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Highlights 

 An implicit computational algorithm for modified Navier–Stokes equations to simulate flows 

in anisotropic porous media 

 A general coupled block matrix is solved with the algebraic multigrid solver 

 The proposed algorithm is verified in comparison with the SIMPLE algorithm on a series of 

benchmark problems 

 The total problem runtimes and number of iterations required for complete convergence are 

given 
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Abstract 

A coupled computational algorithm for modified Navier–Stokes equations to simulate flows in 

anisotropic porous media is proposed and described. The difference from the classic SIMPLE 

algorithm is in the completely implicit relationship between velocity and pressure owing to the 

implicit terms of the pressure and mass flow gradients in the continuity equation and momentum 

equation. One of the attractive features of this algorithm is the possibility of completely implicit 

discretization of off-diagonal components of the porous medium resistance tensor in the right-

hand side of the momentum equation. Implicit discretization allows reducing the number of 

linear iterations as compared to the SIMPLE algorithm with explicit discretization of off-

diagonal components. The specific features of discretization of modified equations including the 

discretization of boundary conditions and components of the porous medium resistance tensor 

are considered. The proposed algorithm is verified in comparison with the SIMPLE algorithm on 

a series of benchmark problems, such as the problem of a flow through a porous insert, a flow in 

a divided channel, and a flow through a cylindrical porous filter. The total problem runtimes and 

the number of iterations required for complete convergence are given to compare the two 

algorithms. 

 

Keywords 

Navier–Stokes equations; porous media; Darcy law; Brinkman equations; multigrid method; 

pressure-based algorithm; implicit discretization. 

 

1. Introduction 

 

The numerical simulation of flows in complex engineering structures requires fine meshes with 

billions of cells regarding the structural specifics of objects, and the duration of a large-size 

numerical experiment may be from one to several months. In such cases the construction of a 

full-scale mesh model is an individual problem similar to the processing of the resultant huge 

data arrays. There are many examples of large-size problems in modern computational practice, 

one of them is the numerical simulation of a nuclear reactor core consisting of several hundred 

fuel elements (FEs) [Kolpakov & Selivanikova, 2009], which plays an important role for 

simulating both the turbulent flow structure and the integral thermal characteristics of the 

reactor. The simulation of car radiators, heat exchangers of different types consisting of a large 

number of tube bundles [Bhutta et al., 2012; Ozden& Tari, 2010], a flow through a variety of 

perforated plates [Malavasi et al., 2012; Ozahi, 2015], air filters in automobile industry [Elnaz, 

2012] also fall into this category of problems. 

 

One of the approaches to reduce computational loads is the porous body approximation [Ozden 

& Tari, 2010; Costa et al., 2004a] used instead of repetitive structures. This approach requires a 

mathematical model of a porous body, which takes into account geometric features of an object 
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to be simulated, its material properties (averaging of the thermal characteristics of the porous 

medium skeleton and fluid), and the flow conditions (isothermal or non-isothermal). There is a 

need in justification of the model application within the wide range of velocities (dependence on 

Reynolds number). For a certain type of porous bodies, for example, dense-packed spheres, there 

are valid mathematical expressions for the calculation of resistance factors [Ergun, 1952; 

Scheidegger, 1974]. However in most cases, the calculation of hydraulic resistance factors is 

based on the available experimental data on losses of pressure in a porous body depending on 

Reynolds number. It should be noted that in repetitive and symmetric cases data on a single area 

of body is sufficient for simulations [Collins, 1961]. 

 

The well-known Darcy law [Reichenberger et al., 2006; Chandesris & Jamet, 2006] is the 

simplest empirical rule to account for the porous medium resistance. It describes the linear 

relationship between the velocity of fluid flow and the pressure gradient at low velocities. The 

range of velocities is extended by introducing the quadratic dependence of pressure gradient on 

velocity using the Forchheimer law [Costa et al., 2004a, 2004b; Kulkarni et al., 2004; Shavit et 

al., 2003]. It is quite difficult, however, to use these equations in laminar areas with porous and 

open domains, where it is necessary to provide consistent solution of Navier–Stokes and Darcy 

(or Forchheimer) equations. To resolve this problem, there is a modification to the original 

Navier–Stokes equations with Darcy and Forchheimer laws in the right-hand side and with the 

molecular viscosity modification according to Brinkman equation. The modified equations are 

often called Brinkman–Forchheimer equations [Costa et al., 2004a; Kaviany, 1991]. This 

approach allows simulating both flows in domains completely occupied by a porous body and 

flows with sub-domains containing free fluid/porous body interfaces with Brinkman–

Forchheimer equations in non-porous domains being degenerated into the original Navier–

Stokes equations. The practice of using these equations demonstrates a good accuracy of 

description of flows in porous media [Costa et al., 2004a]. 

 

By present time, there have been accumulated a wide experience of solving modified Navier–

Stokes equations with the finite volume method [Ferziger & Peric, 2002;Volkov et al., 2014a; 

Rhie & Chow, 1983; Kozelkov et al., 2016с]. The SIMPLE algorithm of the predictor–corrector 

type should be noted among the available computational algorithms. It allows iteratively finding 

the consistent velocity and pressure fields. The algorithm has been adapted to solve Brinkman–

Forchheimer equations [Costa et al., 2004a]. The simulation of flows in anisotropic porous 

media or the use of local coordinate systems [Kaviany, 1991] leads to non-zero off-diagonal 

components in the resistance tensor. The classic SIMPLE algorithm implies that off-diagonal 

components of the resistance tensor are explicitly approximated in the momentum conservation 

equation, because equations are solved successively for each velocity component. An explicit 

approximation significantly lowers the SIMPLE algorithm convergence rate [Lashkin et al., 

