

account, Rosetta tends to provide more accurate models than I-TASSER (Ben-David et 

al., 2009; Jauch, Yeo, Kolatkar, & Clarke, 2007; Kinch, Yong Shi, et al., 2011; Tai, Bai, 

Taylor, & Lee, 2014). See section 2.4.3 for details regarding the results of the latest 

version: CASP12. 

 

2.5.4.5.5 QUARK 

Xu and Yang identified force fields and search strategies as the main limitations 

to accurate structure prediction (Xu & Zhang, 2012). They proposed a new approach 



60 

 

dedicated for ab initio structure modelling, QUARK, which attempts to address them, 

while taking advantage of I-TASSER and Rosetta’s strengths. In addition to sequence 

profile and secondary structure, QUARK also uses predicted solvent accessibility and 

torsion angles to select, like Rosetta and unlike I-TASSER, small fragments (size up to 

20 residues) using a threading method for each sequence fragment. Then, using a semi-

reduced model, i.e. the full backbone atoms and the side-chain centre of mass, and a 

variety of predicted structural features, an I-TASSER like pipeline is followed: 

assembly generation using Replica Exchange Monte Carlo (REMC) simulations, 

conformation clustering and production of a few all-atom models. In this phase, not 

only does QUARK allow more conformational movements than I-TASSER, but also 

utilises a more advanced force field comprised of 11 terms including hydrogen bonding, 

SA and fragment based distance profile, see (Xu & Zhang, 2012) for details. When 

QUARK started contributing to CASP in its 9th experiment, it was outperformed by 

Rosetta; however, positions were inverted in the subsequent versions (Kinch, Yong Shi, 

et al., 2011; Tai et al., 2014). 

 

2.5.4.5.6 Rosetta 

Rosetta, developed at the University of Washington at Seattle, is arguably the most 

popular fragment assembly approach, and it was assessed as the most accurate de novo 

PSP by CASP6 when it contributed for the fourth time (Jauch et al., 2007); see Figure 

2.21. Its results in FM targets in CASP have been truly remarkable since then; in 

CASP12, Rosetta server achieved the first place in the free modelling category (See 

Section 2.4.3 for more details about the results of CASP12).  

Studies highlighting local sequence-structure relationships (Han & Baker, 1996) 

suggested that methods built on Bowie and Eisenberg’s principles should only consider 

short fragments. As a result, Rosetta, a fully fragment-based protein structure prediction 

suite, offered to generate conformations from assemblies of short fragments (3-mers and 

9-mers) excised from high resolution protein structures. Using the target’s sequence, for 

each position, the best 9-mers and 3-mers are selected. This is performed not only using 

sequence similarity and the sequence profile, but also by considering secondary 

structure prediction information generated from several sources as well as 

Ramachandran map probabilities. The secondary structure predictions are taken from 

three resources, PSIPRED (Z.-C. Li, Zhou, Lin, & Zou, 2008), SAM-T99 (Tian Liu & 

Jia, 2010), and JUFO (Kurgan & Chen, 2007) which represents a crucial factor (Gront 
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et al., 2011). Then, the process of building conformations is conducted using two levels 

of search and refinement: coarse and fine grained associated with their respective 

energy functions. In the first level, low-resolution conformations are generated by 

representing the chain by heavy atoms of the backbone besides a single centroid for the 

side chains, whereas in the second one, all atoms are modelled. In addition to keeping 

the fragments rigid during the simulation as most methods do, Rosetta maintains bond 

angles and length at some ideal values to reduce the search space. Accordingly, the sole 

degrees of freedom in the coarse-grained search are the backbone torsion angles, 

whereas, side chains’ are only taken into account in the fine-grained stage (Song et al., 

2005). A noteworthy observation concerning the force fields type used in both scoring 

functions is the usage of both physics and knowledge-based terms (Rohl, Strauss, 

Misura, et al., 2004).  

During the coarse-grained search and refinement and in order to generate a 

conformation’s backbone along with its side chain centroids, Rosetta operates in two 

main steps: first, 9-mer fragments are inserted within the initial fully extended 

conformation; second, insertions of 3-mer fragments are used to refine the structure 

previously generated. 9-mers and 3-mers are protein fragments extracted for each amino 

acid - except for the protein C terminus - of the protein of interest from a template 

database according to some similarity criteria. Eventually, Rosetta converts the coarse-

grained conformation into an all-atom representation by adding all missing atoms using 

knowledge-based information extracted from known structures (Song et al., 2005). All 

services related to Rosetta, including downloads, can be found at 

http://www.rosettacommons.org/ and more details about Rosetta are covered in the next 

chapter.  

  

Figure 2.21: CASP6 Target T0281 - 70 residues - (PDB code: 1WHZ). The blue 

structure represents the native one, whereas the magenta represents Rosetta 

server’s predicted structure. With an RMSD of 1.5 Å, Rosetta’s model is believed 

to be the first notable successful ab initio prediction in the history of CASP. 

http://www.rosettacommons.org/
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2.5.4.5.7 Robetta 

From a hierarchical perspective, Robetta protein structure prediction server 

(Kim, Chivian, & Baker, 2004a) is considered the “mother” of Rosetta whenever it 

participates in CASP. In the abstracts book (found at 

http://www.predictioncenter.org/casp12/index.cgi) of all participant groups that 

describes the methods used by each group, targets’ sequences are firstly passed through 

Robetta. Robetta is a fully automated server, when fed with a sequence in question, 

follows two different routes: (1) a comparative modelling and (2) de novo approach 

using Rosetta. Concisely, domains and/or regions with high sequence similarity score 

are then forwarded to Rosetta-based tool for homology modelling called RosettaCM 

(Song et al., 2013), whereas regions with low homologs detection (mainly long loops), 

are simply modelled using the “traditional” Rosetta. Once all regions are built, the 

assembly phase is performed by an iterative domain assembly method (Wollacott, 

Zanghellini, Murphy, & Baker, 2007) by inserting fragments into the “connecting” parts 

using the same scoring function as in de novo Rosetta. Side chains are then added 

following the same standard as in de novo modelling. Accordingly, whenever an FM 

target is submitted, Robetta will simply act as Rosetta. 

The first phase comprises determining domains’ start and ending and candidate 

templates for easy regions. Such a procedure is achieved using highly ranked sequence 

alignment tools for homology and threading modelling: HHSearch (Söding, 2005), 

Sparks (Y. Yang, Faraggi, Zhao, & Zhou, 2011), RaptorX (Peng & Xu, 2011), BLAST 

(Altschul, 1990), PSI-BLAST (Altschul et al., 1997), FFAS03 (Jaroszewski, Godzik, & 

Rychlewski, 2000; Rychlewski, Li, Jaroszewski, & Godzik, 2008) or 3D-Jury (Ginalski, 

Elofsson, Fischer, & Rychlewski, 2003; Ginalski & Rychlewski, 2003). Furthermore, if 

GREMLIN (Kamisetty, Ovchinnikov, & Baker, 2013), a state-of-the-art contact 

prediction method that employs meta-genome sequences (Ovchinnikov et al., 2017) 

provides accurate results, those results are fed to Rosetta as restraints for both sampling 

and refinement phases. For the sake of quality assessment phase – where top model(s) 

should be chosen amongst a large set of decoys (up to 300,000) – ProQ2 is carried out 

(Uziela & Wallner, 2016). The steps described in this section can be considered the 

pipeline followed by “BAKER-ROSETTASERVER” group mentioned in the next 

section.  

 

http://www.predictioncenter.org/casp12/index.cgi


63 

 

2.5.5 CASP Competition  

The state of the field of PSP has been monitored and quantitatively evaluated 

since 1994 by the biennial CASP event. This community-wide experiment has grown 

significantly from a set of 33 targets which attracted around 100 models (CASP1, 1994) 

to a set of 82 targets which led to the submission of more than 37,000 models (CASP12, 

2016). Analysis of the outcome of the latest CASP shows that ab initio methods are still 

considered for many successful groups as a backup plan when template-based 

techniques fail. Consequently, the majority of algorithms/servers whose category is 

“hybrid” uses ab initio as the last approach to be applied. This is mainly due to the facts 

that, homology modelling is very accurate, and,  ab initio methods have a very high 

computational cost even when parallel processing is available. In the free modelling 

category, it is clear that fragment-based techniques like I-TASSER and Rosetta perform 

much better than pure ab initio ones like ASTRO-FOLD.  

2.5.5.1 Introduction 

Although CASP was mainly created for the sake of assessment of computational 

means for protein structure prediction, more categories have been added/removed since 

the second round in 1996 when docking category was introduced (Dixon, 1997). In 

round 12 (2016), CASP comprised 6 various categories besides the Tertiary Structure 

(TS) competition. Other categories include “contact prediction” that involves prediction 

of contact maps of all residues and “Data Assisted”, which is similar to TS competition; 

however, groups are provided in advance additional information such as NMR sparse 

data. Nevertheless, PSP (TS category) remains the most challenging and interesting 

category. For this purpose, every two years, a set of protein sequences are released 

gradually across a couple of months during which research groups from around the 

world attempt to predict their 3D structures by submitting putative models (up to 5 per 

target). Once a target’s submission deadline has passed, determination of its native 

structure is conducted in vitro. If successful, a thorough evaluation is performed on the 

submitted models. In the first 6 rounds – that is, till CASP6 – targets were classified 

into three categories: “Comparative Modelling”, “fold recognition” and “ab initio” or 

“new fold”. Afterwards, targets released by CASP have usually been classified into two 

main categories: template-based modelling (TBM) and Free modelling (FM). Whereas 

the TBM category comprises “easy targets” for which structures of homologous 

proteins have already been deposited in the PDB, FM targets represent the greatest 

challenge in the competition since only groups that rely on ab initio methods can 
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contribute. Due to the complexity of the task, any minor improvement regarding 

accuracy of FM targets amongst competing groups is considered worthwhile. Recently, 

in CASP12 experiments, FM and TBM terms have been replaced by “high accuracy 

models” and “topology” respectively. 

2.5.5.2 Classification of Targets 

Whenever a target (sequence of amino acids) is released, contributors submit 

their candidate models for the whole sequence, but, the unit of assessment adopted by 

CASP is the domain rather than the whole target. The approaches used to divide the 

targets into domains and classify them as either FM or TBM targets is quite a crucial 

step achieved by CASP organisers and assessors, so that, a dedicated paper is published 

for each round since CASP5 (2003) to explain the  followed procedures (Clarke et al., 

2007a, 2007b; Kinch et al., 2016; Kinch, Qi, Hubbard, & Grishin, 2003; Kinch, Shi, et 

al., 2011; Taylor et al., 2014; Tress, Ezkurdia, & Richardson, 2009); note that the 

corresponding paper for CASP12 has not been published yet and that of CASP ROLL 

and CASP11 were merged into one. Structures are usually released as either “all 

groups” or “server only”. Concisely, the criterion used is the sequence to known-

structure similarity scores; a high score leads a target to be classifies as “server only”, 

whereas a low score leads a target to be under the “all group” category. However, 

interestingly, both the domain determination and classification (FM/TBM) operations 

are carried out after the completion of submission phase as the quality of models 

submitted is an important feed to both processes (Kinch et al., 2016).  

Taking into consideration domains rather than the whole conformation for 

evaluation purposes is due to several reasons: some targets are relatively long and 

therefore contain several domains; evaluating the whole prediction may seem unfair 

especially that a “global” structural superimposition is likely to yield bad scores and 

therefore may not reveal the accuracy of some prediction in some “independent” 

regions, namely domains. Moreover, some targets contain more than one domain; 

whereas one (or more) of them is (are) classified as FM, the other(s) might be classified 

as TBM. Not to add that even in single-domain targets, structures of tails which are 

most of the time classified as coils (i.e. they have not defined secondary structure by 

DSSP) are not of interest and, as a consequence, including them and their predictions 

are most likely to lead to very poor quality. The domain determination/organisation 

process, that is, splitting targets into domain(s), is carried out during the phase of post-

submission. It is a procedure that relies mainly on two sources: (1) the availability of 
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templates for specific units and (2) comparison between the scores of servers of the 

whole targets versus those of the split domains. 

Over the years, classification of FM and TBM targets has become a very 

difficult task; for instance, some participating groups have the ability to detect remote 

evolutionary relationships to known structures. The standard way adopted by CASP is 

to use PSI-BLAST and HHPRED to detect any homologs and based on the results 

targets are classified, however, for some targets/domains, sequence-folds scores are “on 

the edge”, thus, they require further analysis (Kinch et al., 2016). In addition, some 

insertions and deletions that exist in the core of a certain target’s unit may make it 

appear dissimilar to a specific Pfam (Punta et al., 2012) family for instance. As of 

CASP11, a new database was introduced to help the CASP community to detect remote 

homologues of the targets: the Evolutionary Classification of Protein Domains (ECOD) 

(H. Cheng et al., 2014). It is worth noting that 19 domains in CASP12 have FM and 

TBM regions in the same time and are formally annotated as “FM/TBM” as we will see 

in the next section. 

2.5.5.3 Analysis and Results of Predictions 

 For the sake of evaluating the state-of-the-art of PSP approaches and the CASP 

competition, the results of the latest round, that is, CASP12, which comprises 96 

domains/targets, are presented herein. The classification of the targets/domains is as 

follows: 39 FM, 38 TBM and 19 FM/TBM. Besides the whole group of targets, there 

will be a separate table for each of the three categories. 

Tables 1, 2, 3 and 4 shown in the appendix are taken from the data released by 

CASP12 community on their website 

(http://predictioncenter.org/casp12/zscores_final.cgi). Typically, contributors, when 

publishing their own papers to describe their results, follow their own way of evaluation 

(such as the Best model amongst the five submitted or even the average of the score of 

the five models) and scores (such as GDT_TS, RMSD, TM). In this thesis, I follow 

exactly the criteria adopted by the CASP organisers: the cumulative Z-score of the 

GDT_TS of the first model after removing the outliers where Z-score is below the 

threshold (- 2.0). Z-score’s possible range is typically from -3 to +3. Furthermore, the 

number of groups shown in the three tables is 43 not 128 (the total of groups 

participated in CASP12), since only server groups were selected; the main aim of this 

thesis and specifically this section is to assess the computational techniques of protein 

structure prediction without taking into account any human intervention.  
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As shown in Tables 1 and 2 in the appendix - the overall ranking of all targets and 

the overall ranking of FM targets only respectively -  Zhang lab at the University of 

Michigan led by Yang Zhang (Zhang-Server and QUARK) and the Baker lab at the 

University of Washington led by David Baker (BAKER-ROSETTASERVER) top all 

remaining research groups all around the world. Whilst in the overall results of all 

targets, both Zhang-Server (I-TASSER) and QUARK performed better than Rosetta, the 

latter captured the first place in the hardest category, FM targets. The concise and 

obvious conclusion, as mentioned before during the chapter: when it comes to a domain 

where no reliable templates can be found, Rosetta’s fragments perform a relatively 

“good job”. Interestingly, Rosetta did the same in the TBM category as shown in Table 

3.  

Further data have been collected from CASP12 webpages 

(http://www.predictioncenter.org/casp12/results.cgi) regarding the top three 

contributors, namely “Zhang-Server”, “Quark” and “BAKER-ROSETTASERVER” by 

extracting the GDT_TS of the submitted models in all categories. The average of the 

GDT_TS of each group in each category is calculated and summarised in Table 2.4. 

Such a table will help to (1) assess the performance of the top participated groups and 

thus to assess the “current status” of the computational techniques in PSP; (2) evaluate 

each category aside All, FM, TBM and FM/TBM targets; (3) to analyse the 

performance of each methodology in each category of targets. It is worth noting that we 

have collected all data without taking into consideration the value of Z-scores; therefore 

Rosetta appears in the third place for FM whereas it appears in the first in the official 

ranking in Table 2. 

Table 2.4: CASP12’s Top Three Servers’ Detailed GDT_TS Scores 

  All - 96 FM – 39 TBM - 38 FM/TBM - 19 

Average 

(Std. dev.) 

Zhang-Server 52.0 (22.3) 30.9 (12.6) 72.4 (12.5) 54.4 (11.3) 

QUARK 51.3 (22.5) 30.7 (12.1) 71.8 (12.9) 52.6 (14.5) 

BAKER-

ROSETTASE

RVER 

50.4 (23.9) 30.5 (14.8) 72.3 (14.2) 47.3 (16.1) 

Min - Max Zhang-Server 9.2 – 96.6 9.2 -54.7 50.9 – 96.6 39.2 – 80.1 

QUARK 9.4 – 96.3 9.4 - 57.0 49.5 – 96.3 23.3 - 79.3   

BAKER-

ROSETTASE

RVER 

12.1 – 97.6 12.1 – 77.1 34.1 – 97.6 20.3 - 76.5 

http://www.predictioncenter.org/casp12/results.cgi
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Table 2.4 shows that the best group reached 52/100 as an average of GDT_TS 

score of 96 targets which is considered as on “moderate” quality [40 – 59] on the scale. 

However, the status is much worse in FM domains, where on average, the best three 

pipelines are still in the “poor” (sometimes referred to “random”) scale [0 - 39] of 

GDT_TS. The reason why applying Newton’s second law on grid computing and/or 

supercomputers is still the only trusted way whenever templates are not found. 

Regarding the TBM category, results are quite good; oddly, “pure” comparative and 

threading modelling contributing groups were not able to beat those three pipelines 

(Note that in such category credits should be awarded to Robetta rather than Rosetta). 

