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Abstract  
The major histocompatibility complex (MHC) is located in chromosome 6p21 and contains crucial 
regulators of immune response, including human leukocyte antigen (HLA) genes, alongside other 
genes with non-immunological roles. More recently, a repertoire of non-coding RNA genes, 
including expressed pseudogenes, has also been identified. The MHC is the most gene-dense and 
most polymorphic part of the human genome. The region exhibits haplotype-specific linkage 
disequilibrium patterns, contains the strongest cis- and trans-eQTLs/meQTLs in the genome, and is 
known as a hot spot for disease associations. Another layer of complexity is provided to the region 
by the extreme structural variation and copy number variations. While the HLA-B gene has the 
highest number of alleles, the HLA-DR/DQ subregion is structurally most variable, and shows the 
highest number of disease associations. Reliance on a single reference sequence has complicated 
the design, execution and analysis of GWAS for the MHC region and not infrequently, the MHC 
region has even been excluded from the analysis of GWAS data. Here, we contrast features of the 
MHC region with the rest of the genome, and highlight its complexities, including its functional 
polymorphisms beyond those determined by single nucleotide polymorphisms or single amino acid 
residues. One of the several issues with customary GWAS analysis is that it does not address this 
additional layer of polymorphisms unique to the MHC region. We highlight alternative approaches 
that may assist with the analysis of GWAS data from the MHC region and unravel associations with 
all functional polymorphisms beyond single SNPs. We suggest that despite already showing the 
highest number of disease associations, the true extent of the involvement of the MHC region in 
disease genetics may not have been uncovered.  
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Introduction  
The major histocompatibility complex (MHC) is present in all mammals, but was first discovered in 
tumour transplantation studies in mice (Gorer, 1937). The human MHC, which is called human 
leukocyte antigens (HLA) complex, was discovered independently by Dausset, van Rood, and 
Payne & Bodmer during studies of antibodies against leukocytes in multiparous women (Dausset, 
1981). Like blood group antigens (Aird, Bentall, & Roberts, 1953), HLA antigens are among the first 
genetic markers examined for disease associations (Amiel, 1967). While the emphasis was initially 
on the histocompatibility products (HLA-A, -B, -C, -DR, -DQ, -DP), the Human Genome Project 
unravelled the true content of the MHC region, and over the last decade, genome-wide association 
studies (GWAS) have unravelled a large number of disease associations with MHC region variants.  
 
The MHC is the most gene-dense region of the human genome (Table 1), containing a diversity of 
genes involved in major physiologic phenomena (Roger Horton et al., 2004; Shiina, Hosomichi, 
Inoko, & Kulski, 2009; Vandiedonck & Knight, 2009; T. Xie et al., 2003). The region is clearly 
enriched for genes encoding molecules participating in immune and inflammatory pathways (R. 
Horton et al., 2008; Roger Horton et al., 2004; Shiina et al., 2009; Traherne, 2008; Trowsdale & 
Knight, 2013) (Table 2), and about 60% of the gene content is involved in non-immunological roles 
(Shiina et al., 2009; Vandiedonck & Knight, 2009). Of the total 677 genes, there are still 60 without 
sufficient characterization (open reading frames or uncharacterised loci). The extended MHC 
(xMHC) contains 1.5% of the genes in OMIM and 6.4% of genome-wide significant single nucleotide 
polymorphism (SNP) associations in the NHGRI/EBI GWAS catalog (Ripke et al., 2013). Before the 
GWAS era, the list of traits and diseases that show MHC associations in mammals was already very 
long and included a variety of conditions from reproductive issues (Kostyu, 1994; Lerner & Finch, 
1991), to cancer (Chaudhuri et al., 2000; de Jong et al., 2003; DeWolf, Lange, Einarson, & Yunis, 
1979; Diepstra et al., 2005; M. T. Dorak et al., 1999; Klitz, Aldrich, Fildes, Horning, & Begovich, 
1994; Lu et al., 1990; Magnusson et al., 2001) and longevity (Ivanova et al., 1998). Of particular 
interest is the mapping of breast cancer (de Jong et al., 2003) and Hodgkin lymphoma susceptibility 
(Diepstra et al., 2005) to the MHC class III region, which is devoid of classical HLA genes. During 
the GWAS era, disease associations with MHC region variants have drastically increased (Lenz, 
Spirin, Jordan, & Sunyaev, 2016; Ripke et al., 2013; Vandiedonck & Knight, 2009) (Figure 1). 
GWAS have identified SNP level associations for most robustly validated HLA associations (Table 
3).  Autoimmune disorders have always shown strong and consistent MHC associations (Matzaraki, 
Kumar, Wijmenga, & Zhernakova, 2017) some of which have been even narrowed down to amino 
acid level (Achkar et al., 2012; Miyadera, Ohashi, Lernmark, Kitamura, & Tokunaga, 2015; 
Raychaudhuri et al., 2012), but detailed studies also show independent associations with non-HLA 
polymorphisms in the MHC region (Handunnetthi, Ramagopalan, Ebers, & Knight, 2010; Rioux et 
al., 2009). 
 