2016]. It is possible to speed-up the convergence by using an algorithm for the coupled velocity-

pressure simulation, which is based on an implicit relationship of the momentum and continuity 

equations [Darwish et al., 2009]. In some studies [Darwish et al., 2009; Emans & Liebmann, 

2013; Chen & Przekwas, 2010; Shterev & Stefanov, 2010; Mangani, 2010] this algorithm is used 

to simulate laminar flows of viscous compressible and incompressible fluids. It demonstrated a 

several-fold increase of the convergence rate on a sequence of condensed meshes in comparison 

with the SIMPLE algorithm. The coupled algorithm is also used to simulate turbulent flows 

[Lashkin et al., 2016; Pelinovskii et al., 2016; Kozelkov, 2016]. However, a significant 

dependence of the convergence rate on the relaxation parameters of turbulence equations is 

shown, and the use of the coupled algorithm is declared to be preferable considering the wall-

clock time of computations. 
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State-of-the-art simulators employ numerical methods that can take advantage of multiple 

processors, distributed memory workstations, adaptive grid refinement strategies, and iterative 

techniques with linear complexity 

 

The implicit methods have been constructed for a faster convergence to the Navier-Stokes 

solutions. The multigrid methods are commonly used in CFD community for solving the Euler 

and Navier-Stokes equations. The basic idea behind all multigrid strategies is to accelerate the 

solution at fine mesh by computing corrections on a coarser mesh to eliminate low-frequency 

errors efficiently. In general, an iterative algorithm can reduce the high-frequency errors faster 

than the low-frequency ones. The multiple mesh method is to make the transition between the 

low and high frequency modes through a change of cell size, and to eliminate the low frequency 

error in an even coarse mesh by increasing its spatial frequency. There are many studies about 

multigrid techniques and their numerical implementations (Brandt, 1982; Stuben and 

Trottenberg, 1982; Wesseling, 1992; Stuben, 2001). To achieve a good compromise of high 

efficiency and robustness for a variety of flow problems on structures and unstructured meshes 

different strategies to mesh coarsening, design of smoothing, restriction and prolongation 

operators and preconditioners have been proposed and tested in the literature (Mavriplis, 2002; 

Alkishriwi et al., 2006; Mavriplis, 2007; Cagnone et al., 2011; Langer , 2013; Sun et al., 2017). 

 

For flows in porous media, an attractive feature of the coupled algorithm is that the linear 

resistance tensor can be approximated in a completely implicit manner, even in an anisotropic 

case, and the convergence rate significantly increases. 

 

In the present study, the coupled computational algorithm for velocities and pressures based on 

an implicit relationship between the momentum and continuity equations is used to solve 

Brinkman–Forchheimer equations describing a flow in an anisotropic porous body. Finite 

volume discretization of the governing equations and the main steps of the computational 

procedure are described and presented. The implementation of the coupled implicit algorithm is 

verified in a series of benchmark problems on the simulation of a flow through a porous material 

insert, a flow in a divided channel and a flow through an anisotropic cylindrical filter. The test 

problems are specifically selected to make clear distinctions between the different methods. 

 

2. Governing equations and their discretization 

 

Brinkman–Forchheimer equations of the momentum conservation and continuity describing the 

laminar steady viscous flow of incompressible fluid in a porous medium, which are written 

relative to a real velocity, has the form [Costa et al., 2004a; Kaviany, 1991; Nield & Bejan, 

2013] 

 

     
2

3

0,

,p F



 
   

 


          
 

u

u u I τ C u u
K

 (1) 

where por allV V   is the dimensionless porosity ratio; porV  is the pore volume; allV  is the total 

volume of cell;   is the density of material to be simulated; u v wu = i + j + k  is the real 

velocity vector; , ,i  j  k  are unit vectors in x, y, z directions, respectively; p is the static pressure; 

I  is a unit tensor;   is the viscosity;  T

B  τ = u+ u  is the viscous stress tensor for 

incompressible Newtonian media; B  is the modified Brinkman molecular viscosity in a porous 

medium; K  is the permeability tensor; F  is Forchheimer coefficient depending on the flow 

parameters; C  is the inertial resistance tensor. The velocity gradient tensor has the form 
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u . (2) 

Superscript T corresponds to the conjugate tensor. 

 

The density in equations (1) remains constant. The porosity coefficient is a function of Cartesian 

coordinates and time. However, it does not depend on velocity and pressure. Therefore, the 

equation of state is not required. 

 

To solve the system of equations (1) for incompressible fluid, the algorithm based on Rhie–

Chow correction to the continuity equation is widely used [Rhie & Chow, 1983]. This correction 

makes it possible to solve the continuity equation with respect to the pressure field that provides 

a link between the continuity equation and momentum equation. A detailed description of the use 

of Rhie–Chow correction is given in [Zhang et al., 2014]. 

 

The diagonal components of the inertial resistance tensor, C , in isotropic porous media are 

proportional to the value of ρK
–1/2

 [Ward, 1964], where K  is the permeability. In anisotropic 

porous media this dependence may be invalid, and calculations of the components of the inertial 

stress tensor are required to take into account sizes of pores and inter pore spaces, flow regime, 

etc. [Muljadi et al., 2016]. 