One would refer this to the following reason: relying on several homologs to select 

fragments from leads probably to better conformations rather than relying on one or 

very limited number of homologs.  

Regarding the quality of the near-native structure, a very recent study suggests 

that short fragments are likely to produce higher quality; on the other hand, multiple 

fragment lengths are able to generate overall better decoys as long fragments have a 

positive effect in the early stages of simulations (Trevizani et al., 2017). A reasonable 

explanation of Rosetta’s largest standard deviation amongst the three competitors; 

whenever Rosetta succeeds to reach a “good region” on the conformational space, 

ability to explore that region is higher than the others due to the short fragments policy 

(maximum value of GTD_TS in FM category is by far better than the two remaining 

competitors), however, whenever simulations tend to end up in a “bad region”, final 

structures’ accuracy is relatively low due to the lack of usage of long fragments.  

After more than 3 decades of continuous work on the diverse types of 

computational techniques to predict a protein’s tertiary structure, the best server has just 

passed the mid of the “moderate” region on the scale. Therefore, it can be concluded 

that, despite a lot of progress, there is still a lot of scope of improvement for protein 

structure prediction. Obviously, hybrid approaches involving mainly fragment-based 

techniques are the most promising methods amongst all other competitors. Amongst 

these techniques, one should notice remarkable differences such as the size of 

fragments, the alignment approaches used to excise the fragments and the subset of the 

PDB used as a template structures library. 

 

 

 



68 

 

3 Rosetta 

3.1 Introduction 

Currently, Rosetta is a very large package comprising programs, scripts, tools, 

for different types of macromolecular modelling such as ligand docking (Lemmon & 

Meiler, 2012), protein-protein docking (Sircar, Chaudhury, Kilambi, Berrondo, & Gray, 

2010), protein design (Guntas, Purbeck, & Kuhlman, 2010), and loop modelling 

(Mandell, Coutsias, & Kortemme, 2009). However, its first version was initially an 

implementation of a sole algorithm for ab initio protein structure prediction written in 

FORTRAN (Simons et al., 1997). In 2005, Rosetta 2 was launched using C++. The 

automatic translation process adopted then to move from FORTRAN to C++ made it 

inconsistent for further development; there was no other choice than rewriting Rosetta 

from scratch as a fully object-oriented C++ suite known as Rosetta 3 that was launched 

in 2009 (Leaver-Fay et al., 2011). Different programs have been gradually added and 

improvements have taken place during the course of development which has led to the 

current Rosetta software suite. The latest version (v3.9) was launched in 2018. We 

started using Rosetta version 3.4 in the first contribution – Chapter 4; for the 

consistency of the thesis, we continued adopting the same version for all experiments.  

The rest of this chapter is organised as follows. The next section tells a brief 

history of the phase that preceded the launch of Rosetta. Section 3.3 describes the birth 

of Rosetta and its associated tools. The four energy functions - especially Score12 - that 

have been adopted since 2004 are then introduced. Sections 3.4 and 3.5 explore 

technical details of the fragment picking and fragment assembly processes respectively. 

The final section is dedicated to the conclusion for this chapter. 

3.2 Pre-Rosetta Phase 

Before the launch of an ab initio protein structure prediction that is based on 

fragment-assembly, David Baker and his co-workers had been investigating some ideas 

related the conformational conservation of the short sequences found in different 

proteins (Han & Baker, 1996), the recurring short sequence motifs used to identify 

protein family borders (Han & Baker, 1995) and the strong correlations between local 

sequences and structures (Bystroff et al., 1996). Regardless of a specific secondary 

structure, their thorough study illustrated that the sequence-structure correlation shows 

dramatically increasing relative entropy as the length goes from 3 to 8 amino acids, then 

a slow increase till 10 amino acids (the peak of relative entropy value) followed by a 
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slow decrease till 15 amino acids. More specifically, the authors investigated some 

inconsistencies researchers had faced to reach an accurate local sequence-structure 

mapping. Taking into account fragments of length range of 3 to 15 amino acids, another 

study was conducted to investigate all types of fragments including those that lie in a 

transition region between different secondary structures; the latter was considered new 

as previous papers had excluded such parts. Some “ideal” sequence lengths were found 

as follows: 13 and 15 amino acids for helix caps (helix-turn-helix motifs), 7 to 11 for 

helices, 3 and 5 for β-strands, loops and turns. As for the transition fragments results 

were not as accurate as pure secondary structure regions, however sequences of length 7 

and 9 residues showed some level of successful mapping for turn-to-sheet. Furthermore, 

another study reveals that local sequence motifs that are likely to recur within a protein 

family. They concluded that local interactions favour a limited number of substructures 

which in turn dramatically decreases the search space or, in other words, decreases the 

entropy. The University of Washington’s group suggested that most probably this is 

what happens in vivo giving a reasonable explanation of the fast folding process. All 

those findings had paved the way for the Baker research group to adopt a simple 

hypothesis: a protein structure can be constructed from a set of short substructures.  

In 1997, an “informal Rosetta” paper was published by the Baker lab describing 

a relatively simple algorithm for predicting the tertiary structure of a protein using a 

fragment assembly approach aided by simulated annealing and a Bayesian scoring 

function (Simons et al., 1997). Although some concepts have been changed in the 

subsequent releases, one can consider this paper as the first step towards Rosetta. Once 

fragments are determined based on sequence similarity a purely knowledge-based 

scoring function is employed for measuring non-local interactions to build the final 

conformation. An important particularity of this scoring function is the exploitation of 

Bayes’ statistical theorem using a large database where the sequences have known 

structures: 

 

P (Structure | Sequence) = P (Structure) x  P (Sequence |Structure) 

P (Sequence) 

The meaning of the above formula is quite simple: looking for the most likely 

structure that could be associated with a given sequence. In short, some fragment-

assembled conformations, even lacking any steric collisions, are not likely to be found 

in nature. P(structure), which is a sequence-independent term, is proportional to the 
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value of exp(-radius of gyration2) since an assembled conformation that doesn’t comply 

with some structural constraints often leads to a more expanded shape than the native 

one. On the other side, P (Sequence |Structure) captures some sequence-dependent 

criteria such as amino acid propensities and the positions of hydrophobic residues. 

Simulated annealing along with the Metropolis criterion was used as a search paradigm 

where each move is simply a substitute of a 9-residue fragment. Each amino acid is 

represented by the main chain’s heavy atoms and the Cβ of the side chain (a virtual one 

is created for glycine). Less than two years later, a follow-up paper was published 

suggesting an improvement to the scoring function (Simons, Ruczinski, et al., 1999). 

They introduced some sequence-independent terms, such as the properties of packing β-

strands to form β-sheets, besides the old sequence-dependent ones; yet using the same 

Bayes’ statistical theorem. 

 David Baker and Christopher Bystroff contributed to CASP2 in the “ab initio” 

category (8 targets) under the group “BAKER” relying on the publications mentioned in 

the previous paragraph; the fragment library was called “I-Sites” and comprised 

fragments of 3 to 15 residues length (Bystroff & Baker, 1997). Although, overall, the 

results were not good, they succeeded to reach a reasonable accuracy for one target.  

3.3 Rosetta’s History and Development; At a Glance 

The first paper in which “Rosetta” appeared in the literature was in 1999, 

entitled “Ab initio Protein Structure Prediction of CASP III Targets Using ROSETTA” 

(Simons, Bonneau, Ruczinski, & Baker, 1999). Whilst keeping the same knowledge-

based energy function mentioned in the previous section, they finally decided to adopt 

fragments of fixed size; 9-mers represented the core of the building process, whereas 3-

mers played a refinement role. Since then, those fragments’ lengths have been 

continuously adopted in Rosetta. Results were truly encouraging; The group was ranked 

the best in the ab initio PSP category (Orengo, Bray, Hubbard, LoConte, & Sillitoe, 

1999) in CASP3. 

In 2003, Robetta went online – Robetta Server - allowing users to submit their 

sequences for prediction using either comparative modelling or ab initio. Moreover, 

users could build Rosetta’s fragments online for local execution of Rosetta (Kim et al., 

2004a). In 2005, Rosetta@Home, a distributed grid computing systems, that uses 

volunteers’ idle processors all around the world to execute processes related to different 

Rosetta applications and studies including CASP predictions, was introduced (Baker, 
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2014; Das et al., 2007; Tyka et al., 2011). Besides Rosetta@Home, another initiative 

was taken to involve the public mainly in protein structure prediction; a game called 

“Foldit” was launched in 2008 (Cooper, Khatib, et al., 2010). Outcomes have been 

beyond the developers’ expectations as valuable findings were found out and published 

based on this work (Cooper, Baker, et al., 2010; Eiben et al., 2012; Gilski et al., 2011; 

Khatib et al., 2011). A highly improved version called “Foldit StandAlone” was 

recently made available (Kleffner et al., 2017). In 2012, a much bigger server than 

Robetta called ROSIE (the Rosetta Online Server that Includes Everyone) was launched 

(Lyskov et al., 2013). Currently it includes 18 Rosetta applications that can be executed 

without usage of local computers. It is worth noting that Rosetta@Home is used to run a 

large amount of processes being submitted every day to ROSIE. 

3.4 Energy Functions 

Rosetta’s energy function, which combines knowledge-based and physics-based 

terms,  has passed through four main phases: Score12 (Rohl, Strauss, Misura, et al., 

2004), Talaris13 (Leaver-Fay et al., 2013), Talaris14 (O’Meara et al., 2015) and 

REF2015 (Alford et al., 2017). Relying mainly on the new Dunbrack rotamer library 

(Shapovalov & Dunbrack, 2011), a wider range of experimentally high resolution 

conformations in the PDB, and a thorough optimisation process to adjust weights, 

Talaris13 was introduced instead of Score12. Talaris14 was simply an error-corrected 

version of Talaris13 as only a hydrogen bond’s weight was changed and the remaining 

weights were adjusted accordingly. Although the paper giving details of Talaris14 

paper was published in 2014, its widespread usage commenced in 2016. REF2015 has 

been the official energy function since July 2017; it includes some updates such as 

optimised electrostatic parameters and additional terms using the Lennard-Jones 

potential for hydrogen atoms. It is worth mentioning that the four versions of the energy 

functions comprise weighted-based terms and the changes that took place cannot be 

considered as “major”. Moreover, the unit of all energy functions is Rosetta energy unit 

(REU); a Rosetta-specific metric that cannot be converted into standard physical units 

such as kilo calories per mole (kcal/mol). Chapters 4, 5 and 6’s experiments were all 

carried out using Score12.  

3.4.1 Score12 

The Score12 force field lasted around 10 years as the default energy function of 

Rosetta3 (Rohl, Strauss, Misura, et al., 2004). It has been considered the “gold 
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standard” as during those years Rosetta achieved many milestones such as reaching 

native-like conformations for small proteins (Song et al., 2005) as well as some of 

CASP’s targets’ for high accurate predictions (Bradley et al., 2005; Chivian et al., 2005; 

Das et al., 2007; Raman et al., 2009). The Score12 energy function comprises two 

versions: coarse-grained for low resolution, where a residue is represented by the 

backbone’s heavy atoms besides the centroid of the side chain, and fine-grained for high 

resolution, that is, for all-atom representation. Low resolution terms include (1) 

secondary structure pairing terms – a knowledge-based score to evaluate the favourable 

hydrogen bonding value between any couple of strands and helix-strand packing, (2) 

radius of gyration, also known as packing density, which is used to favour compact 

folds using van der Waals attraction forces, (3) van der Waals repulsion term, (4) 

solvation term (Lazaridis & Karplus, 1999) that includes both a bonus and penalty value 

and (5) pair-interaction electrostatic forces for up to 12 Å distance of separation. High 

resolution terms include, in addition to the last three terms above: (1) a Hydrogen bond 

score (Kortemme, Morozov, & Baker, 2003), (2) Ramachandran and torsion angles (phi 

and psi) preferences, (3) Dunbrak rotamer energy – a knowledge-based term to assess 

the likelihood of a certain rotamer to exist (Dunbrack, 2002; Dunbrack & Cohen, 1997) 

and (4) the reference energy for each residue type in its unfolded state.  

3.5 Fragment Picking  

In 2011, a new fragment picking tool called “picker” was introduced to replace 

the old one - “nnmake” - and has been in use since then (Gront et al., 2011). The latest 

protein database file, where fragments are excised from, comprises 16,801 high 

resolution template structures of average size of 257 amino acids. The “picker” tool 

comprises three protocols: best fragments, quota and flexible loop design protocols. 

Whereas the last one is used for protein design, the first two are used for fragment 

picking. The Quota protocol is the one that is dedicated primarily for ab initio protein 

structure prediction; consequently, the one adopted in our experiments. As its name 

implies, it applies the principle of “quota” for secondary structure prediction taken from 

three different resources (explained further below).  

The scoring function, on which the selection of candidate fragments is based, is 

evaluated at each position in the sequence in question (except the last 8 and 2 positions 

in case of 9-mer and 3-mers respectively) typically to generate 25 and 200 9-mers and 

3-mers respectively. The overall scoring function is the sum of 7 weighted terms: 

secondary structure predictions from three resources, PsiPred (McGuffin, Bryson, & 
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Jones, 2000), Jufo (Leman, Mueller, Karakas, Woetzel, & Meiler, 2013) and SAM 

(Kevin Karplus, 2009), their corresponding scores in the Ramachandran map, and the 

sequence profile by PSI-BLAST (Altschul et al., 1997). It is worth noting that due to the 

overall higher accuracy achieved by PsiPred, the default factors of PsiPred, Jufo and 

SAM are 0.6, 0.2 and 0.2 respectively. . In this regard, the “quota” protocol works as 

follows. Since none of these three predictors is optimal, using a unique total score based 

on which all 9-mers and 3-mers will be selected will be a biased approach. For instance, 

if a fragment’s middle residue is predicted to be 40% a helix, 30% a strand and 30% 

loop, all fragments will be chosen as helix. Instead, “Quota” protocol will guarantee that 

the corresponding percentages of fragments will be generated from each pool. For 

example, if the three predictors provide a total probability of having a 3-mer at a certain 

position as helix is 50%, therefore, amongst the 200 3-mers, 100 fragments will be 

helical taken as follows: 60 from PsiPred, 20 from Jufo and 20 from SAM pools. See 

Figure 3.1. Moreover, in quota protocol, the overall scoring function, mentioned earlier, 

is simply useless, as the Quota scoring function for each pool takes over. In other 

words, the following three terms: profile, secondary structure prediction of the middle 

residue and the Ramachandran map probability value of the middle residue constitutes 

the scoring function based on which the fragments from the corresponding pool are 

picked. The default weights of each term are as follows: 1, 1 and 2 respectively. Note 

that the secondary structure prediction of the middle residue is the one that determines 

the “overall” secondary structure of the fragment. 

3.6 Fragment Assembly   

 Starting from a fully extended chain, the fragment assembly process takes place 

via a Monte Carlo search; a sequence window of length 9 is randomly selected and one 

of the available 25 candidate fragments in its turn is randomly selected. Once the torsion 

angles of that window are replaced by those of the chosen fragment’s, the coarse-

grained energy score is calculated; the minimisation process is performed using 

Simulated Annealing (SA)  (Kirkpatrick et al., 1983). Therefore, if the energy score 

after an insertion is smaller than that of the previous conformation, it will be accepted, 

otherwise, the Metropolis criterion (Metropolis et al., 1953), for the sake of avoiding 

getting trapped local minima, may also accept it with lower probability for larger energy 

increases. In short, probability of accepting “bad” moves, whose formula is shown 

below, decreases exponentially with the ∆E, which describes how worse the energy 

increases. 
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P =  𝑒−∆𝐸
𝑘𝑇  

Whilst k is constant known as “Boltzmann constant”, T represents the 

“Temperature”, a parameter that plays a key role in the Metropolis criterion. In natural 

annealing, temperature is first set to a high value, then, gradually, decreases until the 

material reaches the shape needed. In simulated annealing, “temperature” changes in the 

same context; it is first set to a certain high value, then decreased, consequently 

decreases the probability of accepting a “bad” move (in Rosetta, it is a fragment 

insertion that results in increasing the energy of the conformation). In both "natural" and 

"simulated" annealing, the heating and gradual cooling cycle can be repeated several 

times. Indeed, once a fragment replacement is accepted, the “temperature” is set again 

to its initial value, i.e. the acceptance probability is back to its default value. 

 

Figure 3.1: Percentages of helical (purple), coil (light blue) strand (dark blue) 

fragments, whose middle residue’s number is 39 in the sequence of Ubiquitin, 

taken from each predictor’s pool. The right-most three columns in each predictor 

show the probability of being coil, strand or helix respectively (Porter corresponds 

to Jufo). Taken from (Gront et al., 2011). 

The 9-mer insertion phase involves 28,000 insertion attempts, however terms of 

the coarse-grained energy score are added gradually. For instance, in the first 2,000 

attempts, only steric overlaps, i.e. van der Waals terms, are considered, whereas in the 

last 4,000 insertion attempts, the complete energy function is estimated. Once the 9-mer 

insertion phase is finished, 8,000 insertion attempts using fragments of size 3 are 
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performed, taking into account the whole coarse-grained energy function. After the 

overall 36,000 insertion attempts, a simulation will end up with a conformation with 

heavy backbone atoms only. Optionally, all additional atoms are then added using 

“ideal” values, and fine-tuned using an all-atom energy score, also known as a fine-

grained energy function. The technical term of this phase in Rosetta is called “relax”. In 

this thesis, all generated decoys are full-atom ones. 