Progress has been made in understanding the mechanisms of several HLA-associated diseases 
(Caillat-Zucman, 2009; Sollid, Pos, & Wucherpfennig, 2014), especially in rheumatoid arthritis 
(Klareskog, Catrina, & Paget, 2009), type 1 diabetes and Celiac disease (Busch et al., 2012), as 
well as drug hypersensitivities (Illing, Vivian, Purcell, Rossjohn, & McCluskey, 2013). However, 
given the number of disease associations with MHC region variants, only a small number of 
potential mechanisms have been uncovered (Howell, 2014).  
 

Unique Features of the Extended MHC Region   
The HLA region has many unique features which distinguish it from the rest of the genome (Box 1). 
The two most gene-dense regions of the human genome are the MHC class III region and the 
histone gene supercluster within the xMHC region (T. Xie et al., 2003). Besides being the most 
gene-dense, xMHC is also the most polymorphic region in the genome, which is compounded by a 
complex linkage disequilibrium (LD) structure. In the xMHC, individual SNPs and haplotypes are as 
relevant as elsewhere, additionally, constellations of them make up HLA alleles, groups of HLA 
alleles form functional supertypes or ancestral supertypes, and mark evolutionary lineages. GWAS 
analysis of more recent studies included HLA imputation and analysis by HLA type or amino acid 
residues (A. Dilthey et al., 2013; A. T. Dilthey, Moutsianas, Leslie, & McVean, 2011; Jia et al., 2013; 
M. Xie, Li, & Jiang, 2010; X. C. Zhang, Li, Wang, Hansen, & Zhao, 2011), but no GWAS to date has 
specifically examined the MHC region for functional polymorphisms such as highly functional 
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epitopes (including HLA-Bw4/Bw6 or HLA-C1/C2) that have previously shown important disease 
associations (discussed later).  
  
An important difference in the xMHC from the rest of the genome concerns the structural variation 
and the presence of closely related genes in these regions. Two such regions contain the 
complement (C2, C4A, C4B in a CNV region) and HLA-DRB (B1-B9) genes (a segmental 
duplication region). The polymorphisms in these regions are particularly difficult to genotype using 
high-throughput methods, mainly because they violate Hardy-Weinberg equilibrium (HWE) due to 
the presence of paralogs and CNV. An analysis of the whole genome sequencing data from the 
1000 Genomes Project revealed that the MHC region shows the highest Hardy-Weinberg 
disequilibrium levels (Graffelman, Jain, & Weir, 2017). Most of this must be due to the genomic 
features of this region. SNPs that do not conform to HWE are excluded from GWAS chips at the 
time of quality control steps during the production phase. At the time of the first wave of GWAS, the 
Illumina MHC SNP Panel was a dedicated SNP typing platform for 2360 SNPs in the xMHC. The 
first-generation GWAS chips typically covered the xMHC, at most, as extensively as this panel. The 
two segmental duplication regions of the MHC were grossly underrepresented and the HapMap 
phase I data contained genotype data for considerably fewer SNPs in these regions: (i) complement 
subregion: only four SNPs in the 78.5kb subregion covering the C4A, C4B and CYP21A2 genes 
within the class III region; (ii) HLA-DR subregion: just four SNPs in the 114.5kb subregion covering 
the area flanked by HLA-DRA and -DRB1 genes. Extreme variation of this region, including 
structural variation and presence of paralogs, creates difficulties for inclusion of many SNPs in 
GWAS chips, but alternative genotyping methods exist (M.T. Dorak, 2007). Imputation of the SNPs 
in the subregions that are not covered sufficiently in GWAS chips may be thought of as a solution. 
The success of imputation, however, depends on the reference panel used, and even 1KG data 
may not be ideal for these structural variation regions, which also suffers from SNP genotype call 
difficulties for the MHC (Brandt et al., 2015).  
 