 

The permeability tensor, K , is determined by the geometrical structure of porous medium (it 

doesn’t depend on material properties) and, in general, it is determined by the pore volume 

geometry. It is clear from the equation (1) that K  has the squared length size and is a rough 

measure of the root-mean-square diameter of pores. For isotropic porous media, the permeability 

tensor is diagonal. This indicates a similarity of the geometric properties of medium in all 

directions. In the anisotropic porous media or in the case of setting the permeability value in 

local coordinates (for example, cylindrical) K  is symmetric with filled off-diagonal coefficients 

indicating that permeability depends on the coordinate system direction. In heterogeneous porous 

media the permeability tensor may be the function of time and coordinates. 

 

The effect of non-linear Forchheimer coefficient, F, is noticeable at local Darcy numbers above 

10
–3

, so these terms may be neglected only in some cases of a laminar flow [Prasad et al., 1985]. 

 

The modified Brinkman molecular viscosity is set in a porous medium. It depends on the 

medium porosity factor and is represented in the following form [Brinkman, 1952] 

 
0.25

1B 


  . (3) 

 

The last two terms in the momentum equation (1) are the Darcy and Forchheimer ones. In real 

calculations with the use of experimental data on pressure losses it is easy to represent these 

terms in the form of the resistance tensor 

11 12 13 11 12 132
3

21 22 23 21 22 23

31 32 33 31 32 33

F

     
 

      

     

   
   

    
   
      

P C u = β α u u
K

, (4) 

where α  is the inertial (non-linear) resistance tensor, β  is the viscous (linear) resistance tensor. 

It should be noted that tensors α  and β  always have a symmetric structure and in case of the 
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coordinate system coinciding with the main axes of porous medium (axes should be orthogonal) 

these tensors are diagonal. 

 

Equations (1) describe flows of viscous compressible and incompressible fluids both in porous 

and open domains, as well as at an interface of different porous media. These equations can also 

be used to solve problems with a porosity ratio varying in space and time and, accordingly, a real 

velocity can be set. 

 

Using the finite volume method [Ferziger & Peric, 2002] for an arbitrary cell P  (Figure 1), the 

discrete form of the equations (1) without regard to time terms (their discretization is described 

in details in [Ferziger & Peric, 2002; Jasak, 1996]) in case of a laminar steady flow can be 

written as 
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1 1 1 1

0,

.

n

f f f f

f nb P

n n n n n n

f f f f f f f f f P P Pf P
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u S

u u S τ S S β α u u
 (5) 

Here, the subscript f signifies that a given quantity belongs to a face separating control volumes 

of the computational mesh; f f fSS n  is the area-vector of the face; fn  is the unit normal 

vector to the face; V  is the volume of cell P . The superscript 1n   signifies the value of 

quantity at a new iterative layer, and the superscript n  is related to the previous iteration. The 

summation in equations (5) is performed over all faces ( )f nb P  which form a control volume 

P . 

 

 
Figure 1. Two neighboring control volumes P  and N  (f is the face separating cells P  and N , 

dPN is the vector connecting the central points of two control volumes) 

 

Linearization of the original system of equations (5) is performed with the simple iteration 

method [Samarsky & Gulin, 1989]. Using the coupled implicit algorithm [Lashkin et al., 2016; 

Darwish et al., 2009] to solve equations (5), the equations are represented as a system of linear 

algebraic equations (SLAE) for an arbitrary control volume P . It is more convenient to represent 

it in the block form 
1

1

1

1

pp pu pv pwpp pu pv pw n

N N N NP P P P P
up uu uv uwup uu uv uw n

N N N NP P P P P
vp uv vv vw n vp uv vv vw

P P P P P N N N N
wp wu wv ww n wp

P P P P P N

a a a aa a a a p

a a a aa a a a u

a a a a v a a a a

a a a a w a









        
        

        
   

      

1

1

1

( )
1

n p

N P
n u

N P
n v

N PN nb P
wwu wv ww n

PN N N N

p b

u b

v b

ba a a w










     
     

     
     

       

 . (6) 

Here, Pa  and Na  are the diagonal and off-diagonal coefficients of the SLAE block matrix, 

respectively, and Pb  is the right-hand side of the system including the volume sources. 

Coefficients with the subscript N represent the relationship between control volume P and its 
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neighboring control volume N. The first row in (6) is the continuity equation, which is solved 

relative to absolute pressure. The next three rows are the momentum equations for the three 

velocity components. Equation (6) is written for each cell (Figure1) and the number of such 

equations equals the number of control volumes in computational model. 

 

To discretize the convective term in (5) and to improve the stability of the method, the deferred 

correction method is used [Ferziger & Peric, 2002; Jasak, 1996] 

     
1 1n n n

HO UD HO UD

f f f f
 

  u u u u . (7) 

Here, HO

fu  is the velocity vector on face according to the higher order scheme; UD

fu  is the 

velocity vector on face according to the first order scheme; 0 1   is the numerical scheme 

mixing factor. This approach is applicable to any higher-order scheme, including those with the 

TVD gradient limiters [Jasak, 1996]. By varying the values of  , it is possible to increase 

numerical diffusion and, thereby, improve the computation stability. With 0   the given 

scheme becomes the first-order scheme, and with 1   it becomes a higher-order scheme. The 

description of discretization schemes for flows with convection can be found in [Kozelkov et al., 

2015a, 2016a; Volkov et al., 2014a; Kozelkov & Kurulin, 2015]. 

 

The original equations (5) use the non-orthogonal correction, which is written for an arbitrary 

scalar quantity   [Jasak, 1996] 

   f f f f

ff f N P f f PN

f PN f PN

    
 

       
 

S S S S
S = S - d

S d S d
, (8) 

where 
2

P N
f

 


 
   is the averaged gradient of   on a face. 

 

To summarize, the process of filling and generating coefficients of the matrix SLAE (6) can be 

represented as a sequence of successive steps. 