3.7 Conclusion  

 Rosetta, using fragments of sizes 3 and 9 amino acids, has reached a 

“compromised” fragment length for all secondary structures and secondary structure 

motifs. Furthermore, usage of profile-profile, which has been demonstrated to be the 

state of the art for detecting homologues, in addition to secondary structure similarity 

and Ramachandran maps propensities for picking fragments has made the fragment 

picker combine both relevant sequence-dependent and sequence-independent features. 

Furthermore, the “quota” protocol has allowed Rosetta to diversify “hard” regions by 

allowing any secondary structure prediction, no matter how low its associated 

probability is, to have a “chance” in the assembly phase. Unsurprisingly, Rosetta has 

been on the top of free modelling (FM) targets in CASP12, since all the above features 

are remarkable from an FM targets’ perspective. It is worth noting that besides the two 

formal Rosetta groups, more than 12 participating groups have explicitly or implicitly 

relied on Rosetta in CASP12. 
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4 Protein structure prediction based on structural class 

annotations 

 

4.1 Introduction 

As mentioned in the previous chapters, when homologous structures are not 

available in the PDB, fragment-based protein structure prediction has become the 

approach of choice. However, it still has many issues including poor performance when 

targets’ lengths are above 150 residues, excessive running times, sub-optimal energy 

functions and specifically, quite general-purpose fragments’ libraries comprised of a 

large number of protein templates to extract fragments from. Those libraries contain a 

large variety of fragments at each position which makes the probability of picking an 

appropriate one extremely low. Such an issue has been a topic of significant importance 

as it was clearly shown that a set “good” fragments in terms of quality and quantity is 

able, to some extent, to overcome the remaining problems, especially energy functions’ 

inaccuracies (Bhattacharya et al., 2016; Handl, Knowles, Vernon, Baker, & Lovell, 

2012; S. C. Li, Bu, Xu, et al., 2008; Simoncini et al., 2017; Trevizani et al., 2017). 

Taking advantage of the reliable performance of structural class prediction software, we 

propose in this chapter to address some of the limitations of fragment-based methods by 

integrating structural constraints in their fragment selection process. Using Rosetta, we 

evaluated our proposed pipeline on 70 former CASP targets containing up to 150 amino 

acids and show how structural class predictions can be used, for the first time, as a 

valuable input for a fragments generation tool.  

This chapter is organised as follows. The next section visits the main and 

noteworthy previous studies, improvements and findings that are related to the 

fragments selection process. Afterwards, a review of proteins’ structural class 

classifications and predictions is presented followed by a detailed description of the 

proposed methodology. The last two sections present the results and discussion. Most 

importantly, a whole section is dedicated to present and discuss the results of our 

contribution to CASP11 using this methodology.  

4.2 Related Work and Motivation 

All fragment-based protein structure prediction methods described in the 

literature review are sequence-dependent since fragments are extracted from templates 
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selected using sequence-based information. However, it has also been proposed to 

create databases of fragment models, which are chosen independently of their amino 

acid compositions to constitute conformation assemblies (Baeten et al., 2008; Kolodny, 

Koehl, Guibas, & Levitt, 2002; Vanhee et al., 2011). Fragments are only defined by 

their ‘shape’ and substituted into the query sequence at positions where amino acids can 

conform to those shapes. Although such techniques have not been competitive against 

sequence-dependent predictors, they have shown interesting results in modelling loops 

(Kolodny et al., 2002; Vanhee et al., 2011).  

 A promising approach has been the integration of spatial constraints within 

standard fragment-based systems. So far, this has been performed using predicted 

contact maps – a matrix that represents the approximate value of the distance between 

each pair of amino acids (Kosciolek & Jones, 2014; Mao, Tejero, Baker, & Montelione, 

2014; M. Michel et al., 2014; Mirco Michel, Menéndez Hurtado, Uziela, & Elofsson, 

2017; Ovchinnikov et al., 2017; Ovchinnikov, Kim, et al., 2016; Ovchinnikov, Park, et 

al., 2016; Ramelot et al., 2009; S. Wu, Szilagyi, & Zhang, 2011). However, since 

accurate prediction of a contact map currently relies on the availability of a relatively 

large protein family (ideally more than 1000 homologous protein sequences) (Skwark, 

Raimondi, Michel, & Elofsson, 2014), their usage is not suitable for all protein targets. 

Moreover, low quality contact maps lead invariably to poor models, since incorrect 

constraints prevent appropriate exploration of the native structure conformation space. 

As a conclusion, there is a need for the design of alternative constraints to fragment-

based protein structure prediction. 

Although fragment assembly methods have been ranked as the most successful 

techniques for free-modelling predictions, yet many issues remain and need to be 

addressed (Dill & MacCallum, 2012). First, successful attempts to produce accurate 

conformations have been mainly restricted to targets whose lengths are less than 100 

residues (Xu & Zhang, 2012) due to the enormous search space, even though protein 

fragments are used instead of individual amino acids. Second, even for small proteins, 

processing times are prohibitive for the typical user; Rosetta, for instance, needs on 

average 150 CPU days per target (S. Wu et al., 2007). Third, despite effective use of 

Monte Carlo simulations along with fragment replacements, a structure’s global energy 

minimum is likely to be missed. In addition, the design of the most appropriate force 

field is still open research question as current ones often fail to recognise native 

structures (Jooyoung Lee et al., 2009; Xu & Zhang, 2012). Finally, the large number of 
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decoys produced by most of those methods constitutes an additional barrier to 

identification of native-like conformations since there is no straightforward 

correspondence between free energy values and similarity to a native structure. As a 

consequence, design of model quality assessment programs has become an active 

research area of its own (R. Cao, Wang, Wang, & Cheng, 2014; Konopka et al., 2012). 

4.3 Protein Structural Class Classifications 

Categorisation of protein structural classes was first introduced by Levitt and 

Chothia in 1976 (Levitt & Chothia, 1976) when proteins were found to belong to one of 

four classes: (1) all-alpha proteins; (2) all-beta proteins; (3) alpha + beta proteins where 

beta strands tend to be segregated and are likely to form antiparallel beta sheets; (4) 

alpha / beta proteins where alpha helices and beta strands are rather mixed and therefore 

polypeptide chains are expected to contain parallel beta sheets. Two decades later, 

Chothia and co-workers established a manually curated online database the Structural 

Classification Of Proteins (SCOP) (Murzin, Brenner, Hubbard, & Chothia, 1995). The 

first level of its hierarchy was initially divided into five classes: the original four and a 

‘multi-domain’ class. Later on two further classes were added, namely ‘Membrane and 

cell surface proteins and peptides’ and ‘Small proteins’ (SP) (Lo Conte, Brenner, 

Hubbard, Chothia, & Murzin, 2002). However, currently only the “small proteins” class 

exists in the database besides the original four (Andreeva et al., 2014). 

Two years after the initial release of SCOP, an alternative database, CATH – 

named after the first four levels of its hierarchy: Class, Architecture, Topology and 

Homology – was established (Orengo et al., 1997). Since this showed that there was no 

clear separation between alpha + beta and alpha/beta proteins (Berman et al., 2000; 

Michie, Orengo, & Thornton, 1996), CATH has been based on only 4 classes: (1) 

mostly alpha; (2) mostly beta; (3) alpha beta and (4) Few secondary structures (FSS) 

(Sillitoe et al., 2015). Despite differences between SCOP and CATH, a comparative 

study (Csaba, Birzele, & Zimmer, 2009) has shown the top level of both hierarchies, i.e. 

‘Class’, is relatively consistent in comparison to the remaining levels since it is defined 

according to high level structural features. 

Assigning a protein structure to a specific class is not trivial. Whereas CATH 

uses an automated and explicit method (Michie et al., 1996), SCOP relies on manual 

inspection. Except for discrimination between ‘alpha/beta’ and ‘alpha + beta’, the 

critical criterion is the percentage of helix and strand content of the protein structure. 
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Many studies have been conducted to establish the best thresholds for classification, 

which led to a variety of values (K.-C. Chou, 1995; K.-C. Chou, Liu, Maggiora, & 

Zhang, 1998; P. Chou, 1989; Eisenhaber, Frömmel, & Argos, 1996; Klein & Delisi, 

1986; Kneller, Cohen, & Langridge, 1990; Kurgan, Zhang, Zhang, Shen, & Ruan, 2008; 

Nakashima, Nishikawa, & Ooi, 1986). Eventually, a thorough comparative study 

established that the 15% helix and 10% strand thresholds are optimal – those are used 

by CATH - see Figure 4.1- even if overlapping regions exist between adjacent classes 

(L. A. Kurgan et al., 2008). Some instances of disagreement between CATH and SCOP 

structural class classification are mainly a result of the disagreement of domain 

classification in the first place, especially between ‘alpha+beta’ and ‘mainly beta’. This 

is due to two causes: the similarity of beta sheets in both classes and whether an alpha 

helix can be considered a part of the domain or simply a peripheral. Example of such a 

disagreement between SCOP and CATH is the haemagglutinin (PDBID: 1HGG). 

Whilst SCOP considers it as mainly-beta ignoring a helical part, CATH treats the whole 

conformation as one domain and classifies it under alpha-beta (Hadley & Jones, 1999). 

It is worth noting that CATH employs the distance between various secondary structure 

as a secondary criterion for classification to cope with this problem. Based on certain 

thresholds (H-H: 8Å, H-E: 10Å and E-E: 21Å), a secondary structure element can be 

considered then whether it is a part of the folding unit or not.  

Figure 4.1: Scatter plot of helix and strand content percentages (X-axis and Y-axis 

respectively) for a large set of proteins classified as either all-alpha or all-beta 

classes. Taken from (Kurgan, Zhang, et al., 2008). 
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Since knowledge of a protein’s structural class based on its sequence may reveal 

crucial information concerning folding types and functions (K.-C. Chou, 2005b; K.-C. 

Chou & Zhang, 1995) and can be considered as a first step towards solving the structure 

prediction problem, sequence based class prediction has become an active research area 

(K.-C. Chou, 2011). Proposed approaches take advantage of either 1) machine learning 

techniques such as Support Vector Machines (SVM) (Anand, Pugalenthi, & Suganthan, 

2008; Dehzangi, Paliwal, Lyons, Sharma, & Sattar, 2014; Hayat & Khan, 2012a), 

Artificial Neural Networks (Jahandideh, Abdolmaleki, Jahandideh, & Asadabadi, 2007), 

rough sets (Y. Cao et al., 2006), bagging (Dong, Yuan, & Cai, 2006), ensembles (Chen, 

Kurgan, & Ruan, 2008; Dehzangi, Paliwal, Sharma, Dehzangi, & Sattar, 2013; Hayat, 

Khan, & Yeasin, 2012; J.-Y. Yang, Peng, & Chen, 2010) and Meta-Classifiers (Cai, 

Feng, Lu, & Chou, 2006; Feng, Cai, & Chou, 2005); or 2) features that reveal class-

related information like physiochemical-based information (Dehzangi et al., 2013; Z.-C. 

Li et al., 2008), pseudo amino acid composition (K.-C. Chou, 2000; Y.-S. Ding, Zhang, 

& Chou, 2007), amino acid sequence reverse encoding (Deschavanne & Tufféry, 2008; 

Mizianty & Kurgan, 2009), Position Specific Scoring Matrix (PPSM) profile (Hayat & 

Khan, 2012b) and structural based information including secondary structure prediction 

(Jones, 1999; Kurgan & Chen, 2007; Kurgan, Zhang, et al., 2008; Tian Liu & Jia, 

2010). Detailed reviews can be found in (K.-C. Chou, 2005a; Kurgan & Homaeian, 

2006). Although state-of-the-art tools, including SCPRED (Kurgan, Cios, & Chen, 

2008), MODAS (Mizianty & Kurgan, 2009), RKS-PPSC (J.-Y. Yang et al., 2010), 

PSSS-PSSM (S. Ding, Li, Shi, & Yan, 2014), AADP-PSSM (Taigang Liu, Zheng, & 

Wang, 2010), SCEC (Chen et al., 2008), AATP (S. Zhang, Ye, & Yuan, 2012), AAC-

PSSM-AC (Taigang Liu, Geng, Zheng, Li, & Wang, 2012) and PSSP-RFE (L. Li et al., 

2014) report overall accuracy up to 90%, challenges remain, in particular with proteins 

with low sequence similarity and discrimination between alpha/beta versus alpha + beta 

classes (S. Ding et al., 2014). It is worth noting that most tools only deal with the four 

original SCOP classes which comprise around 90% of annotated domains (K.-C. Chou, 

2005a). 

4.4 Proposed Methodology 

4.4.1 Overview 

As highlighted in the literature review chapter, the main limitation of fragment-

based protein structure prediction approaches, as with all ab-initio methods, is their 

inability to sample efficiently the enormous protein configuration space which increases 
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exponentially with protein sequence length. However, production of accurate 

predictions is improved if, for each given position, there is high proportion of available 

fragments fitting closely to the native one (Handl et al., 2012): the higher the quality of 

the fragment libraries, the more focus the conformation search is on the sub-space 

containing the native structure. We propose to exploit this property by further 

customising fragment libraries according to the nature of the protein target. More 

specifically, we suggest tailoring the set of template proteins which are the source of 

those libraries so that their quality is increased by removing unnecessary and misleading 

conformations. We formulate the hypothesis that protein structures which share 

structural information with a protein target are more likely to provide better fitting 

fragments than structurally unrelated proteins. Since sequence based structural class 

prediction has become relatively mature, we have decided to use such information to 

select the relevant template structures. 

From those principles, we have designed this new fragment-based protein 

structure prediction methodology, see Figure 4.2. First, the structural class is predicted 

from the amino acid sequence of the protein target. Second, a target specific list of 

template structures is generated by taking the intersection set between the high-

resolution templates sharing the same structural class from the default template protein 

set (a subset of the PDB) and Rosetta’s default database of templates – Vall - which 

contains 16,801 template structures of average length of 257. Finally, the target 

sequence and its associated template list are submitted to a fragment-based protein 

structure prediction, which produces customised fragment libraries and generates a set 

of putative structures of the protein target (Abbass & Nebel, 2015). 

 

Figure 4.2: Proposed fragment-based protein structure prediction methodology. 
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In this chapter, we conduct an exhaustive evaluation of our methodology on a 

set of recent CASP targets. First, we provide a detailed presentation of the proposed 

methodology for fragment-based protein structure prediction. Second, we compare the 

quality of decoys with and without class annotations, including the case when structural 

classes are predicted from a sequence. Third, we analyse the influence of the class type 

on structure prediction performance. Fourth, we study the impact of using class 

annotations in terms of convergence towards the best conformation. Fifth, a blind 

assessment of the models is conducted. Finally, we discuss the validity of the proposed 

methodology and its potential application.  

4.4.2 Procedure 

4.4.2.1 Fragment-based Protein Structure Prediction Software 

In Rosetta, fragment-based protein structure prediction relies on high resolution 

template proteins from which to excise fragments. When using the standard Rosetta 

framework, the database of template proteins on Rosetta’s web server can be used (Kim, 

Chivian, & Baker, 2004b). However, the Rosetta package also offers the facility – a 

local fragment builder called ‘Fragment_Picker’ (Gront et al., 2011) and a local copy of 

the database of template proteins called “vall” – to build user-specific fragment libraries 

by using a user defined set of templates. Indeed, the standard Rosetta set of fragments 

can be built either using Rosetta’s fragment picker’s web server or using the Rosetta 

suite’s built-in fragment picker.  

Here, our approach takes advantage of that capacity under the ‘Quota’ protocol 

which is specifically designed for ab initio predictions, so that the high-resolution 

template proteins selected by structural class annotation of the target become the source 

of the fragment libraries. We have used the latest version of the “vall” supported by 

Rosetta3, which comprises 16,801 high resolved proteins of different classes and folds 

and of average length of 257 amino acids. A list of a class’s PDB code is provided to 

the “Fragment_Picker”, so that the intersection of that set and “vall” is used as the 

fragment libraries’ source. Details about the size of each subset are found in Table 4.1. 

As shown, the new set of templates has dramatically decreased in size; for instance, for 

CATH’s mainly alpha-based predictions, only 1,905 out of 16,801 are used. 

Furthermore, CATH’s template libraries are larger than SCOP’s, except for the few 

secondary structures. The versions of CATH and SCOP used in this study are 4.0 and 

1.75 respectively; the ones adopted by the PDB.  
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Table 4.1: A comparison showing the difference in terms of the number of template 

structures amongst the standard, CATH and SCOP-based experiments. The first part– 

light grey shaded – is dedicated to CATH whereas the second one – darker grey shaded – 

is related to SCOP. The second and fourth rows show the exact number of templates used 

to build each of the 9 customised fragment libraries (4 for CATH and 5 for SCOP). In 

both rows, one would notice that the total number of templates is not equal to the size of 

the VALL, this due to the fact that some proteins in VALL were not annotated by CATH 

or SCOP, consequently they were excluded.  

CATH Structural 

Classes 

(Number of Templates) 

Mainly Alpha 

(10,194) 

Mainly Beta 

(10,532) 

Alpha Beta 

(22,685) 

FSS 

(531) 

Templates Common 

with VALL (16,801) 

1,905 1,826 5,119 84 

SCOP Structural 

Classes 

(Number of Templates) 

All Alpha 

(4,807) 

All Beta 

(7,534) 

Alpha + Beta 

(7,824) 

Alpha/ Beta 

(9,186) 

SP 

(853) 

Templates Common 

with VALL (16,801) 

1,149 1,270 1,672 2,128 152 

 

4.4.2.2 Structural Class Annotations 

Our novel approach relies on structural class annotations of target sequences. 

Both SCOP and CATH are widely used databases, attracting diverse publics according 

to appreciation of their different degrees of automation. Since SCOP-based annotations 

rely largely on a manual process, they are preferred by many biologists as it is seen to 

be “more natural” (Kurgan, Zhang, et al., 2008). On the other hand, CATH’s higher 

degree of automation makes annotations more systematic and allows processing a larger 

share of the PDB. Here both classification schemes are considered in our evaluation. 

Since we wish to both validate the concept of using class-specific fragment libraries for 

protein structure predictions and demonstrate its practicality, all protein targets were 

annotated twice based on either their known structure – classifications seen as the gold 

standard - or their sequence. 

First, structural class annotations, according to both SCOP and CATH 

classifications, were conducted on all protein targets using their structure. Note that all 

selected targets only contained a single domain. Initially, when available, annotations 

were extracted from the SCOP and CATH databases. If a target was present only in one 
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of the two, the second annotation could generally be deduced directly. However, in the 

case of a protein belonging to CATH’s class ‘alpha beta’, manual inspection was used 

to allocate it to either the alpha/beta or alpha + beta class in the SCOP classification. 

Alternatively, when targets did not have any annotation in either database, we classified 

them manually based on the secondary structure content of their PDB entry as provided 

by the Dictionary of Secondary Structures of Protein (DSSP) (Kabsch & Sander, 1983) 

and the thresholds adopted by CATH (Michie et al., 1996). 

Second, class annotations were predicted from the sequence alone. As seen in 

the “Protein structural class classifications” section, structural class prediction is a very 

mature field where accuracy reaches up to 90%. Among the most competitive methods, 

MODAS (K.-C. Chou, 2000) - MODular Approach to Structural class prediction – is 

particularly suitable for our application since it is freely available online and it provides 

predictions for the main classes of SCOP, from which CATH-like annotations can 

automatically inferred. MODAS classifiers are based on a SVM which operates on 

combined features from both predicted secondary structure and multiple sequence 

alignment profiles. 

4.4.2.3 Evaluation Framework 

In order to evaluate the proposed framework, predictions have to be performed 

using protein sequences the structures of which are known. Since we intend to simulate 

ab initio protein structure prediction, it is important to make sure that information about 

the actual native and potential homologous structures is not exploited. As a 

consequence, we have excluded all homologues in all experiments (we haven’t included 

this step in Figure 4.2 for the sake of simplicity). There are several criteria to run a 

template-free protein structure prediction in the literature; in all our experiments – in 

this chapter and next two – we have stick to Rosetta’s “default” ab initio predictions’ 

policy. This is achieved during the fragment building process where all proteins that are 

classified as homologous are excluded from the database of protein templates known as 

“vall”. Such a classification is mentioned in Baker lab’s de novo key experiments (Song 

et al., 2005) and defined by the “exclude homologous” flag on the “fragment-picker” 

online server: to remove all proteins that appear in the result of running PSI BLAST of 

the protein target against the database of templates where the E-value’s threshold is 

0.05. Position specific iterative BLAST (PSI-BLAST) is arguably one of the most 

popular and successful multiple sequence alignment tools due to its ability to detect 

remote homologous. The PSI-BLAST’s E-value, for a particular database size and 
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sequence size, is the expected number of hits in order to receive a sequence comparison 

score by chance as good as the one observed. For instance, a hit of E-value of 10 – the 

PSI-BALST’s default value – simply means that using the same database and size of 

sequence in question, one might expect to see 10 hits having the same sequence 

similarity score. Although E-value is not a probability, very low values (typically less 

than 0.01) are interpreted to be closely identical to p-values, (see 

https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html). 

First, structural class annotation is conducted according to the aim of the 

experiment, i.e. concept validation or practicality demonstration using either CATH or 

SCOP. Second, all structures of the “vall” belonging to same structural class are 

extracted. Note that “vall” already contains high-quality templates since a 2.5 Angstrom 

resolution cut-off was already applied to produce high quality fragments. Third, the 

target and all its homologues (based on PSI-BLAST with an E-value < 0.05) were 

removed from the set of collected structures. Fourth, the fragment libraries were 

constructed by providing Rosetta’s fragment-picker with this set of protein templates. 

All the default options – see chapter 3 - were kept including parameter weights and the 

number of fragments at each position, i.e. 25 for 9-mers and 200 for 3-mers. Finally, 

since picking and assembling fragments to construct a whole conformation is a 

stochastic process that relies on Monte Carlo simulation, it needs to be performed a 

large number of times. As it is appropriate to produce as many as possible structures for 

each target in an attempt to cover the highest number of permutations amongst the total 

number of fragments, the recommended value of 20,000 models was chosen for all 

experiments (Barth et al., 2007). 

 
4.4.2.4 Dataset, Databases and Software Tools 

The target dataset comprises 70 proteins selected from the latest CASP contests. 

First, only proteins containing fewer than 150 amino acids were considered, since larger 

targets would show a complexity which is generally believed to be beyond the 

capabilities of Rosetta. Second, the selection process was aimed at producing a set of 

FM targets showing diversity in terms of structural class. However, in order to be able 

to produce statistically significant results, the initial set was extended using TBM 

targets. In any case, the experimental protocol was designed so that predictions would 

be made independently of the presence of homologous structures in the template set. 

 

https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
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In terms of structural class prediction, the two main classification schemes, i.e. 

CATH and SCOP, were considered. Class annotations used in experiments were 

collected from two sources: annotations based on actual protein structures – which are 

treated as the gold standard - and sequence-based predictions performed by MODAS. 

Finally, structure prediction was performed using the fragment based de novo protein 

structure prediction software offered by the Rosetta suite. Evaluation of the structures 

was performed using the GDT metric.  

 

4.5 Results 

The results are divided into two main parts. First, the quality of the decoys 

generated by each methodology is extensively presented and compared, without taking 

into consideration the energy scores. Second, the first model – the conformation that is 

associated with lowest energy score – is also compared amongst the three different 

experiments.  

Since we have used different fragment libraries, this led to new areas in the 

search space being explored. Decoys’ quality - regardless of the corresponding energy 

scores - is thoroughly discussed in the next three sub-sections. Since a very specific set 

of structures is used from which to extract fragments, each of the customised libraries is 

“narrower” than the standard one. Accordingly, the exploitation process has limited the 

number of funnels to be explored, ideally revealing more local minima in relatively 

small areas. The second part is dedicated to the blind assessment of our new 

methodology by comparing the first model – the conformation that corresponds to the 

lowest energy score - of each set of decoys; the same way CASP evaluates competitors’ 

models.  

4.5.1 General Performance 

We have investigated two methods to compare the quality of decoys: the best 

decoy and the average of the best 10 decoys, both out of 20,000. All data are found in 

Table 4.2. This shows our approach gives an overall tangible improvement in terms of 

GDT, although CATH tends to be better for the best decoy. For the sake of evaluation 

and comparison (the current section and subsequent two sections), we will adopt the 

“average of best 10 decoys” since it is a much fairer assessment of the experiments by 

avoiding any real chance of a “lucky hit”. Moreover, given inaccuracies of the energy 

function and the challenges in the area of quality assessment, the set of the best 10 
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decoys is more likely to be hit by the conformations associated with lowest energy 

scores.  

Table 4.2: Overall improvements in terms of GDT of CATH and SCOP-based 

experiments. 

 GDT overall improvement 

of CATH-based 

experiments 

GDT overall improvements of 

SCOP-based experiments 

Best decoy 6.3% 5.8% 

AVG of Best 10 decoys 6.8% 6.9% 

 

First, the quality of the models generated by the standard Rosetta framework, i.e. 

without using any structural class annotation, is compared to those produced using the 

“gold standard”, i.e. structure based, class annotations. As Tables 4.2 and 4.3 show, the 

average performance for the 70 targets in terms of GDT demonstrates that class 

annotation allows better structure prediction (~7% improvement). This difference is 

statistically highly significant since the p-value < 0.0005. On the other hand, there is no 

significant difference between the SCOP and CATH based approaches (p-values > 

0.05). The p-value is calculated as the probability associated with the Student’s t-test. 

Since we are using the same set of protein targets, however, using two different ways of 

predictions – the standard and our customised ones – a paired two-tailed t-test is 

obtained as a paired two-tailed distribution of both datasets: 70 GDT of standard 

predictions and their corresponding GDT of, for instance, CATH-based predictions. 
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Table 4.3: Average performance (and standard deviation) in terms of GDT and associated 

p-values. Sequence based annotations are the one taken from MODAS predictions. GDT is 

the average of the GDT_TS of the 70 targets, which in turn, is the average of the highest 

10 scores. The p-value is calculated from the large dataset of GDT – 70 values for each 

experiment- and not using the averages. 

 No class 

annotation 

CATH class annotation SCOP class annotation 

  Structure based Sequence 

based 

(MODAS 

predictions) 

Structure based Sequence 

based 

(MODAS 

predictions) 

GDT 

Mean 

(Std. 

Dev.) 

46.04 (13.89) 48.62 (14.22)  

p = 0.0002 

47.64 (14.10) 48.92 (14.97)  

p = 0.0004 

48.31 (15.14) 

 

In addition, Table 4.3 reveals that predictions based on MODAS automatic 

annotations are only marginally worse than those based on structure-based class 

annotations, especially for SCOP. This can be explained, firstly, by the very good 

accuracy of MODAS predictions and, secondly, by the fact that misclassifications only 

appear between classes with blurred borders (Michie et al., 1996). Comparison between 

structure and sequence-based annotations shows that 78.5% and 81.4% of classes have 

been correctly predicted by MODAS for SCOP and CATH respectively. As expected, 

there is higher accuracy for CATH since there is no differentiation between alpha/beta 

and alpha + beta classes. Indeed, the confusion matrix shown in Table 4.4 highlights 

that confusion only occurs between alpha and alpha-beta, or beta and alpha-beta, or FSS 

and alpha-beta classes (misclassifications happen since targets lie on the border between 

those classes), but never between alpha and beta classes. Those results demonstrate that 

usage of a structural class predictor makes our pipeline practical and allows the 

generation of better models than those produced by the standard Rosetta framework. 

Since structural class prediction is an active research area, there is no doubt that 

performances obtained with predicted classes will get even closer to those attained with 

actual classes in the near future. Given that the aim of this contribution is to 

demonstrate and analyse the value of fragment libraries generated from class specific 
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templates, the remaining analysis in this chapter concentrates on results generated from 

structure-based class annotations. 

Table 4.4: Confusion matrix showing CATH classes versus MODAS predicted ones 

Predicted/ Gold standard Alpha Alpha_Beta Beta FSS 

Alpha 15 1 1 0 

Alpha_Beta 2 25 3 3 

Beta 0 4 14 0 

FSS 0 0 0 3 

 

As Figure 4.3 shows, predictions based on structural class annotations 

outperform standard ones for a majority of targets. Actually, a higher GDT value is 

obtained for 70.0% and 78.6% of the targets using CATH and SCOP respectively 

(Figures 4.3 and 4.4). Correlation coefficient between Standard and CATH-based data 

sets (70 pairs of corresponding values) is approximately 0.92 whilst for SCOP-based is 

0.90; both show very strong correlations. More detailed information regarding the 

amount of improvements and declines is shown in Table 4.5.  
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Figure 4.3: GDT of standard predictions versus CATH -based predictions for the 

70 targets; 49 targets out of 70 show higher accuracy; linear regression line is 

shown in navy blue. Overall, our customised predictions show an improvement of 

6.8%. Correlation coefficient between the two data sets (each of 70 values) is 0.92 

 

4.5.2 Performance According to Structural Class 

Since SCOP and CATH-based produces similar results, we can conclude that 

those classifications are equally informative in terms of protein template selection; 

however, that may not be case for all classes. Hence, we have conducted a more in-

depth analysis by focusing on performance enhancement according to the structural 

class of the target (see Table 4.6). First, whatever the classification, targets from all 

main classes benefit significantly from template selection: the number of targets with 

models displaying a better GDT is between 61.1% and 100.0%. Interestingly, targets 

combining Alpha and Beta structures seem to gain more from the proposed 

methodology. One may suggest that, since structural discontinuities between secondary 

structure elements are key to a protein conformation, using libraries with a higher 

content of alpha to/from beta transition fragments leads to better conformation 

predictions. 



91 

 

 

Figure 4.4: GDT of standard predictions versus SCOP-based predictions for the 70 

targets; 55 targets out of 70 show higher accuracy; linear regression line is shown 

in navy blue. Overall, our customised predictions show an improvement of 6.9%. 

Correlation coefficient between the two data sets (each of 70 values) is 0.9 
 

 

Table 4.5: Performance comparison for the 70 targets. In both customised predictions, 

approximately a 5-point increase on the GDT score is recorded on average, which 

corresponds to 11% of the standard predictions’ GDT value.  

 Percentage of improved 

targets 

(average GDT change) 

Percentage of 

unaffected 

targets 

Percentage of worsened 

targets 

(average GDT change) 

CATH 70.00%  

(+4.77, i.e. +11.19%) 

0.00% 30.00%  

(−2.53, i.e. -4.83%) 

SCOP 78.57%  

(+4.77, i.e. +10.98%) 

0.00% 21.43%  

(−4.01, i.e. -8.07%) 

 

Secondly, as expected, association to less common classes that are not specific 

in terms of structural content, i.e. Few Secondary Structures (FSS) and Small Proteins 
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(SP), seem to be less beneficial with (SP) or even detrimental (FSS) to structure 

prediction. Although one should be cautious when discussing results for such a small 

number of targets, the fact that the number of templates associated with those classes is 

an order of magnitude lower than those of the main classes may also lead to the 

generation of fragment libraries which do not cover sufficiently the conformation space. 

Thirdly, SCOP-based predictions lead to a marginally higher number of targets with 

improved models (see Table 4.6 for details). One can also note that, except in the case 

of SP and FSS classes, the number of templates does not seem to impact on structure 

prediction. 

Table 4.6: Performance comparison according to structural class 

 CATH-based predictions SCOP-based predictions 

Targets Class Proportion of 

Targets with 

better GDT 

Class Proportion of 

Targets with 

better GDT 

16 Mainly Alpha 75.0% All Alpha 75.0% 

18 Mainly Beta 61.1% All Beta 77.8% 

33 (29+ 4) Alpha Beta 75.8% Alpha + Beta 86.2% 

Alpha / Beta 100.0% 

3 Few 

Secondary 

Structures 

33.3% Small Proteins 66.6% 

70 All 68.6% All 81.4% 

 

4.5.3 Convergence towards native-like conformations 

Although we have shown that methods relying on structural class-based libraries 

generally generate better conformations than the standard Rosetta framework, it is 

important to know if this leads to a notable change in terms of model quality. To 

address this question, we performed classification of the average of the best 10 model 

for each target according to thresholds adopted in the literature. Production of models 

the GDT of which are above 40 is particularly important since their conformation is 

believed to have the same ‘shape’ as the target, which may reveal crucial information 
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about potential proteins’ functions (Abbasi, Ghatee, & Shiri, 2013; Kavousi, Moshiri, 

Sadeghi, Araabi, & Moosavi-Movahedi, 2011). Models whose GDT value is greater 

than or equal to 85 are judged convenient to solve the phase problem in crystallography 

(Giorgetti, Raimondo, Miele, & Tramontano, 2005). Conformations with GDT higher 

than 59 are believed to be ‘good enough’ (S. Shi et al., 2009), whilst structures with 

GDT lower than 40 are considered of poor quality or even random (Kalman & Ben-Tal, 

2010; J. Zhang et al., 2010). Consequently, we will adopt the following thresholds and 

associated classes: “Poor” for GDT < 40, “Moderate” for GDT between 40 and 59, 

“Good” between 60 and 84, and “High Quality” for GDT > 84. As Figure 4.5 shows, 

whereas the standard Rosetta framework is able to produce informative models for 

61.4% of the targets, both SCOP and CATH-based schemes deliver a much larger 

proportion of them, 74.8% for both. 

 

Figure 4.5: Qualitative distribution of the average GDT of the best 10 models. 

Since part of the rationale of the proposed methodology is a reduction of the size 

of the conformation space, we calculated for each target the number of conformations 

which were generated in order to produce the structure with highest GDT out of the 

20,000. SCOP and CATH-based experiments produce their best GDT structures after 

generating a smaller number of conformations than the standard Rosetta framework, 

converging towards those conformations, respectively, 2.8% and 6.9% faster (see Table 

4.7).  
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Table 4.7: Average number of conformations for convergence towards the structure with 

highest GDT (and associated standard deviations). 

Standard predictions SCOP-based predictions CATH-based predictions 

10848 (5469) 9743 (5753) 9452 (5968) 

 

4.5.4 Blind Assessment 

Since, based on the target’s structural class predictions, different fragment 

libraries have been generated (3 for CATH and 4 for SCOP), we have showed and 

discussed the effects of our novel idea on the quality of the decoys generated by 

Rosetta. It is worth now assessing the first model from each experiment to examine 

whether the new method contributes to overcoming the energy functions inaccuracies 

by tightening the bound between the best decoys and first model.  