 

Step 1. Coefficients for the convective and diffusive terms of the vector algebraic equation of 

momentum conservation are generated 

 * min , 0uu vv ww

N N N f f f fa a a S m     , 

 * max , 0uu vv ww

P P P f f f fa a a S m     , 

   *u v w T

P P P f f f f f f f f f PNb b b S           u u S u d , 

(9) 

where * f f

P

f PN

S





S S

S d
 is the reference area also used in the non-orthogonal correction;

 f f f fm  u S  is the mass flux on a face. Functions min and max are used to find minimum 

and maximum of two arguments. 

 

Step 2. Coefficients for the term of pressure forces in the momentum equation are calculated. In 

the coupled algorithm this term is calculated implicitly in contrast to the SIMPLE algorithm, in 

which the fully implicit simulation is impossible, because the pressure in the original equation is 

a parameter rather than a desired quantity. That’s why the pressure forces in the SIMPLE 

algorithm are discretized explicitly, and the pressure coefficients are introduced to the right-hand 

side from the previous iteration. For the coupled algorithm, the block matrix coefficients are 

modified 
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     1 1 1 ,

,

up x vp y wp z

N f f f N f f f N f f f

up x vp y wp z

P f f f P f f f P f f f

a S a S a S

a S a S a S

     

     

     

  

 (10) 

For the SIMPLE algorithm, the right-hand side of the system is modified 

,

,

u n x v n y w n z

N f f f N f f f N f f f

u n x v n y w n z

P f f f P f f f P f f f

b p S b p S b p S

b p S b p S b p S

  

  

  

  
 (11) 

where  1f f P f N        is the porosity factor on face; N
f

P N

a

a a
 


 is the interpolation 

factor based on the diagonal coefficients in the momentum equation matrix [Rhie & Chow, 

1983];  , ,P N P N f fa   a n n  is an averaged diagonal coefficient in the momentum equation; 

,P Na  is a diagonal coefficient in the momentum equation represented in the form of tensor in the 

coupled solver; 
, ,x y z

fS  are the area vector components in directions x, y, z, respectively. 

 

Step 3. The last step in generating coefficients for the momentum equation is the key stage of the 

porous body model implementation. In addition to the above described coefficients of the block 

SLAE, terms of the non-linear and linear parts of the permeability tensor are summarized 

     

     

     

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

,

,

.

uu uv uw

P P P P P P

vu vv vw

P P P P P P

wu wv ww

P P P P P P

a V a V a V

a V a V a V

a V a V a V

     

     

     

        

        

        

u u u

u u u

u u u

 (52) 

The linear part of permeability tensor (52) is fully implicit, in contrast to the SIMPLE algorithm, 

where the implicit discretization is impossible, because the solution is performed successively 

for the three velocity components and, hence, there is no implicit relationship between the 

velocity components. 

 

After all coefficients for the momentum equation have been generated (the lower three rows of 

the block matrix have been filled), the matrix coefficients for the continuity equation are 

calculated (the upper row). Here, the key point of discretization is the fully implicit simulation of 

the mass flux, in contrast to the SIMPLE algorithm, where the mass flux is taken from the 

previous iteration layer and introduced to the right-hand side. Besides the mass flux, diagonal 

elements and the right-hand side with respect to pressure are also generated (similarly to the 

SIMPLE algorithm) and the implicit mass flux for the coupled algorithm 
2 *

( )

pp pp pp

N f f f f P N

f nb P

a D S a a 


     , 

 2 *p

P f f f f N Pf P Nfb D S p p     d d , 

 

 

 

1 ,

1 ,

1 ,

pu x pu x

N f f f f P f f f f

pv y pv y

N f f f P f f f f

pw z pw z

N f f f P f f f f

a S a S

a S a S

a S a S

     

    

    

  

  

  

 

(13) 

where P N
f

p N

V V
D

a a





 is the mean harmonic averaging of the Rhie–Chow correction coefficient 

[Rhie & Chow, 1983]; f  is the density on face f, which is calculated using the given scheme (in 

this study, the specific discretization scheme in use is not important in view of an incompressible 

material). It should be noted that velocity fu  on face f  (for the mass flux in the continuity 
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equation) and pressure (for the pressure forces in the momentum equation) are calculated with 

opposite interpolation factors 

 

 

1 ,

1 .

f f P f N

f f P f Np p p

 

 

  

  

u u u

 (14) 

This approach allows making the velocity and pressure values consistent according to the mean 

harmonic averaging [Rhie & Chow, 1983]. 

 

3. Discretization of boundary conditions 

 

Specification of the boundary conditions is required to close and solve equations (5). In view of 

the fact that two equations in (5) are rigidly bound by means of Rhie–Chow correction [Rhie & 

Chow, 1983], at one boundary it is sufficient to specify boundary conditions for one equation 

only. However, in general the boundary conditions should be specified for all equations. 

 

The boundary condition implementation in the coupled algorithm to solve equations (5) 

significantly differs from the process in the SIMPLE algorithm. First of all, this concerns the 

mass flux in the continuity equation and pressure forces in the momentum equation. The 

boundary coefficients for an arbitrary control volume P depend on the type of boundary 

conditions, such as inlet, outlet, wall, etc. 

 

3.1. Inlet (velocity components) 

 

The inlet boundary condition implies setting only three velocity components for the momentum 

equation. Thus, the implicit discretization of the convective term is the only possible way. The 

diffusive term and pressure gradient discretization is performed implicitly, similarly to interior 

faces. 

 

The explicit way of setting velocity components and mass flux does not imply the use of Rhie–

Chow correction and, hence, the calculated mass flux with regard to the porosity factor is put to 

the right-hand side of equation. 