As shown in Figure 4.6, improvements in terms of the first model is remarkable; 

CATH and SCOP-based experiments’ first model shows an overall improvement of 

25.5% and 15.0% respectively. Correlation coefficient of Standard vs CATH-based data 

sets (70 pairs of corresponding values) is approximately 0.54 whilst for SCOP-based is 

0.62. Although SCOP-based correlation is higher, both are classified as “strong”. 

CATH’s improvements in terms of each structural class are further elaborated in Table 

5.1. Besides the tangible enhancements in terms of the decoys’ quality as shown earlier, 

the much lower number of template structures available for building fragments has 

forced Rosetta, in most cases, to “concentrate” more on relatively small, but good areas. 

Having less structurally diverse, but “good enough” local minima conformations makes 

the process of choosing the first model more “successful”, i.e. less “random”. 

Nevertheless, more “real” results considering the first model – the formal criterion in 

CASP – will be shown in the next subsection where we present our results compared to 

the Rosetta’s formal group’s contributions to CASP11. 
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Figure 4.6: First model’s GDT comparison; from each experiment, the 

conformation (out of 20,000) that corresponds to the lowest energy score has been 

chosen. Correlation coefficient between Standard vs CATH-based and SCOP-

based is 0.54 and 0.62 respectively. 

 

4.6 CASP11 Results 

For CASP11, we contributed 18 targets by applying the above methodology, but 

by generating 50,000 decoys instead of 20,000. The relatively small number of targets 

we were engaged in was due to the low computational resources we had then; the above 

experiments (70 previous CASP targets) - this chapter is based on - were conducted in 

parallel with our CASP11 contributions using a limited number of processors on 

Kingston University High Performance Computer (KUHPC).  As mentioned in Chapter 

2, each group can submit up to 5 candidate models; one of them should be designated as 

the first model – the main criterion CASP uses to rank the participating groups for each 

target. Furthermore, CASP relies on domains rather than the whole target. We followed 

the “default” way to choose the 5 models, i.e. the 5 conformations that correspond to the 

5 lowest energy scores. Out of the 18 targets, 6 were cancelled due to advance public 

release of their corresponding spatial coordinates. Accordingly, the total number of 

domains is 14, taking into consideration the fact that one target – T0804 – has been 
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further divided into two separate domains (See Table 4.8 for all details including our 

results and our main competitors’). 

Table 4.8: List of targets/domains in CASP11. GDT Scores, that are shown in red and 

green are respectively worse and better than ours.  
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130 FM T0763 4Q0Y B 15.6 14.6 17.7 20.2 16.5 18.6 16.4 19.8 

97 TBM T0769 2MQ8 AB 75.0 75.3 75.3 68.8 80.2 81.2 76.0 78.9 

67 TBM T0773 2N2U AB 93.3 78.7 78.7 80.2 90.7 87.7 88.4 75 

112 FM T0785 4D0V B 20.3 25.7 21.2 29.5 23.7 26.8 21.9 22.6 

136 TBM T0795 5FJL B 13.6 66.4 64.5 59.2 71.9 71.9 71.7 66.2 

212 

TBM

-Hard 

T0800 

 4QRK 

B 

12.0 43.7 43.3 42.8 42.1 42.2 40.8 43.6 

202 FM T0804   14.2 12.1 12.1 13.7 13.5 13.3 11.6 11.7 

37 FM  44.6 30.4 30.4 44.6 44.6 42.6 46.0 34.5 

152 FM  18.1 14.8 14.8 17.4 17.3 16.6 14.8 15.1 

68 TBM T0816 5A1Q A 46.7 35.6 34.6 64.0 35.3 66.2 66.2 57.4 

134 TBM T0818 4R1K AB 20.5 34.9 34.9 41.6 41.2 41.8 41.4 57.4 

114 TBM T0822 5FU5 B 18.6 50.0 50.0 46.3 39.7 43.2 44.5 50.5 

108 FM T0824 5OMT AB 25.9 52.6 28.5 28.9 29.4 28.7 29.2 28.7 

204 FM T0836   20.2 29.9 17.9 44.1 20.1 19.6 20.6 20.7 

Since our methodology is an adapted version of Rosetta, the main competitor is 

“Baker-Rosetta Server”: the fully automated server which represents Robetta (already 

introduced in Chapter 2); recall that for FM targets, Robetta is simply Rosetta. Another 

Rosetta-related group, called “BAKER”, has been added which belong to the human 

assisted approaches that rely on contact maps predictions as well as human intervention. 
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Furthermore, we have shown values from other research groups whose tools were 

introduced in the literature review chapter and lie within the same category – fragment-

based assembly - namely “Jones UCL” (FragFold), “Zhang Server”, “Zhang”, “Quark” 

and “Tasser”. Both “Zhang Server” and “Zhang” represent I-TASSER, with minor 

difference related to the human intervention in the latter. 

Since CASP7, Rosetta has been taking advantage of their distributed computing 

project Rosetta@Home to tackle conformational sampling (Das et al., 2007; 

Ovchinnikov, Kim, et al., 2016; Raman et al., 2009). In CASP7, around 500,000 CPU 

hours were dedicated for each domain (Das et al., 2007). Typically, whenever the grid 

computing service is engaged, the number of decoys may be very large; for instance a 

study conducted in 2011 by the Rosetta team, they generated up to 600,000 decoys per 

target (Tyka et al., 2011), not to add the team of biologists, biochemists and 

biophysicists that are involved in the human intervention part. Nevertheless, our results 

show higher accuracy in terms of GDT for 6 out of 14 domains compared with both 

Rosetta groups as shown in Figure 4.6.  

4.7 Discussion 

Following an exhaustive evaluation of our methodology, we have demonstrated 

that usage of class annotations leads to highly statistically significantly enhanced 

structure prediction performance (p-values < 0.0005), even though they have been 

predicted from the amino acid sequence alone. Although experiments were conducted 

using two different types of structural classifications, i.e. CATH and SCOP, there is no 

convincing evidence suggesting that one is more appropriate than the other in terms of 

the top 10 decoys, whereas CATH outperforms SCOP whenever the first model, i.e. the 

model with lowest energy, is taken into consideration. Performance analysis according 

to structural type class shows that targets from all main and well-defined classes benefit 

from the proposed methodology. 
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Figure 4.6: Results of 14 domains amongst three groups: Rosetta_at_Kingston, 

BAKER, and BAKER-ROSETTASERVER. 

Moreover, the quality of the structure prediction does not appear to be 

influenced by the number of selected templates, if this is over one thousand. All these 

results support our hypothesis that, in terms of structural relevance, template quality is 

more important than quantity and diversity. In addition, experiments conducted using 

structural class prediction demonstrates the proposed methodology is practical. Further 

analysis of the results also shows that methods relying on class-based libraries produce 

conformations which are more relevant, i.e. more ‘good’ and ‘accurate’ models are 

generated. In addition, since structure-based predictor models converge quicker towards 

the best decoy, this substantiates our claim that usage of structurally relevant templates 

contribute to reducing the size of the conformation space to be explored. 

4.8 Conclusion 

In this chapter, we have proposed the use of structural class constraints for ab 

initio fragment-based protein structure prediction, to decrease the size of the 

conformation search space. Then, using Rosetta, a comprehensive evaluation of our 

methodology has been conducted on a set of recent CASP targets. We have 

demonstrated that exploitation of class annotations leads to enhanced structure 

prediction performance. Results also support our hypothesis that focusing on a better 

focused structure space contributes to quicker identification of better models. 

Since our methodology produces models the quality of which, in terms of GDT, 

is up to 7% higher in average than those generated by a standard fragment-based 

predictor, we believe our approach should be considered before conducting any 

fragment-based protein structure prediction. Despite such progress, ab initio prediction 
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remains a challenging task, especially for proteins of average and large sizes. Apart 

from improving search strategies and energy functions, integration of additional 

constraints seems a promising route, especially if such constraints can be accurately 

predicted from the amino acid sequence alone. 
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5 Reduced Fragment Diversity for Alpha and Alpha 

Beta Protein Structure Prediction 

 

5.1 Introduction 

In order to generate a conformation’s backbone along with its side chain 

centroids, Rosetta operates in two main steps: first, 9-mer fragments are inserted into 

the initial fully extended conformation; second, insertions of 3-mer fragments are used 

to refine the structure previously generated. 9-mers and 3-mers are protein fragments 

extracted for each amino acid - except for the protein C-terminus - of the protein of 

interest from a template database according to some similarity criteria. Eventually, 

Rosetta converts the coarse-grained conformation into an all-atom representation by 

adding all missing atoms using knowledge-based information extracted from known 

structures. The proposed approach in this chapter relies on a limitation of 3-mer 

fragment diversity so that conformations generated during the 9-mer phase can be 

refined in more depth than with the standard Rosetta settings. Similarly to the previous 

chapter where the methodology relied on structural class predictions, we present a new 

methodology to improve the first models of two main classes, however by keeping the 

same default library of fragments.   

The rest of this chapter is organised as follows. First, a thorough study of the 

effects of the selection of 3-mers on the quality of conformations generated by Rosetta 

is presented. Second, we introduce a new pipeline for Rosetta protein structure 

prediction dedicated to alpha and alpha beta proteins. Following a description of the 

evaluation framework, we justify both theoretically and experimentally the principles of 

the proposed method. A variety of experiments are then conducted to validate them, and 

results are discussed in light of other relevant studies. 

5.2 Overview, Motivation and Preliminary Experiments.  

Rosetta’s first phase with its 28,000 9-mer insertion attempts is considered the 

essential part of the process since it builds the general shape or fold of the structure 

guided by secondary structure predictions. Those insertions are divided into several sub-

phases where more terms of energy functions are successively added to tighten the 

acceptance criterion of a fragment replacement. 9-mer insertions can be seen as 

relatively coarse scale operation as each insertion may change the structure being built 
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dramatically. Although this allows escaping from local minima, this coarse modelling 

phase is unlikely to reach a near-native conformation.  

As a consequence, Rosetta includes a 3-mer insertion phase to improve that 

initial conformation by performing 8,000 additional insertion attempts. Although the 3-

mer insertion phase is generally seen as structure refinement, the fact that by default 

Rosetta uses 200 fragments means that they can be quite diverse and insertions may on 

occasion lead to dramatic structural corrections. Whereas those corrections are certainly 

beneficial to conformations which failed to adopt the correct fold during the first phase, 

they may be detrimental to those which only needed some fine tuning. In this work, it is 

proposed to investigate and exploit that hypothesis by adapting the number of 3-mer 

fragments according to the perceived structural complexity of the protein target. 

First, the ‘correction’ abilities of the 200 3-mer fragments are demonstrated by 

generating 20,000 decoys using Rosetta without the initial 9-mer insertion phase. 

Although, as expected, performance is generally below that of the standard two-phase 

Rosetta (-21.8% in terms of GDT of the model with the lowest energy, or first model), 

the 3-mer only version of Rosetta was still able to generate a better first model in 9 out 

of the 33 tested targets, see Figure 5.1. This experiment clearly demonstrates that usage 

of 200 3-mer fragments could go well beyond refinement, and also has some abilities of 

conformation generation. Figure 5.2 illustrates this for an example where 3-mer only 

insertions are able to generate a good quality first model (74.7 GDT) for a target of 

length 94. Structures are visualised using PyMol (Schrödinger, LLC, 2015). Second, it 

has been shown in the previous chapter that the performance of the standard version of 

Rosetta depends on the structural class of a protein target. Recall that the three main 

classes in CATH are mainly alpha, mainly beta and alpha beta. Taking into account the 

67 targets of the previous study, i.e. excluding the three targets that belong to the class 

of few secondary structures, a detailed study on the first models, is shown in Table 5.1. 

Alpha and alpha-beta protein conformations are better predicted than mainly beta 

proteins. 
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Figure 5.1: First model’s GDT out of 20,000 decoys of standard predictions versus 

predictions using 3-mers only; 9 out of 33 targets achieve better results in the “9-

mers”-free Rosetta experiments. The navy blue line represents the linear 

regression; correlation coefficient between the two data sets (33 pairs of GDT 

values) is 0.73. 

 

Figure 5.2: Structures of the native model (PDB ID: 4FM3) and first model’s 

conformation using the version of Rosetta using only 3-mers. 
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Table 5.1: Results of a thorough study on 67 targets performed in the previous chapter. 

 Number of 

targets  

Average of the 

first model’s 

GDT for 

standard Rosetta  

Average of the 

first model’s 

GDT for CATH-

based Rosetta  

Improvements  

Mainly Alpha  16  39.5  46.5  17.7%  

Mainly Beta  18  23.4  25.7  9.6%  

Alpha Beta  33  27.4  31.5  15.0%  

 

5.3 Proposed Methodology 

In view of those experimental results, it is proposed to adapt Rosetta’s 3-mer 

phase according to a target’s structural class. Since structure prediction of proteins 

belonging to alpha and alpha-beta structural classes is more accurate, one may infer that 

the ‘correction’ behaviour of the 3-mer phase is less needed whereas additional 

refinement could lead to the generation of better models. Here, it is demonstrated this 

behaviour can be achieved by reducing 3-mer diversity. Figure 5.3 shows a new 

processing pipeline describing optimisation of Rosetta’s 3-mer phase according to a 

target’s predicted structural class. 
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Figure 5.3: New pipeline for optimisation of Rosetta for mainly-alpha and alpha-

beta protein structure predictions. 

The evaluation dataset covers the three main protein structural classes, i.e. 

mainly alpha, mainly beta and alpha beta. It comprises 33 targets the length of which 

ranges from 33 to 141 amino acids. As in the previous chapter, they were selected from 

models of the Free Modelling and Template-Based Modelling categories assessed 

during CASP8, 9, 10, 11 and CASP ROLL. All homologues, defined by an E-value 

lower than 0.05 on PSI-BLAST (Altschul et al., 1997), were removed from Rosetta’s 

fragment libraries. This threshold is typically used to evaluate Rosetta’s ability to infer 

new folds, which is its raison d’être. The reason behind decreasing the size of the 

dataset (70 targets in the previous chapter) has been a reduced access availability to our 

high-performance computing (HPC) facility because, since we finished our previous 

study, it has become more popular for being used by other researchers from within the 

university. Moreover, a set of 33 has been assessed as being sufficiently large to infer 

conclusions, as key studies and improvements that took place on Rosetta involved even 

a smaller number of targets (Barth et al., 2007; Blum, Jordan, & Baker, 2010; Simoncini 

et al., 2012, 2017; Simoncini & Zhang, 2013). Similar to the work described in the 

previous chapter, the formal evaluation metric used is again the Global Distance Test – 

Total Score (GDT-TS) (GDT in the text). 

5.4 Evaluation and Results 

As Figure 5.4 shows, 14 out of the 23 targets belonging to the alpha and alpha-

beta structural classes achieved a higher first model GDT when the number of 3-mer 

fragments was reduced to 100; an overall improvement of 11.5% is recorded on 

average. However, when all 33 targets are considered, this benefit from the reduction of 

the number of 3-mers decreases to +6.5%, since the GDT scores of mainly beta targets 

fell on average by 10.8%. Those results confirm that removal of some ‘correction’ 
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fragments improves predictions of alpha and alpha-beta structures, while it degrades the 

generation of beta structures, see Table 5.2. In an additional experiment, where the 

number of 3-mers was further decreased to 25, reveals that such a dramatic reduction of 

3-mer diversity leads to similar performance when all targets are considered. However, 

when only alpha and alpha-beta targets are considered, usage of 25 3-mers still delivers 

slightly better performance (+2.5%) than the standard approach (note that Rosetta uses 

an additional 25 9-mers in the first phase of the prediction process). Table 5.2 displays a 

summary of the results of this first model study. 

 

Figure 5.4: First model’s GDT of standard predictions versus predictions using 100 

3-mer fragments only for the three structural classes along with their 

corresponding regression lines. The overall correlation coefficient between the two 

datasets (33 pairs of GDT values) is 0.79. However, dividing the data into three 

subsets (Mainly Alpha, Mainly Beta and Alpha-Beta) and producing a regression 

line for each subset gave correlation coefficients of 0.84, 0.53 and 0.79 respectively. 
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Table 5.2: Comparison of first model’s quality according to 3-mer reduction strategy 

relative to the standard approach. 

Average GDT change of First models compared to standard approach 

 All three 

classes  

Mainly alpha  Mainly beta  Alpha beta  Mainly alpha 

and alpha beta 

classes only  

100 3-mers  +6.5% 19.7% -10.8% 9.7% +11.5% 

25 3-mers  +1.0% 11.1% -13.6% 4.0% +2.5% 

 

An example evidence of the accuracy of the 100 3-mers approach for alpha 

targets over the standard approach is displayed in Figure 5.5: except for the N and C-

terminus coil regions, the conformations of which are predicted incorrectly, the 

structure of the first model generated using 100 3-mers is very close to the native one in 

terms of fold and alpha helix topology; on the other hand, the first model from the 

standard approach is much less accurate due to the incorrect orientation of the third 

alpha helix.   

Figure 5.5: From left to right: Structures of 100 3-mer approach’s first model 

(GDT = 64.5), native (PDB ID: 2LY9) and standard approach’s first model (GDT = 

44.5) of that 74-amino acid protein, respectively. 