 

For the inlet boundary condition in a porous body, it is necessary to extrapolate the pressure from 

the boundary cell central point. Usually, the extrapolation with the pressure gradient from the 

previous iteration step is used. In that case the explicit term is added to the right-hand side of the 

momentum equation. With regard to the foresaid, matrix coefficients are as follows 
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f nb P f nb P f nb P
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v v S v d

w w S w d

 

,p

P P fb m   

 , , , , .u v w x y z

P P P Pf fb p S   d  

(15) 

 

3.2. Outlet (mass flux) 
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For incompressible flows, there is a possibility of setting the outlet boundary condition as a mass 

flux equal to the total inlet mass. This approach requires specification of the reference pressure 

because in case of its absence the resultant matrix is uncertain and has an infinite number of 

solutions (the determinant equals zero). It is possible to set the reference pressure either by 

selecting an arbitrary cell with the specified pressure and further accounting it in the whole 

model, or by using the matrix way with the explicit specification of the solution in the basic cell. 

In any case, coefficients are calculated similarly to the inlet boundary condition. 

 

3.3. Outlet (static pressure) 
 

Another general-purpose outlet boundary condition is the specified static pressure. It can be used 

both for compressible and incompressible flows. Though such approach does not ensure equal 

inlet and outlet masses, it allows avoiding the uncertain matrix solution. The convective term and 

pressure gradient in the momentum equation are implemented explicitly. Similarly to interior 

faces, Rhie–Chow correction [Rhie & Chow, 1983] is used for the continuity equation. 
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.pu x pv y pw z

P P f P P f P P fa S a S a S      

(16) 

It should be noted that this outlet boundary condition can also be used as the inlet boundary 

condition. 

 

3.4. No-slip wall 

 

The most significant difference between the coupled and SIMPLE algorithms consists in the 

implementation of the no-slip wall boundary condition. The SIMPLE algorithm uses the known 

deferred correction method [Ferziger & Peric, 2002] leading to the similarity of diagonal 

coefficients of the three SLAE velocities. This approach provides stability of simulations. 

However, it lowers the rate of convergence owing to the explicit way of accounting the velocity 

components. The coupled algorithm uses the known implicit approach [Darwish et al., 2009]. 

The implicit approach idea is to decompose the tangential velocity with respect to the outward 

normal vector components and take into account the off-diagonal coefficients coupling the 

velocity components with each other. 

 

The surface friction force is calculated from the equality 

w f F τ S , (17) 

where t w
w l

Pf

 



u u

d
 is the viscous stress tensor on wall;  t P P w w  u u u n n  is the tangential 

velocity component in cell (the velocity parallel to the wall); 
wn  is the outward normal to the 

wall; wu  is the moving wall velocity. 

 

Thus, the near-wall cell coefficients are specified by the following equalities 
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 (18) 

This boundary condition implies no variations in the continuity equation coefficients. 

 

3.5. Slip wall 

 

The implementation of the slip wall boundary condition is similar to the implementation of the 

no-slip wall boundary condition with regard to zero tangential stress ( 0w τ ). The wall velocity 

is not set and equals the tangential velocity component in the near-boundary cell. Pressure and 

any other scalar quantity are equalized with the values of quantities in the near-boundary cell. 

This boundary condition requires accounting the pressure gradient in the momentum equation 
pu x pv y pw z

P P f P P f P P fa S a S a S     . (19) 

As a result, the described discretization steps for equations (5) with the use of a completely 

implicit algorithm allow solving problems of compressible and incompressible flows in porous 

media with a varying porosity factor relative to the real velocity. The discretization using the 

completely implicit algorithm allows significantly reducing the total number of iterations and the 

total problem runtime, and such reduction is demonstrated below for benchmark problems. 

 

4. Computational speedup 

 

The general performance of the coupled algorithm depends on an important factor, such as the 

SLAE solution stage in the computational process. The application of Krylov’s subspace 

iterative solvers [Saad, 2003] significantly increases the number of nested iterations (the number 

of iterations of SLAE solution) and hence the problem runtime, which may be several dozens of 

thousands, and in most cases leads to the solution divergence. First of all, this fact can be 

attributed to large enough conditioning numbers of the original SLAE [Darwish et al., 2009; 

Kozelkov et al., 2016с] and, hence, it seems reasonable to use multigrid solvers, a variety of 

which is available [Brandt, 1982; Stuben & Trottenberg, 1982]. In the present study the multigrid 

solver with the aggregative way of coarsening is used [Vanek et al., 1996]. It is described in 

detail for a parallel case in [Kozelkov et al., 2016с]. The studies of [Volkov et al., 2013, 2014b] 

describe in detail the choice of optimal parameters (such as the type of cycle, the number of cells 

for coarsening) for the given version. 

 

To solve SLAEs, the coupled algorithm uses matrices consisting of blocks which size is 4 4 , 

and the solution vector with four unknowns (6). The original scalar multigrid solver [Kozelkov et 

al., 2016с] is performed by increasing the size of linear arrays of matrix coefficients and 

replacing the scalar multiplication and division operations by the corresponding matrix function. 

The implementation of such approach allows solving SLAE with an arbitrary block size and it is 

of a great importance for multiphase flows, where the size of blocks depends on the number of 

phases [Moukalled et al., 2003]. 

 

The principal idea of the multigrid method is in the hierarchical structure and preserved sequence 

of embedded coarse SLAE matrices and operators of random transition from one SLAE matrix 

to another [Volkov et al., 2013, 2014b; Yvan, 2010]. The upper left block coefficient responsible 

for the pressure field equation is taken for the leading element to perform coarsening. The 

resultant number of coarsened SLAE matrices (levels) is random and depends on the coarsening 

parameters. The solution process starts with solving the coarsest SLAE (level 0) followed by the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 

obtained solution and residual interpolation to finer levels. Such iterative process allows 

reducing the number of internal iterations until the required solution accuracy is achieved. 