The evaluation of the structure-energy correlation amongst the three experiments 

is performed by calculating the percentage of the Best model’s GDT achieved by the 

first model’s. As shown in Table 5.3, for the mainly alpha and alpha beta classes, the 
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100 3-mer approach delivers first models which are closer +8.0% to the Best model, , 

than those of the standard approach. 

Table 5.3: Comparison of structure-energy correlation in terms of GDT. 

Average of percentage of the Best model’s GDT achieved by the first model’s 

 All three classes  Mainly alpha and alpha beta classes 

only  

Standard  62.2%  60.7%  

100 3-mers  62.3%  65.7%  

25 3-mers  59.0%  61.9%  

 

It is worth noting that although there were no tangible improvements in terms of 

the best decoys – regardless of the energy scores – standard predictions were not able to 

perform better than our approach. In other words, even if an optimal quality assessment 

tool existed, our customised predictions would show the same quality for the best 

decoys. Figure 5.6 demonstrates that 100 3-mers and 25 3-mers based predictions’ best 

decoys are as good as standard predictions’ (+1.8% and +0.7% respectively). 

 
Figure 5.6: GDT of best decoy of the standard predictions versus those of 

predictions using 100 and 25 3-mer fragments only. The correlation coefficients 

are 0.97 and 0.98 respectively. 
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5.5 Discussion 

Although Rosetta generates all-atom models, it relies on moderate coarse-

grained protein modelling, where each amino acid is represented using C-alpha, C-Beta 

and the side chain’s centroid. As a consequence, the energy landscape that Rosetta 

explores is expected to be quite smooth, as illustrated in Figure 5.7 (Kmiecik et al., 

2016). 

When the 9-mer insertions phase is performed, the energy landscape is explored 

through relatively “big jumps” corresponding to 9-mer substitutions. Consequently, the 

local minimum of a given funnel (position A in Figure 5.8-a) may not be reached, 

leading to a locally suboptimal conformation (position B in Figure 5.8-a). Then, during 

the 3-mer insertion phase, the dual role of correction and refinement is played. Whilst 

refinement allows moving a conformation deeper into the current funnel, correction 

permits investigating neighbouring funnels. On one hand, the more diverse the 3-mer 

library (e.g. 200), the larger and the wider the set of explored funnels is likely to be. On 

the other hand, less diversity (e.g. 100) is likely to reduce the size of the searched space 

allowing deeper exploration of the initially selected funnel (Figure 5.8-b). 

This suggests that, when dealing with the easier targets, i.e. from alpha and 

alpha-beta classes, the 9-mer insertion phase tends to succeed in identifying a funnel 

close to the native area. As a consequence, usage of 3-mers with relatively low 

diversity, e.g. 100 fragments, is beneficial allowing exploration of that zone more in 

depth and eventually producing a more optimal conformation. Alternatively, for the 

harder targets, i.e. from the beta class, where the 9-mer insertion phase is less likely to 

have generated a conformation close to the native one, keeping a larger search space by 

using quite diverse fragments, e.g. 200, increases the probability of converging towards 

an acceptable conformation. 



109 

 

 

Figure 5.7: Energy landscape of all-atom versus coarse-grained protein modelling. 

Taken from (Kmiecik et al., 2016). 

 

Usage of a reduced set of 3-mers for the easier targets is further supported by 

studies which demonstrated that native and native-like structures are likely to be found 

in the largest cluster/ broader funnel of decoys (Betancourt & Skolnick, 2001; Shortle, 

Simons, & Baker, 1998), see figure 5.9. Those observations have resulted in 

development of quality assessment prediction techniques, known as decoy clustering 

(Perez et al., 2014), to identify the “Best model” produced by ab initio methods that, 

like Rosetta, generate a large number of candidate structures known as decoys. Their 

strategy relies on, first, clustering those decoys according to some threshold similarity 

threshold, typically 3 to 4 Å, and, second, selecting the conformation with the lowest 

energy score from the largest cluster. 

On the other hand, the outcome of this chapter is quite consistent with Baker and 

co-workers performed during the late 90’s when they were thoroughly investigating the 

sequence-structure correlation (See Section 3.2 in Chapter 3). Without taking any 

specific secondary structure into account, their concluded that the sequence-structure 

correlation shows dramatic increasing relative entropy as the length goes from 3 to 8 

amino acids, then a slow increase till 10 (the peak) followed by a slow decrease till 15. 

Moreover, those authors investigated this correlation for specific secondary structures 

and super-secondary structure motifs. Some “ideal” lengths of fragments were found as 
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follows: 13 and 15 for helix caps (helix-turn-helix motifs), 7 to 11 for helices, 7 and 9 

for turn-to-sheet, 3 and 5 for β-strands, loops and turns. This conducted Baker and his 

team to adopt sizes of 9 and 3 in Rosetta. Results presented in Table 5.3 are coherent 

with the outcomes of that 20-year old study. While a large number of 3-mers would 

destroy helices and helix caps already built using fragments of size 9, i.e. fragments 

close to their ideal length for those structures, Beta strands are unlikely to display their 

correct configuration following the 9-mer insertions phase. Consequently the 3-mer 

phase is critical to model accurately Beta strands.  

 

Figure 5.8: (a) Positions A and B illustrate the energy levels of the conformations 

resulting from the 3-mer and 9-mer insertion phases respectively. (b) The black 

circle represents the funnel which contains the conformation produced by the 9-

mer insertion phase. Blue ellipses represent funnels that contain structures with 

good accuracy, whereas green and purple ones have worse accuracy. The inner, 

respectively outer, the dashed contour denotes the limit of the search space created 

by less, respectively more, diverse 3-mer insertions. 

5.6 Conclusion 

This chapter has presented a comprehensive study on the importance, role and 

effects of the fragments of size 3 in Rosetta protein structure prediction for the three 

main structural classes. Usage of the standard number of 3-mers for each position – i.e. 

200 – has been shown to degrade alpha and alpha-beta protein conformations initially 

achieved by assembling 9-mers. Owing to the high accuracy of structural class 

prediction from sequence, a new Rosetta’s pipeline dedicated to alpha and alpha beta 

proteins has been proposed where 3-mer diversity is reduced. Experimental results have 
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confirmed that a smaller number, namely 100, of less diverse 3-mers is more 

appropriate when predicting alpha and alpha-beta targets since it allows Rosetta 

focusing on the refinement of the initially generated conformations. In addition to 

produce better quality “first models”, those models delivered by the proposed pipeline 

prove to be significantly closer to the actual “Best model”, which is directly relevant to 

life scientists. 

Based on the above, a potential future work may involve restricting the 3-mer 

insertion phase to specific regions where secondary structure predictions show high 

probability of beta strands, coils and turns. A more advanced idea would be to separate 

the role of each phase; the 9-mer phase would be responsible for the helices and helix 

caps whilst the next phase will take over the remaining regions 

 
Figure 5.9: Hypothetical folding energy landscape. The solid and dashed lines 

represent the “real” energy and force field scores respectively (y axis) according to 

a generalised structure coordinate. This shows clearly that the broader funnel is 

the one that comprises the “best candidates” as they neighbour the native one. 

Taken from (Shortle et al., 1998). 

 

 

5.7 CASP12 Results 

By the time we were still performing the above experiments, CASP12 had been 

launched. We wanted to contribute in CASP12, however, with different approach than 

CASP11’s. Due to time and computing resource limitations, and although we hadn’t 

finished validating it, we decided to combine Protein structure prediction based on 

structural class annotations from previous chapter and reduction of the number of 3-

mers. At the time, usage of 25 3-mers seemed the most promising. We contributed in a 
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total of 30 domains, however 8 of them were cancelled due to early release of their 

spatial coordinates. Our group showed better first model’s results in 4 domains only out 

of 22.  

A concern was raised by David Baker in a 7-year old paper and was stated as 

follows “There is a tension between sampling too broadly (giving too diffuse a library) 

and sampling too narrowly (risking missing a critical set of torsion angles for a portion 

of the protein chain)” (Gront et al., 2011). Most likely, our combined methodology, i.e. 

reducing the database of template structures by up to 82% (previous chapter’s 

technique) and decreasing the number of 3-mers by 87% has fallen in the second side of 

the Baker’s concern; we sampled too narrowly.  
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6 Weighted Protein Regions for Fragment 

Cardinalities Based on Secondary Structure Prediction 

 

6.1 Introduction 

In our first contribution – Chapter 4 – we have created a customised fragments’ 

library by restricting the set of structures where those fragments are extracted from. 

Such an experiment was able to improve quality of both decoys and first models. In the 

second contribution – Chapter 5 – we have introduced a methodology to decrease the 

number of 3-mers – that are responsible for both minor conformational changes and 

corrections for specific proteins that belong to certain structural classes. Likewise, a 

tangible improvement was shown, however, in terms of first models only as Rosetta 

wasn’t able to discover new search area but rather focusing on a specific region where 

diversity of 3-mers is likely to ruin alpha and alpha-beta proteins’ final conformations. 

In this chapter, we investigate further the optimisation of fragment usage. However, 

instead of changing the library of structures where fragments are selected from or the 

criteria of selection, here it is proposed to set the number of available candidate 

fragments for each position according to the secondary structure annotations that the 

fragment – either 9-mer or 3-mer – is likely to adopt. The proposed methodology takes 

advantage of strong empirical previous studies (presented in the next section); for 

instance, it has been shown that a set of alpha helix fragments is unlikely to comprise 

outliers; therefore, a subset of them or even a single randomly selected one should be 

“good enough” (de Oliveira et al., 2015). Thus, it is proposed to optimise the space 

search by dedicating more time on exploiting relatively small areas in the search space.  

This quite novel and simple idea does not require any resampling overhead as described 

below in similar implementations to exclude unnecessary fragments.  

The rest of this chapter is organised as follows: the next section is dedicated to 

the background and related work to highlight the fact that some fragments used in 

Rosetta are not only unnecessary but also counterproductive. The third section entitled 

“Sequence-Structure Relationship for Different Secondary Structures” sheds the light on 

the diversity of fragments based on their secondary structure annotations. Sections 6.4 

and 6.5 provide a detailed description of our proposed methodology as well as the 

dataset and performed experiments.  
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6.2 Background and Related Work  

Resampling techniques have been widely adopted in Rosetta (Blum et al., 2010; 

T. Brunette & Brock, 2008; T. J. Brunette & Brock, 2005; Shrestha & Zhang, 2014; 

Simoncini et al., 2012; Simoncini & Zhang, 2013). This paradigm was able to narrow 

the search space by treating the first round of sampling as “draft” or training 

predictions, in order to detect “successful fragments” to be selected in the followed 

predictions. During the first set of experiments, data that reveal some clues to detect 

regions where near-native structures are likely to be are gathered and used to feed the 

next set(s) of experiments to focus/exploit deeper specific regions.  

Using Rosetta, Brunette and Brock implemented their Model-Based Search 

(MBS) instead of Monte Carlo (MC) and showed a 14% improvement for the lowest 

energy models. After each iteration, they identify the regions that can be considered as 

funnels, then based on their shape, size and energy score, they select the most relevant 

ones which define the new search space. They are explored by reusing only the 

fragments from which conformations in those regions are formed (T. Brunette & Brock, 

2008; T. J. Brunette & Brock, 2005).  

An interesting piece of work in this context was carried out by the Rosetta team 

(Blum et al., 2010). In the first round of standard Rosetta predictions, structural and 

energy-based information such as torsion angles, secondary structures and beta pairings 

are gathered to be fed as restrictions to the subsequent rounds. At the second round, 

combination of the frequency of that information along with the low energy scores 

regions are used to change the way that the picking fragments process is carried out by 

“Fragment-picker” by using different criteria. Besides further exploiting promising 

funnels already explored in the first turn, the authors suggest their new methodology 

was able to even reach new region since new fragments have been used. Improvement 

averages of 1.7 Å and 0.4 Å were shown in terms of best prediction and best-of-five 

prediction respectively. 

EdaFold, an advanced resampling technique based on Estimated Distribution 

Algorithm, has been successfully carried out on Rosetta in three releases (Simoncini et 

al., 2012, 2017; Simoncini & Zhang, 2013). The main goal of such approach is to assign 

and amend a probability value for each fragment in each subsequent iteration using the 

estimated probability mass functions (PMFs) by further focusing on the fragments 

found in the basins where the number of low-energy decoys lie. In their latest paper, 
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they introduced structural dissimilarity besides energy score as a second criterion for 

choosing guiding models – Fragments that have built those models will have their 

associated probability raised, consequently to be picked more often in the next 

conformation assembly iteration. This new addition takes advantage of as many “deep 

funnels” as possible as from each of those funnels, only one guiding model – the one 

having the lowest energy score - is chosen. They reported having more than 19% and 

8% improvements in terms of best prediction and best-of-five prediction respectively 

(Decoys’ quality was not shown). 

These studies suggest that the standard number of fragments is much larger than 

what Rosetta needs to reach native-like conformations provided that the search space 

already explored in the first round contain such a region. All those ideas comprise at 

least a second customised round of sampling, which, therefore, requires more decoys, 

time and effort; for instance, EdaFold is 2.5 times slower than Rosetta. It is worth 

noting that the majority of the above-mentioned approaches do not make search 

trajectories go beyond the space reached in the first round during the subsequent rounds. 

As a consequence, they force the search to focus on smaller but presumably promising 

regions for better exploitation (Blum et al., 2010). We have the same objective in this 

chapter, however, without any additional data collection, and additional and dependent 

rounds. 

6.3 Sequence-Structure Relationship for Different Secondary 

Structures 

Sequence-structure mapping has been studied for a long time (Sibanda & 

Thornton, 1985; Vanhee et al., 2011). Although no accurate one-to-one function has 

been discovered even for quite small sequences, many studies suggest that the degree of 

complexity of such a mapping depends on the secondary structure; in increasing order it 

is as follows: alpha helices, beta strands, and then coils (Baldwin, 2013; Fiser et al., 

2000). Particularly, fragments for alpha helices used for fragment-assembly protein 

structure prediction have shown a relatively limited diversity (de Oliveira et al., 2015). 

On the other hand, loops modelling and corresponding fragment prediction has attracted 

a huge amount of research due to the diversity of those structures as well as the 

influence of many factors such as length, anchor region – the secondary structures that 

limit the loop - and external interactions with the environment (Baldwin, 2013; Burke, 

Deane, & Blundell, 2000; Chothia et al., 1989; Donate, Rufino, Canard, & Blundell, 
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1996; Fernandez-Fuentes & Fiser, 2006; Fiser et al., 2000; Kwasigroch, Chomilier, & 

Mornon, 1996; Pardon et al., 1995).  

Very interesting research work, that happens to support ours, was carried out by 

Charlotte Deane and her co-workers at Oxford as they built a new fragment builder 

called “Flib” to replace Rosetta’s and other state-of-the-art ones (de Oliveira et al., 

2015). “Flib” creates fragments the length ranges of which are between 6 and 20. One 

of the main criteria they relied on to build was classifying fragments in four groups 

based on their dominant predicted secondary structures, namely majority α-helical, 

majority β-strand, majority loop and neutral. Authors showed that whenever fragments 

are classified as predominant predicted secondary structures, they tend to be more 

accurate:  the impact is particularly strong for α-helical fragments followed by β-strands 

ones, whilst loop dominated fragments remain a real challenge as depicted in Figure 

6.1. They compared their own tool Flib with HHFrag (Xu & Zhang, 2013) and NNMake 

-Rosetta’s old tool. As shown in Figure 6.2, Flib performs better than those three 

competitors when dealing with fragments from the α-helical and β-strand classes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Boxplot of the top 200 fragments for the protein 1E6K. Four Different 

types of fragments are shown: majority α-helical (green), majority β-strand (red), 

majority loop (blue) and other (black). Taken from (de Oliveira et al., 2015). 
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Figure 6.2: Comparison amongst three fragment libraries generators based on 41 

structurally diverse targets. Precision is calculated as the proportion of good 

fragments in the library. Whereas on average, Flib and HHFrag generate 26 and 

10 fragments of 7.4 and 9.1 length, NNMake’s data is based on 200 9-mers. Taken 

from (de Oliveira et al., 2015). 

6.4 Proposed Methodology 

To our knowledge, in all studies, experiments and improvements conducted by 

researchers working on Rosetta, the number of fragments in each position, for both 3-

mers and 9-mers, has been constant. We propose a different approach, where the 

fragment selection process is unchanged; however, the number of fragments per 

position varies based on its secondary structure prediction. Owing to the strong 

sequence-structure correlation for alpha helices and the loose one for loops (while beta 

strands lie in between) and the results of the works mentioned earlier, a novel approach 

is proposed so that the number of available fragments might vary at different positions.  

In order to illustrate the standard Rosetta and the proposed strategies regarding 

the number of fragments used for each amino acid position, a protein, whose PDBID is 

1CC8, has been chosen from the dataset (introduced later in Section 6.4). The choice of 

1CC8 was random amongst the 5 proteins belonging to the Alpha-Beta structural class, 

which presents a relatively even distribution of the three secondary structures.     

The standard Rosetta’s fragments files’ contents in terms of fragment number 

are depicted in Figures 6.4 and 6.5 for fragments of length 9 and 3 respectively. In the 

9-mer insertion phase, 25 fragments are selected starting at the first amino acid till the 
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position: “size-9”. Similarly, in the 3-mer insertion phase 200 fragments are selected 

starting at the first amino acid till the position: “size-3”.  