 

Consider the main steps of the algebraic method using the classic SLAE solution problem 

h h hA x b , (20) 

where hA  is the original matrix of size n n ; hx  and hb  are the vector of unknowns and the 

right-hand side of the system of size n, respectively. The subscript h indicates that equations 

belong to a fine grid. 

 

The operator P of interpolation from coarse grid H to fine grid h  allows representing matrix HA  

on the coarse grid in the form 

H hA RA P , (21) 

where TR P  is the operator of interpolation from a fine grid to a coarse grid. The correction 

step has the form 
new old

h h Hx x Pe  . (22) 

The solution correction He  is the exact solution to equation 

H H HA e r , (23) 

where H hr Rr  is the residual at the coarse level, and 
old

h h h hr b A x   is the residual at the finest 

level. 

 

An iteration of the multigrid method using the solution correction scheme is the following 

sequence of steps. 

1. Do n  iterations of preliminarily smoothing the solution on grid h  using the ILU method. 

2. Residual 
h h h

h oldr b A x   is calculated at the current level. 

3. Approximate solution 
H H

HA e r  is found on a coarse grid. For this purpose,   cycles of 

the multigrid scheme are recursively fulfilled. 

4. Correction He  is interpolated onto a fine grid and the solution is corrected on the fine grid, 

h h H

new oldx x Pe  . 

5. Do n  iterations of finally smoothing the solution on the fine grid to suppress interpolation 

errors. 

 

Different types of cycles are identified at each grid level depending on the number of recursive 

calls of solver, V-cycle and W-cycle take place with 1   and 2  , respectively. If at each 

level one W-cycle and then one V-cycle are recursively called, F-cycle is performed. The use of 

one or another type of cycles (V-, W- or F-cycle) affects the convergence rate and solution 

stability [Volkov et al., 2013, 2014b]. 

 

Smoother is an important factor in the multigrid solver. In calculations ILU(0) method of 

[Pommerell & Fichtner, 1994] is used as a smoother. The multigrid solver in combination with 

ILU(0) smoother allows suppressing high-frequency and low-frequency errors with a maximum 

efficiency, while providing a high convergence rate [Darwish et al., 2009]. 

 

Consider the specific features of storing the block matrix of SLAE by the example of a problem 

with four cells (Figure 2). 
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1 2 3 4
 

Figure 2. An example of computational model with four cells 

 

Use of the described algorithm of discretization of the continuity and momentum equations gives 

SLAE of the block type with the corresponding matrix portrait 

11 11 11 11 12 12 12 12

11 11 11 11 12 12 12 12

11 11 11 11 12 12 12 12

11 11 11 11 12 12 12 12

...

...

...

...

pp pu pv pw pp pu pv pw

up uu uv uw up uu uv uw

vp vu vv vw vp vu vv vw

wp wu wv ww wp wu wv ww

p p p p p p p p

u u u u u u u u

v v v v v v v v

w w w w w w w w

    
    
    
   
   

   

21 21 21 21 22 22 22 22

21 21 21 21 22 22 22 22

21 21 21 21 22 22 22 22

21 21 21 21 22 22 22

...

...

...

...

pp pu pv pw pp pu pv pw

up uu uv uw up uu uv uw

vp vu vv vw vp vu vv vw

wp wu wv ww wp wu wv

p p p p p p p p

u u u u u u u u

v v v v v v v v

w w w w w w w w

  
  
  

   
   

  

 
 
 
 
 
 

       

       

 

1

1

1

2

2

2

22 2

... ...

... ...

... ...

... ...

... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ...

P

ww

p

u

v

w

p

u

v

w

   
   
   
   
   
   
 

               
       
       
             

 
 
 
   

 

 

1

1

1

2

2

2

2

...

... ...

p

P

u

v

w

p

u

v

w

b

b

b

b

b

b

b

b

    
    
    
    
    
    
   

      
   

 
   

 
   

 
   

 
   
   
   
   

. 

   
     

     
   

 , where

          
          
    
         
   
         

 

(24) 

The symbols [×] correspond to the blocks of cells which are coupled. The symbols • correspond 

to blocks of cells without coupling. The symbols × correspond to a non-zero element inside one 

block. Note that coefficients for velocity components with superscripts uv, uw and vw are non-

zero for near-wall cells only. In all the rest cases these coefficients equal zero. 

 

The aggregative multigrid solver allows using computational resources in a most optimal way 

from the point of view of both memory consumption and speed of computations. 

 

5. Resuls and discussion 

 

The results of the numerical simulation of flows in porous domains are presented. The proposed 

approach is implemented in the LOGOS code used to solve coupled 3D problems of the heat and 

mass transport with convection, aerodynamics and hydrodynamics on parallel computers 

[Lashkin et al., 2016; Kozelkov et al., 2016с]. The LOGOS code has been successfully verified 

and demonstrates good results for a series of different CFD problems, including the simulation of 

turbulent and unsteady flows [Kozelkov et al., 2016с, 2015a, 2016a; Volkov et al., 2014a; 

Kozelkov & Kurulin 2015], as well as geographical problems [Kozelkov et al., 2015b, 2015c, 

2016b; Pelinovskii et al., 2016]. The multigrid method [Brandt, 1982; Volkov et al., 2013; 

Lashkin et al., 2016] is used for simulations. It ensures a significant speedup of the 

computational process and allows efficiently using several hundreds of computing cores. 