 

Figure 6.4: A pictorial representation of the contents of a Rosetta standard’s 9-mer 

file (the upper part of the figure was taken from the PDB, sequence tab of the Atx1 

Metallochaperone Protein – PDBID: 1CC8). The blue arrows point to the positions 

where there is a set of 25 candidate fragments of length 9. In the example above, 

assuming that protein is of length 32, the 9-mer fragment library ends at position 

23. The circles on site record line point to some residues that play important role in 

interacting with other macromolecules; in this study, such information were not 

taken into consideration in any way. 

 

 

 

 

 

 

Figure 6.5: A pictorial representation of the contents of a Rosetta standard’s 3-mer 

file; 200 candidate fragments per position. Here the 3-mer fragment library ends 

at position 30. 

The new methodology will be applied to both fragment files to dramatically 

reduce the number of candidates whenever the fragment is predicted to be either a helix 

or a beta strand. A pictorial description is shown in Figures 6.6 and 6.7. Our novel idea 

works as follows: in the 9-mer file, whenever a fragment that starts at position i is 

predicted to be a (part of a) helix till i+8, only one fragment is available to be inserted, 

whereas the standard number – i.e. 25 – is kept otherwise. A similar process is applied 

using the 3-mers file: whenever a fragment that starts at position i is predicted to be a 

(part of a) helix till i+2, only five fragments are to be inserted. Likewise, a fragment 
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window of length 3 that starts at position i is predicted to be a (part of a) beta strand, 

only 25 fragments will be considered. In all remaining positions, the standard number of 

available fragments – i.e. 200 – is taken into account. The rationale behind the choice of 

one, five and twenty-five fragments will be described in detail in the next paragraphs. 

 

 

Figure 6.6: New approach to build the 9-mers file based on the secondary structure 

annotations of the protein in question. Since at positions 16, 17, 18, 19, 20 and 21 a 

helix of size 9 is predicted, only one fragment is used. The standard number of 

fragments – that is 25 – is kept at the remaining indexes.  

 

 

Figure 6.7: New approach to build the 3-mers file based on the secondary structure 

annotations of the protein in question. Since at positions 4 till 9 a strand of size 3 is 

predicted, only 25 fragments are used, and at positions 16 till 25 a helix of sixe 3 is 

predicted, only 5 fragments are used. The standard number of fragments – that is 

200 – is kept at the remaining indexes. 

 

In 1CC8, there are 9 positions where a 9-mer is supposed to be a pure alpha 

helical. For each of those 9 positions, the RMSD of the average, lowest (best), highest 

(worst) of the 25 fragments as well as the first one are plotted in Figure 6.8. It clearly 

shows that the first fragment in the set of 25 is always very close to be the best, better 
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than the average fragment and much better from the worst one. As a consequence, 

replacing the 25 fragments by the first one has the potential to lead to better structure 

prediction.  

Similarly, the quality of 3-mers which are supposed to be pure alpha helical and 

a pure beta strand are studied in 1CC8, where they correspond to 21 and 17 positions 

respectively. In order to select an adequate minimum number of fragments at those 

positions, we have conducted a thorough study on how the RMSD of the best fragment 

out of 5, 10, 15, 20, 25, 30, 35 and 40 is being improved on average (Table 6.1).  

 

Figure 6.8: RMSD of 225 9-mers distributed amongst 9 positions as averages, 

lowest, highest and first ones. 
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Table 6.1: Study of improvements of 3-mers by taking into consideration the best 

fragment (lowest RMSD) in a set versus the best one in an extended group by 5 fragments. 

 Best of the First n 3-mers vs Best of the First m 3-mers (Both out of 200) 

n = 1 

m= 5 

n = 5 

m= 10 

n = 10 

m = 15 

n = 15 

m = 20 

n = 20 

m = 25 

n = 25 

m = 30 

n = 30 

m = 35 

n = 35 

m = 40 

A
v

er
ag

e 
o

f 
Im

p
ro

v
em

en
ts

 i
n

 Å
 21 sets of 

200 

Alpha 3-

mers 

0.0390 0.0076 0.0038 0.0005 0.0024 0.0000 0.0000 0.0010 

17 sets of 

200 Beta 

3-mers 

0.2347 0.0406 0.0029 0.0076 0.0059 0.0000 0.0012 0.0006 

 

Results clearly show that usage of only the first fragment would not be a 

sensible choice since significant improvements are visible when increasing the number 

of fragments. This is particularly the case for the beta ones. Beyond the first 25 

fragments, improvements become negligible (<0.2%) for both types of fragments. 

Moreover, in the case of alpha helical 3-mers, an improvement of less than 1.5% can be 

reached by including more than 5 fragments. As a consequence, this suggests that the 

number of fragments should be set at 5 for that category. On the other hand, the quality 

of beta 3-mers still improves significantly (+4%) with 10 fragments and keeps 

increasing (an additional 1.5%) until the top 25. Thus, the number of fragments for 

amino acids predicted to belong to beta sheets could be set at 25. 

Further investigation has been conducted: out of the 200 3-mers, the lowest 

(best), highest (worst), average and the lowest RMSD of the first 5/25 fragments are 

plotted in Figure 6.9 and Figure 6.10 where a 3-mer is predicted to be an alpha helix/ 

beta strand respectively. The best fragment (out of 5 or 25) is very close to the whole 

set’s best one (out of 200) and much better than the average. Accordingly, we have 

adopted the numbers of fragments of 5 and 25 for 3-mers that are predicted to be alpha 

helices and beta strands respectively. 
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Figure 6.9: Quality of 4200 3-mers at 21 positions as RMSD of their averages, 

lowest, highest and first ones. 

 

Conceptually, the above findings along with the proposed amendments would 

‘freeze’ some regions whereas fragment insertion operation would be highly ‘activated’ 

in others. The low number of candidate fragments at more than the third of the target 

would force Rosetta to narrow the search space, i.e. dedicating more time on 

exploitation rather than exploration. Although experiments suggest that the best 

fragment have been “lost” in most cases, the probability of it to be chosen amongst a set 

of either 200 or even 25, as in the standard scheme, is quite low. Moreover, the standard 

scheme is at a higher risk of picking a worse fragment than the one selected in our new 

methodology. Furthermore, one could conclude that by preventing Rosetta from picking 

the most inaccurate fragments, the new search space would contain fewer “outliers” 

conformations, i.e. conformations that, although belonging to local minima, are far 

away from the native-like structure. 

 

6.5 Experiments and Dataset 

In order to validate the proposed methodology, Secondary Structure-based 

Rosetta (SS-Rosetta), where the number of fragments is customised for each amino 

acid, for each target, its performance is compared to the standard Rosetta. Whilst the 

whole fragment selection process has not been altered, the number of fragments at 

specific positions is changed. In other words, for a certain amino acid where for instance 

one 9-mer should be used instead of the set of 25, we have kept the fragment that has 
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the highest score according to fragment picker; a similar policy has been applied to keep 

the top 5 and 25 fragments in the 3-mer file.  

Figure 6.10: Quality of 3400 3-mers at 17 positions as RMSD of their averages, 

lowest, highest and first ones. 

In principle, secondary structure prediction’s information should be used since 

we aim at improving a protein’s conformation prediction of unknown native structure. 

However, in this experiment, we have taken advantage of the secondary structure 

annotations of each target so that our proposal can be assessed without having to 

consider the choice of a predictor and its accuracy. Since secondary structure predictors 

are already very accurate -  a range of 82% to 84% accuracy has been recorded (Q. 

Jiang, Jin, Lee, & Yao, 2017; Y. Yang et al., 2018) – and their accuracy is still 

improving, this simplification should not affect the nature of the lessons that will be 

learned from the experiment.  

For this experiment, two sets of decoys are used: 20,000 and 2,000. The 

rationale behind using a large and a relatively small number of decoys is to investigate 

the exploration/exploitation compromise. Observing the behaviour of our proposed 

methodology using both sets is quite important to shed a light on the strength of limiting 

the number of fragments which in turn has supported Rosetta to “overcome” the 

problem of energy score inaccuracy.  

Five similar-purpose publications - studying, enhancing and optimising 

fragments in Rosetta - conducted by EdaFold’s and Rosetta’s team (Blum et al., 2010; 

Kim, Blum, Bradley, & Baker, 2009; Simoncini et al., 2012, 2017; Simoncini & Zhang, 
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2013) used as a dataset of 20 proteins which shows diversity in terms of structure 

classes, percentages and length of helices and sheets. Based on that set, we created a 

dataset comprised of 24 proteins whose length varies from 56 to 149. Out of the 20-

PDB set, one of the targets was removed since it was not relevant to our methodology; it 

belongs to small proteins structural class and consequently coils represent the majority 

of its structure. As a consequence, our methodology would not affect its processing 

compared to standard Rosetta. Moreover, a limitation of the 20-protein set was that it 

did not include too easy, too difficult or long targets. Whilst we agree that too easy and 

long targets (longer than 150) are likely not to reveal any improvements, we believe that 

the benchmark proteins should contain some hard targets, so a more general conclusion 

could be inferred from the outcome. Furthermore, since the number of all-alpha targets 

is only 3, for the sake of diversity in terms of structural classes, more targets of that 

class should be added. Accordingly, 5 CASP FM targets were added; those five proteins 

were carefully selected to belong to the larger part of the length range: from 56 to 149. 

The challenging nature of those 5 targets is demonstrated by the fact that the GDT of the 

best decoys (out of 20,000) in standard predictions is significantly lower than the GDT 

of other targets having the same length. In addition, prediction of their structure during 

the CASP contest proved particularly difficult. The whole dataset is shown Table 6.2. 

The last 2 columns report the size of the new fragment file (corresponding to the 

number of fragments used for each target) as a percentage of the initial fragment file. 
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Table 6.2: The list of the 24 proteins that are included in the study. 

# PDB ID Length % of Helices % of Strands % of coils New 

9-mers 

File 

New 

3-mers 

File 

1 2CI2_I 65 16 21 63 85.8% 51.7% 

2 1CTF 68 51 24 25 85.2% 49.7% 

3 1DI2 69 46 33 21 89.5% 47.8% 

4 1SCJ_B 71 23 39 38 86.5% 49.5% 

5 1HZ5 72 30 38 32 79.2% 37.0% 

6 1CC8 72 28 35 37 88.2% 55.3% 

7 3NZL 73 59 0 41 79.5% 41.4% 

8 1DTJ 74 38 26 36 88.4% 51.8% 

9 1IG5 75 61 5 34 83.5% 47.6% 

10 1OGW 76 25 34 41 81.4% 47.9% 

11 1DCJ 81 28 24 48 77.8% 40.5% 

12 1TIG 88 32 32 36 50.0% 29.7% 

13 1A19 89 43 17 40 92.9% 61.5% 

14 1BM8 99 37 27 36 93.9% 58.4% 

15 4UBP 100 54 17 29 77.2% 46.5% 

16 1IIB 103 55 19 26 94.9% 73.4% 

17 1M6T 106 77 0 23 84.8% 50.1% 

18 1ACF 125 34 32 34 77.8% 45.1% 

19 3CHY 128 45 17 38 73.9% 45.3% 

20 2KDL* 56 62 0 38 87.7% 50.2% 

21 2LR8* 70 57 0 43 74.0% 44.0% 

22 4HLB* 95 28 24 48 78.2% 49.6% 

23 2K4V* 125 28 32 40 72.1% 48.4% 

24 2KY4* 149 59 1 40 87.9% 54.1% 

Averages  88.7 42.3 20.7 37.0 82.1% 49.0% 

*CASP targets. 

6.6 Results and Discussion 

 Blind assessment mimics CASP’s assessment as groups can submit up to 5 

models and should designate one of them as the first model. The two main ranking 

scores adopted are the GDT of the first model as well as the Best model – the best of the 

5 submitted structures. Furthermore, we introduce here a third criterion too - the average 

of the 5 models - to shed light on the quality of the models that lie in the lowest 5 

positions in the search space. Figure – 6.8 shows the first model, Best model and 

average of the 5 models as a comparison between the standard and SS-Rosetta 



126 

 

predictions for both 20,000 and 2,000 decoys respectively. In Figure 6.8, 15 out of 24 

targets have shown to have a better first model. Overall, an improvement of 6.3% has 

been recorded using the amended fragments files. Regarding the Best model, it is better 

in 12 targets than standard’s whereas 3 targets have the same Best model; on average an 

improvement of 5% is on the favour of the SS-Rosetta pipeline. Finally, our novel idea 

shows also an overall improvement of 6.1% as 18 targets reach a higher GDT score 

with regards to the average of the best five models. However, moving to the 2,000-

decoy experiment – Figure 6.9, first model’s improvement has interestingly reached 

24%; approximately 4 times the improvement shown for 20,000-decoy’s. Both scores 

are presented in Table 6.3. 

 

Figure 6.8: First model’s, Best model’s and average of best 5 models’ GDT of 

standard prediction (denoted as “Std”) versus the new paradigm (denoted as “SS-

Rosetta”) for 20,000 decoys each where correlation coefficients are 0.89, 0.88 and 

0.97 respectively. Linear regression lines are shown for the three data sets. 
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Figure 6.9: First model’s, Best model’s and average of best 5 models’ GDT of 

standard prediction (denoted as “Std”) versus the new paradigm (denoted as “SS-

Rosetta”) for 2,000 decoys each where correlation coefficients are 0.76, 0.94 and 

0.97 respectively. Linear regression lines are shown for the three data sets. 

 

 
Table 6.3: Blind assessment results against standard predictions: improvements in terms 

of number of better structures (out of 24) and GDT. 

Std vs SS First model Best model Average of the Best 5 models 

20,000 Decoys 15/24 (63%) 

+6.3% 

12/24 (50%) 

+5.0% 

18/24 (75%) 

+3.1% 

2,000 Decoys 16/24 (67%) 

+24.2% 

18/24 (75%) 

+11.5% 

18/24 (75%) 

+8.3% 

 

The tangible difference between the 20,000-decoy and 2,000-decoy 

improvements is due to the fact for a small number of decoys, exploration gains more 

value than exploitation; the latter was made up by the lower number of fragments SS-
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based predictions have used. In the same context, we have also conducted one 

additional study between the standard predictions for both 2,000 and 20,000, however it 

terms of best decoy. It shows that for all targets the 20,000-decoy experiments reached a 

more accurate decoy, but for no more than 6% on average (whilst for Best model, 

improvement was more than 26% as shown in Table 6.4). Whenever reliable fragments 

are found, increasing the number of decoys will have more effects on exploitation rather 

than exploration. 

In addition, our experiments confirm Rosetta’s rule of thumb that the higher 

number of decoys the better outcome. However, SS-based predictions have proved 

again that when it comes to increasing the number of decoys the new paradigm has 

delivered even more accurate results. Furthermore, a crucial outcome is presented in 

Table 6.5: generating 20,000 decoys through standard predictions produces similar 

results to generating 2,000 decoys through the new methodology. Such a finding is 

important in terms of usage of computational resources as 2,000 decoys can be easily 

carried out on a typical PC whereas a Rosetta’s 20,000-decoy prediction usually 

requires supercomputer facilities; a hinder that prevents many users to use Rosetta to 

generate “acceptable” quality models. 

Table 6.4: Performance comparison between generating 20,000 decoys versus 2,000 in 

both standard and SS-based predictions. 

 First model Best model Average of the Best 5 

models 

Std. Predictions 

2,000 vs 20,000 

Decoys 

17/24 (71%) 

+26.3% 

19/24 (79%) 

+7.6% 

19/24 (79%) 

+8.2% 

SS-based Predictions 

2,000 vs 20,000 

Decoys 

18/24 (75%) 

+30.2% 

19/24 (79%) 

+11.7% 

19/24 (79%) 

+14.7% 
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Table 6.5: Blind assessment results of standard predictions’ 20,000 decoys against SS-

based predictions’ 2,000 decoys. 

 First model Best model Average of the Best 

5 models 

20,000 Decoys (Std.  Predictions)   

vs  

2,000 Decoys (SS-based. 

Predictions) 

12/24 (50%) 

+0.4% 

13/24 (54%) 

+4.6% 

10/24 (42%) 

+0.3% 

  

Narrowing the search space by reducing the number of fragments at certain 

positions has proven to minimise the number of local minima explored and 

consequently made the process of choosing the lowest energy model(s) a less 

“arbitrary” procedure. As mentioned by Brunette and Brock (T. Brunette & Brock, 

2008), not all funnels are relevant even if they are as deep as the others. Inaccurate 

fragments, if chosen, will most probably lead to the generation of such funnels. Since 

the fragments we have kept are “good enough”, missing some regions and consequently 

some funnels and local minima standard predictions explored does not affect the overall 

quality of the decoys. Some evidence is shown in Figure 6.10 that depicts a comparison 

between the best decoy in both standard and SS-based Rosetta predictions; generally, 

the best standard decoys is not as good as the best decoy produced by our new approach 

(SS). Therefore, if an optimal quality assessment tool was found, our approach would 

also provide better results.  

We have proved that the fragments of Rosetta’s standard predictions contain 

some redundancy and somewhat similar contents at some positions which make the 

trajectory paths explore a large space on the energy landscape, however minimising the 

exploitation procedure, therefore, less ability to reach better positions in a certain 

funnel. In addition, although the standard approach explores a larger search space, it is 

not able – regardless of the energy score - to locate better conformations than those 

produced by the proposed approach.  
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Figure 6.10: Comparison between the standard predictions’ and SS-based 

predictions’ best decoy. SS-based was able to reach a higher GDT score for 16 out 

of 24 targets with an overall improvement of 1.5%; correlation coefficient records 

a value of 0.98. The dotted line represents the linear regression.  