 

5.1. A fluid flow through a porous material insert 

 

A 2D flow in a plane-parallel channel of height H  and length 7L H  [Costa et al., 2004a] is 

considered. A rectangular insert of length 2H  made of a homogeneous isotropic porous material 

is placed in the channel at a distance of 3H  to the channel inlet. The channel length L  has been 
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chosen sufficiently large to eliminate the impact of steady state flow regions on the final results. 

The domain of interest is illustrated by the Figure 3. The 2D problem formulation is considered, 

and the channel length is eliminated from the consideration by imposing the symmetric boundary 

conditions. Horizontal boundaries are rigid walls with adhesion. 

 

 
Figure 3. A computational domain 

 

The dimensionless parameters of the problem are Reynolds number, Re 1
UH


  , where U  

is the inlet velocity, and Darcy number, 
310Da  . These numbers are used to select 

dimensional quantities such as fluid properties and resistance factors for the porous body. The 

porosity factor   is set equal to 1. 

 

To solve the problem, three uniform meshes have been used. Their parameters are given in the 

Table 1. 

 

Table 1. Computational meshes 

No Type of mesh Typical streamwise size, m Number of cells 

1 Uniform 0.025 6400 

2 Uniform 0.0125 25600 

3 Uniform 0.00625 102400 

 

Simulations are performed using the coupled and segregate solvers for the steady state problem. 

The specified minimum level of the residual is set to 10
–6

. It is found from the expression 

 
1 ( )

N

m f f f f

i f nb P

res S
 

 
  

 
  u n , (25) 

where N  is the total number of cells. 

 

The convergence histories are presented in the Figure 4 for both solvers (with standard relaxation 

parameters). 
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Figure 4. Residual of mass as a function of step size (a) and as a function of time (b) 
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Comparison of the results computed with the SIMPLE and coupled solvers for the given problem 

are summarized in the Table 2. The reported computational costs is measured as a number of 

steps required to reach the same level of residual for two computational solvers, SIMPLE solver 

and coupled solver. 

 

Table 2. Computational results 

No 

Number of steps Time, s 

Coupled 

solver 

SIMPLE 

solver 

SIMPLE/ 

Coupled 

Coupled 

solver 

SIMPLE 

solver 

SIMPLE/ 

Coupled 

1 13 111 8.5 1.03 8.04 7.8 

2 12 203 16.9 3.69 106.90 29.0 

3 23 199 8.7 28.52 340.76 11.9 

 

The results obtained show that the coupled algorithm on a fine mesh provides 17 times reduction 

of the total number of iterations and almost 29 times reduction of the wall-clock time of 

simulations. 

 

The examination of results includes the comparison of velocity and pressure profiles along the 

centerline of the channel. The comparison of the calculated results and those from [Elnaz, 2012] 

is given in the Figure 5. 

 

  
Figure 5. Velocity profiles (a) and pressure profiles (b) along the centerline 

 

The obtained velocity and pressure-difference values are almost the same for all meshes. They 

are in a good agreement with the numerical results from [Costa et al., 2004a]. 

 

5.2. A fluid flow in a planar divided channel 

 

The problem presented in [Costa et al., 2004a] describes incompressible viscous fluid flow in a 

plane-parallel channel of height 2H  and length 2L H . The lower domain of height, H , is a 

porous medium. The channel length, L , is selected sufficiently large to eliminate the impact of 

the steady state flow regions on the final results. The physical region of interest is schematically 

represented in the Figure 6. 
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Figure 6. A computational domain 

 

The dimensionless parameters for the given problem are Reynolds number in an open domain, 

Re 1
UH


  , and Darcy number, 

210Da  . The porosity factor   is set equal to 1. 

 

To solve the problem, three uniform meshes, which parameters are given in the Table 3, are 

used. 

 

Table 3. Computational meshes 

No Type of mesh Typical size across the flow, m Number of cells 

1 Uniform 0.04 10000 

2 Uniform 0.02 20000 

3 Uniform 0.01 80000 

 

Simulations were performed using the coupled and SIMPLE solvers for the steady state problem. 

The minimum level of residual is set to 10
–6

. The iterative process convergence rates are shown 

in the Figure 7 for the coupled and segregate solvers (with standard relaxation parameters). 
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Figure 7. Residual of mass as a function of step size (a) and as a function of time (b) 

 

The comparison of the results for the SIMPLE and coupled solvers for the given problem is 

given in the Table 4. 

 

Table 4. Computational results 

No 

Number of steps Time, s 

Coupled 

solver 

SIMPLE 

solver 

SIMPLE/ 

Coupled 

Coupled 

solver 

SIMPLE 

solver 

SIMPLE/ 

Coupled 

1 8 82 10.25 0.36 2.04 5.67 

2 12 241 20.08 2.12 24.44 11.53 

3 19 218 11.47 21.85 114.17 5.22 

 

The results obtained show that the coupled algorithm on a fine mesh provides 20 times reduction 

of the total number of iterations and 11 times reduction of the wall-clock time of simulations. 
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The results are compared with those from [Costa et al., 2004a] with respect to the horisontal 

velocity component profiles along the channel cross-section in the steady state flow region. 

Figure 8 illustrates the streamwise velocity profiles computed with different meshes in 

comparison with those from [Costa et al., 2004a]. The axis x shows the channel height, and the 

axis y shows the streamwise velocity. 

 

 
Figure 8. The streamwise velocity profiles along the central part of the channel 

 

There is a good agreement of the computed results with results from [Costa et al., 2004a] for 

each of the three meshes. 

 

5.3. A fluid flow through a cylindrical filter 

 

The problem demonstrates a possibility of simulating a fluid flow in a symmetric cylindrical 

region occupied by a porous body. The problem of an air flow in a car engine, where filter may 

be represented as a cylinder, is an example. The cause of the main difficulty in solving problems 

of such kind is inconsistency between the resistance tensor coefficients specified for the local 

cylindrical and the global Cartesian frame of reference. The fact is that in the local system this 

tensor is represented by the diagonal part only, and in the global system it transforms and 

contains values in off-diagonal elements of the resistance tensor. The coupled algorithm 

developed in the study allows discretization of the original off-diagonal elements in a completely 

implicit manner. 

 

The flow in a porous medium is set in the radial direction alone. This becomes possible owing to 

the resistance coefficients augmentation in the transversal and longitudinal directions relative to 

the radial direction. The diagonal resistance tensor in cylindrical coordinates is set so that the 

fluid flows in radial direction only. Such effect is possible, for example, with the following 

values of resistance tensors 

100 0 0 1 0 0

0 10000 0 0 100 0

0 0 10000 0 0 100

local local

   
     
   
      

P u . (26) 

The resistance coefficients have no significant effect on the flow pattern (they affect the pressure 

difference only), whereas of a great importance is 100 times difference between the coefficient 

values in the radial direction and their values in the transversal and longitudinal directions. 

 

With the transition from the local system to the global one, the resistance tensor transforms 

according to the rule of transition from one coordinate system to another 

global localM P M  P , (27) 
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where M  is the transformation matrix. For example, for the given problem the transformation of 

tensor into the global coordinate system looks like 

cos( ) cos( ) sin( ) sin( ) cos( ) sin( ) ( ) 0

cos( ) sin( ) ( ) sin( ) sin( ) cos( ) cos( ) 0

0 0

xx yy xx yy

global xx yy xx yy

zz

P P P P

P P P P

P

     

     

       

        

 
 
 
  

P , (28) 

where   is the angle of revolution in cylindrical coordinates. So, it has been demonstrated that 

off-diagonal coefficients do not equal zero, and the way of discretizing them affects the 

convergence rate. 

 

The computational domain and mesh are presented in the Figure 9. A uniform radial mesh 

containing 315,000 cells is used. 

 

 
Figure 9. A computational domain (a) and its cross-section (b) 

 

The mass flow rate is fixed at the inlet boundary, and the static pressure is fixed at the outlet 

boundary. The Reynolds number is Re 1000
UD


  , where D  is the cylinder diameter. 

 

To solve the problem, two uniform meshes are used. Their parameters are given in the Table 5. 

 

Table 5. Computational meshes 

No Type of mesh Typical size, m Number of cells 

1 Uniform 0.02 125000 

2 Uniform 0.01 500000 

 

Simulations are performed using the coupled and SIMPLE solvers for the steady state problem. 

The minimum level of residual is set to 10
–6

. The convergence histories of iterative process are 

presented in the Figure 10 for the coupled and segregate solvers (with standard relaxation 

parameters). 
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Figure 10. Residual of mass as a function of step size (a) and as a function of time (b) 

 

The comparison of results based on the coupled and segregate solvers for the given problem are 

presented in the Table 6. 

 

Table 6. Computational results 

No 

Number of steps Time, s 

Coupled 

solver 

SIMPLE 

solver 

SIMPLE/ 

Coupled 

Coupled 

solver 

SIMPLE 

solver 

SIMPLE/ 

Coupled 

1 913 7421 8.1 575.6 1696.7 2.9 

2 2123 10637 5.01 701.3 5943.3 8.5 

 

The results obtained demonstrate that the coupled algorithm on a fine mesh provides 8 times 

reduction in the number of iterations on a coarse mesh, and 8.5 times reduction of wall-clock 

time of simulations on a fine mesh. 

 

The pressure differences at the input and output are the same and equal 970 Pa for the coupled 

and SIMPLE solvers. 

 

6. Conclusions 

 

The coupled computational algorithm for Brinkman–Forchheimer equations to simulate flows in 

anisotropic porous media is developed. In contrast to the SIMPLE algorithm, the coupled 

algorithm couples the velocity and pressure in the algebraic form in a completely implicit 

manner. Coupling is performed owing to the implicit pressure gradient and mass flux terms in 

the momentum and continuity equations, respectively. When solving Brinkman–Forchheimer 

equations with the coupled algorithm, it is possible to discretize implicitly off-diagonal 

coefficients of the porous resistance tensor in the right-hand side of the momentum equation. The 

numerical calculations demonstrate that such implicit discretization allows reducing the number 

of nonlinear iterations in comparison with the SIMPLE algorithm and the wall-clock time of the 

problem solution. The time gain is 4 to 30 and depends on the mesh size and problem type. For 

the problem of a flow through a cylindrical filter the time gain is 4 in comparison with the 

SIMPLE algorithm. 

 

Comparison of a SIMPLE algorithm and the coupled solver has been made for some benchmark 

cases including fluid flow through a porous material insert, a fluid flow in a planar divided 

channel and a fluid flow through a cylindrical filter. On the one side, these test cases are typical 

for flow problems appearing in nuclear industry. On the other side, the test cases chosen are 

simple to avoid influence of other factors on comparison of two solvers, SIMPLE solver and 

coupled solver. Although the robustness of the developed numerical methods was only 

demonstrated for some simple benchmark flow cases through a porous media, the algorithm can 

easily be extended and applied to more complex flow types and geometries. The main motivation 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 

in this study was to accurately predict the flow through porous media based on Brinkman–

Forchheimer equations in simple geometry. 
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