 

6.7 Conclusion 

 This chapter has shown again that the usage of the sequence-structure 

correlation for different secondary structures could be of benefit in fragment assembly 

protein structure prediction. The fragment insertion process should not be treated evenly 

on all regions of the conformation being built; since some parts are known to have a 

loose subsequence-substructure liaison, one would expect a variety of candidate 

fragments. On the other hand, a very limited number of substructures could be sufficient 

for “easy” regions. Whereas, previous works have focused on the fragment picking 

phase, this chapter’s findings have introduced a new concept during fragment-assembly: 

the allocation of the number of fragment insertion operations according to the dominant 

secondary structure of the parts where fragments are to be inserted.   
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7 Conclusion 

This chapter summarises the findings of this thesis, namely the three main 

contributions we have made, their results and suggests future lines of investigation. The 

next section presents an overview of the contributions. Sections 7.2 and 7.3 discuss the 

results and future work respectively. Closing remarks are presented at the end. 

7.1 Summary of Contributions 

In this thesis, we have studied thoroughly fragment-based protein structure 

prediction, using Rosetta as an example, by exploring additional critical roles secondary 

structure predictions can play. 

State-of-the-art tools that rely on fragment assembly methodology use a unique 

template structures set that represents the PDB by eliminating some degree of homology 

and non-accurate conformations. Such a large number of very diverse structures have 

made the picking of fragments a challenging job despite the usage of many criteria such 

as sequence and secondary structure similarity and knowledge-based properties such as 

Ramachandran map propensities. Neither selection of a large set of candidates nor usage 

of stringent standards for choosing fragments have so far proved satisfactory: in many 

cases the ultimate goal of not missing any good substructure and picking the best ones 

amongst a large number is not fulfilled. We have shown in chapter 4 that predicting the 

structural class of a target and customising the template structures set accordingly is an 

approach leading us closer to the compromise researchers have been trying to reach. 

CASP11’s results represented some evidence of the effectiveness of our novel approach 

as we were able to submit first models of higher accuracy than Rosetta’s formal group 

in 6 out of 14 domains.   

We have introduced a “preliminary step” that makes the whole fragment-based 

prediction process converges towards more accurate results: by predicting the structural 

class a target is likely to belong to – a task which has now become accurate -, we have 

proposed to alter the route followed during the structure prediction process. This novel 

approach not only was able to create a customised and relevant template structure set 

(up to 80% reduction of the original size of Rosetta’s) for each of the main structural 

classes, but also has enabled to determine the appropriate “amount of required 

corrections” in the final phase of the structure prediction process. We have shown that, 

even when using Rosetta’s default template structures set, setting a relative amount of 

fine tunings to each structural class’s targets has led to tangible improvements. 
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Further usage of secondary structure predictions has been introduced for the first 

time when assigning the number of candidate fragments at each position in the sequence 

of interest. Current fragment assembly methods deal with all positions equally 

whenever it comes to fragment insertions. For instance, Rosetta employs 25 and 200 9-

mers and 3-mers respectively to be chosen randomly for each amino acid; the choice of 

an amino acid amongst all possible locations is in its turn chosen randomly. This 

somehow contradict the rule of sequence-structure correlation that has been widely 

accepted for more than two decades that states that among the secondary structures, 

alpha helices, beta strands and coils are of increasing diversity. Taking into advantage 

of this, we have allocated a number of candidate fragments that is customised according 

to the secondary structure that is likely to be adopted at each position in the target. This 

has led to significant acceleration of convergence towards native-like structures, since 

the generation of a 2,000-decoy set using this strategy produced models of similar 

quality as those generated by 20,000 decoys using the standard prediction process. 

7.2 Discussion 

Despite the improvements we have presented in this research work, structures 

predicted by Rosetta, as a cutting-edge fragment-based proteins structure prediction, are 

still considered as putative protein structures.  

First, although in principle the “vall” – Rosetta’s default template structures set 

– comprises all the 9-mers and 3-mers that are needed to build any conformation, some 

chosen fragments are not of acceptable quality. Moreover, the ranking of the fragments 

based on their scores is not relevant in many regions, and consequently, picking 

fragments function’s terms and their corresponding weights need to be reassessed. Even 

when we customised the “vall” based on the main structural classes, accelerating 

convergence, there is still a need to generate a huge amount of decoys. The new search 

space explored (chapter 4) is undoubtedly more relevant but most probably doesn’t 

comprise the ideal funnel for some targets. 

Second, there is no clear clue where the first phase of conformational sampling, 

i.e. 9-mers insertion, should “stop” in order to let the correction phase, i.e. 3-mers 

insertion, to take place. The exploration-exploitation compromise’s threshold is still 

undetermined. The new methodology we presented (chapter 5) has indeed paved the 

way for a novel approach in this regard, however, further and thorough studies should 

be conducted.  
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 Third, combining the customised fragments libraries and reduced amount of 

corrections (Chapters 4 and 5) has led to very limited success over standard predictions 

(CASP12’s results), although both approaches work well separately. It seems that 

conformational sampling is such a complicated task to the extent that the act of 

“narrowing” this process needs an extensive empirical analysis. It seems that some 

unpromising regions need to be sampled, probably as a temporary phase in the route 

towards the native-like funnels. 

Fourth, studies to determine the ideal number and length of candidate fragments 

have failed to identify a specific threshold, especially that this issue is highly related to 

the effectiveness of the functions that score fragments to be selected. Our contribution 

in chapter 6 has shown that complexity of a sequence region, e.g. “easy”, “moderate” 

and “hard” region, should be taken into consideration.  

Finally, the gap between the real search space – assuming using an optimal 

energy function – and the one which is explored using various energy functions has 

been investigated in its own research area, i.e. decoys quality assessment which  

remains very challenging.  

7.3 Future Work 

The preliminary step we introduced, i.e. to take advantage of the prediction of a 

target’s structural class, can be used not only to customise the template structure set and 

the amount of correction but also to introduce restrictions regarding the fold a 

conformation can adopt for each of the structural classes. Although predicting the 

second level in the hierarchy of both SCOP and CATH, i.e. Fold and Architecture, is 

still lacking in accuracy, but the number of folds a mainly-alpha target, for instance, can 

adopt is quite limited and therefore such a limitation could be used as a structural 

constraint. This would prevent irrelevant decoys to be generated and consequently make 

the energy score and conformation’s accuracy correlation tighter. 

In the same context, a new customisation can be taken into account with respect 

to the energy functions based on the result of a target’s structural class predictions. As 

stated in chapters 2 and 3, there have been many types of energy functions, even for 

Rosetta, three updates have taken place in the past 4 years; the ultimate goal may be to 

design a balancing energy function that is “fair” in the sense of taking into account all 

forces that take place amongst atoms and amino acids, however to be evaluated within a 

reasonable amount of processing time. Each structural class, especially mainly-alpha 
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and mainly-beta, has some dominant forces that should be calculated more accurately. 

For example, in mainly-beta proteins, hydrogen bonds are of higher importance to 

determine the regions where beta sheets are likely to be formed. Accordingly, a 

customised energy function associated with the main structural classes may have 

potential. 

Although we have distributed the number of candidate fragments amongst 

various regions based on the secondary structure prediction, easy regions, i.e. pure alpha 

helices, still “consume” time by allowing for minor changes (neighbouring fragments 

may affect them) and reusing (the sole 9-mer at a certain position is likely to be chosen 

again and again). Further experiments can be conducted by totally “freezing” regions 

where a pure alpha helix 9-mer has been inserted. This would allow Rosetta to dedicate 

more time and therefore insertions for the remaining challenging regions.  

Based on the findings revealed by the Barker’s group with regard to the size of 

fragments where the correlation between sequences and sub-structures, including alpha 

helices, helix caps, beta strands, loops and turns, reaches the highest entropy; see 

Sections 3.2., a more efficient and promising idea would be to separate the role of each 

prediction phase. More specifically, the 9-mer phase would be only responsible, for 

example, for the helices and helix caps, whilst the 3-mer phase would be dedicated to 

refine other regions such as beta strands, loops and turns. In addition, the distribution of 

the “weight” of each phase – currently 28,000 and 6,000 insertion attempts respectively 

– could be adjusted according to the percentage of each set of secondary structure. This 

would yield not only decoys with higher accuracy but also reducing computational cost 

by preventing unhelpful and even sometimes harmful additional corrections.  

7.4 Closing Remarks 

This research has investigated a state-of-the-art fragment-assembly tool, Rosetta 

and contributed to the improvement process. We have shown the extent to which the 

usage of secondary structure predictions can improve fragment-based protein structure 

prediction by proposing novel ideas that either directly or indirectly use such 

predictions.  We believe that this study will pave the way for many more research 

discoveries; it is a remarkable step in the one-thousand-mile journey to “decipher the 

holy grail of microbiology”.   
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Appendix 

Table 1: Results of CASP12’s 96 targets/domains. 

Rank Predictors   Number of 

targets 

SUM Zscore (>-2.0) of 

GDT_TS  

1 Zhang-Server 96 98.70 

2 QUARK 96 93.50 

3 BAKER-ROSETTASERVER 96 92.36 

4 GOAL 94 79.60 

5 RaptorX 96 67.25 

6 ToyPred_email 95 63.85 

7 MULTICOM-CONSTRUCT 96 36.39 

8 MULTICOM-CLUSTER 96 34.28 

9 MULTICOM-NOVEL 96 33.22 

10 IntFOLD4 96 26.39 

11 Seok-server 96 22.70 

12 HHGG 96 19.27 

13 HHPred0 96 17.69 

14 HHPred1 96 17.58 

15 FALCON_TOPO 96 13.47 

16 FALCON_TOPOX 96 12.71 

17 FFAS-3D 96 12.17 

18 RBO_Aleph 93 -14.78 

19 tsspred2 96 -14.89 

20 Distill 92 -19.93 

21 BhageerathH-Plus 96 -20.66 

22 chuo-u2 96 -29.76 

23 chuo-u-server 96 -29.76 

24 YASARA 92 -32.01 

25 ZHOU-SPARKS-X 85 -32.37 

26 myprotein-me 92 -33.16 

27 MUfold1 96 -33.26 

28 MUfold2 87 -34.21 

29 slbio 91 -34.51 

30 Atome2_CBS 85 -46.01 

31 FFAS03 80 -48.21 

32 FLOUDAS_SERVER 95 -55.07 

33 RaptorX-Contact 93 -61.04 

34 Pareto-server 94 -65.45 

35 PhyreTopoAlpha 96 -68.37 

36 Pcons-net 71 -91.64 

37 MULTICOM-REFINE 96 -92.27 

38 Seok-assembly 45 -94.44 

39 GAPF_LNCC_SERVER 91 -102.69 

40 M4T-SmotifTF 63 -118.89 

41 ACOMPMOD 89 -130.89 

42 GOAL_COMPLEX 14 -161.23 

43 Seok-naive_assembly 16 -174.63 
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Table 2: Results of CASP12’s 39 FM targets/domains. 

Rank Predictors   Number of 

targets 

SUM Zscore (>-2.0) of 

GDT_TS 

1 BAKER-ROSETTASERVER 39 45.83 

2 Zhang-Server 39 45.44 

3 QUARK 39 43.82 

4 GOAL 37 33.85 

5 RaptorX 39 31.48 

6 ToyPred_email 38 27.23 

7 MULTICOM-NOVEL 39 8.31 

8 RaptorX-Contact 38 5.45 

9 MULTICOM-CONSTRUCT 39 5.44 

10 Seok-server 39 3.35 

11 MULTICOM-CLUSTER 39 3.06 

12 FFAS-3D 39 1.20 

13 FALCON_TOPO 39 0.24 

14 FALCON_TOPOX 39 -0.69 

15 RBO_Aleph 36 -2.11 

16 IntFOLD4 39 -3.83 

17 chuo-u-server 39 -4.50 

18 chuo-u2 39 -4.50 

19 HHGG 39 -7.47 

20 HHPred1 39 -7.83 

21 HHPred0 39 -7.83 

22 BhageerathH-Plus 39 -8.92 

23 MULTICOM-REFINE 39 -9.44 

24 PhyreTopoAlpha 39 -10.02 

25 MUfold1 39 -11.39 

26 Distill 36 -12.83 

27 Pareto-server 39 -13.56 

28 tsspred2 39 -16.73 

29 ZHOU-SPARKS-X 33 -16.78 

30 YASARA 36 -17.48 

31 GAPF_LNCC_SERVER 36 -19.02 

32 myprotein-me 35 -21.05 

33 MUfold2 34 -21.33 

34 Atome2_CBS 32 -23.15 

35 Pcons-net 24 -24.83 

36 slbio 34 -29.94 

37 FFAS03 27 -38.47 

38 FLOUDAS_SERVER 39 -39.02 

39 Seok-assembly 19 -39.40 

40 ACOMPMOD 36 -42.99 

41 M4T-SmotifTF 17 -60.92 

42 GOAL_COMPLEX 1 -75.90 

43 Seok-naive_assembly 1 -78.00 
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Table 3: Results of CASP12’s 38 TBM targets/domains. 

Rank Predictors   Number of 

targets 

SUM Zscore (>-2.0) of 

GDT_TS 

1 BAKER-ROSETTASERVER 38 32.11 

2 Zhang-Server 38 29.90 

3 GOAL 38 29.67 

4 QUARK 38 28.43 

5 ToyPred_email 38 23.45 

6 RaptorX 38 23.05 

7 HHGG 38 22.00 

8 HHPred0 38 20.91 

9 HHPred1 38 20.80 

10 MULTICOM-CLUSTER 38 19.59 

11 MULTICOM-CONSTRUCT 38 18.88 

12 IntFOLD4 38 17.26 

13 MULTICOM-NOVEL 38 13.86 

14 Seok-server 38 13.46 

15 FALCON_TOPOX 38 7.38 

16 FALCON_TOPO 38 7.21 

17 FFAS-3D 38 3.79 

18 tsspred2 38 3.27 

19 BhageerathH-Plus 38 -0.85 

20 Distill 37 -1.75 

21 YASARA 37 -3.55 

22 slbio 38 -3.76 

23 FFAS03 36 -3.93 

24 MUfold2 36 -4.02 

25 MUfold1 38 -4.12 

26 myprotein-me 38 -8.10 

27 ZHOU-SPARKS-X 33 -10.96 

28 Fastro 37 -11.93 

29 chuo-u2 38 -12.08 

30 chuo-u-server 38 -12.08 

31 Atome2_CBS 37 -12.81 

32 RBO_Aleph 38 -15.93 

33 M4T-SmotifTF 34 -30.19 

34 Seok-assembly 18 -34.01 

35 Pareto-server 36 -36.69 

36 PhyreTopoAlpha 38 -44.28 

37 GOAL_COMPLEX 11 -51.57 

38 Pcons-net 33 -56.05 

39 RaptorX-Contact 37 -57.37 

40 Seok-naive_assembly 13 -60.48 

41 ACOMPMOD 35 -61.70 

42 MULTICOM-REFINE 38 -67.02 

43 GAPF_LNCC_SERVER 36 -67.71 
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Table 4: Results of CASP12’s 19 FM/TBM targets/domains. 

Rank Predictors   Number of 

targets 

SUM Zscore (>-2.0) of 

GDT_TS 

1 Zhang-Server 19 23.36 

2 QUARK 19 21.24 

3 GOAL 19 16.07 

4 BAKER-ROSETTASERVER 19 14.42 

5 ToyPred_email 19 13.17 

6 IntFOLD4 19 12.96 

7 RaptorX 19 12.72 

8 MULTICOM-CONSTRUCT 19 12.07 

9 MULTICOM-CLUSTER 19 11.63 

10 MULTICOM-NOVEL 19 11.05 

11 FFAS-3D 19 7.18 

12 FALCON_TOPO 19 6.03 

13 FALCON_TOPOX 19 6.01 

14 Seok-server 19 5.89 

15 HHGG 19 4.74 

16 HHPred0 19 4.61 

17 HHPred1 19 4.61 

18 RBO_Aleph 19 3.27 

19 slbio 19 -0.81 

20 tsspred2 19 -1.44 

21 myprotein-me 19 -4.01 

22 FLOUDAS_SERVER 19 -4.12 

23 ZHOU-SPARKS-X 19 -4.64 

24 Distill 19 -5.34 

25 FFAS03 17 -5.81 

26 MUfold2 17 -8.85 

27 RaptorX-Contact 18 -9.12 

28 Atome2_CBS 16 -10.05 

29 Pcons-net 14 -10.76 

30 BhageerathH-Plus 19 -10.89 

31 YASARA 19 -10.97 

32 chuo-u-server 19 -13.18 

33 chuo-u2 19 -13.18 

34 PhyreTopoAlpha 19 -14.06 

35 Pareto-server 19 -15.21 

36 MULTICOM-REFINE 19 -15.81 

37 GAPF_LNCC_SERVER 19 -15.96 

38 MUfold1 19 -17.75 

39 Seok-assembly 8 -21.03 

40 ACOMPMOD 18 -26.21 

41 M4T-SmotifTF 12 -27.78 

42 GOAL_COMPLEX 2 -33.76 

43 Seok-naive_assembly 2 -36.15 

 

 