 
Box 1. Unique features of the xMHC relevant to GWAS: 

 Most gene dense in the genome (T. Xie et al., 2003) 

 Paralog regions and genes (one-third of the genes residing in the MHC have paralogous 
copies) (Endo, Imanishi, Gojobori, & Inoko, 1997; Roger Horton et al., 2004; Kasahara, 
1999a, 1999b; Kasahara et al., 1996; Katsanis, Fitzgibbon, & Fisher, 1996; Shiina et al., 
2001)  

 Clustering of functionally related genes (Roger Horton et al., 2004; Trowsdale & Knight, 
2013) 

 Strongest trans-eQTLs (Fairfax et al., 2012; Fehrmann et al., 2011; Westra et al., 2013) and 
meQTLs (van Dongen et al., 2016) in the genome as well as an exceptional number of 
connected components in genotype networks (Dall'Olio, Bertranpetit, Wagner, & Laayouni, 
2014) 

 CNV and structural variation (Andersson, 1998; Blanchong et al., 2000; Y. B. Zhang, Li, 
Zhang, Wang, & Yu, 2012) 

 Extremely polymorphic at the nucleotide level (Durbin et al., 2010; Gaudieri, Dawkins, 
Habara, Kulski, & Gojobori, 2000; Vandiedonck & Knight, 2009)   

 Highest trait-associated variant density even by standard analysis of GWAS data (treating 
the xMHC as anywhere else in the genome) (Lenz et al., 2016; Ripke et al., 2013; 
Vandiedonck & Knight, 2009)  

 Non-HLA genes throughout xMHC carry deleterious variants at high frequencies (more than 
two orders of magnitude above the genome-wide average for some of them) (Lenz et al., 
2016). 

 Very high linkage disequilibrium over very long range resulting from conserved extended 
haplotypes (Ahmad et al., 2003; Aly et al., 2006; Blomhoff et al., 2006; T. M. S. Consortium, 
1999) due to lower recombinational rates than the rest of the genome (3-fold lower than 
1.2cM/Mb) (de Bakker et al., 2006)  

 Higher than average rates of alternative splicing as a manifestation of DNA sequence 
diversity (Vandiedonck et al., 2011)  
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 Highest gene expression levels across the genome *; highest heritability of gene expression 
levels (Wright et al., 2014); and trans-generational inheritance of methylation patterns 
(McRae et al., 2014)  
 
* The GTEx database lists HLA-B (9th), HLA-C (15th), HLA-E (19th) and HLA-A (37th) in the 
top 50 genes for expression levels (the beta2-microglobulin gene B2M is 19th). 

 
CNV within the MHC may not have received sufficient attention. HLA-B/C and HLA-DR/DQ 
subregions are within CNVs of rather large fragments. The Database of Genetic Variants currently 
(March 2017) lists six CNVs within xMHC larger than 1Mbp, and 41 CNVs between 0.2 and 1Mbp. 
However, their correlations with disease susceptibility are not well studied. CNVs correlate with 
transcription levels of genes within the CNV region, including MHC genes (Schlattl, Anders, 
Waszak, Huber, & Korbel, 2011). The HLA class II region contains CNVs at appreciable population 
frequencies and with sizes reaching up to 421,697bp (Conrad et al., 2010; de Smith et al., 2007). 
The largest class II region CNV (NCBI 36.1 ID: Variation_64476) reported by Conrad et al in the 
HapMap population as a gain with a frequency of 16.1% spans a region containing the genes HLA-
DRA, -DRB1, -DRB5, -DRB6, -DQA1, -DQB1, -DQA2, and -DQB2 (Conrad et al., 2010).  
  
Structural variation in the MHC is not restricted to CNVs. Segmental duplications are neighbouring 
duplicated genomic segments that are large (at least >1 kb in length), and that show more than 90% 
sequence identity. The class III region has a typical segmental duplication called the RCCX module 
(RP1/2-C4A/B-CYP21A1P/A2-TNXA/B) and contains the C4 and CYP21 genes, and may be 
present in more than one copy on each chromosome (Blanchong et al., 2000). The RCCX module 
copy number, each module’s size and gene content, and each C4 gene’s size on each HLA 
haplotype is variable (Blanchong et al., 2000; Collier et al., 1989; Y. L. Wu et al., 2007; Y. L. Wu et 
al., 2008). GWAS is unable to detect any of these variations, and as has been pointed out 
elsewhere (Traherne, 2008), there is no known proxy SNP for any of these alterations. The only 
complementary study that has been done to follow up any GWAS specifically for this region is in 
schizophrenia and identified copy number variation of C4 genes as the causal variation (Sekar et 
al., 2016). 
  
The frequency of a partial C4A or C4B protein deficiency in the Caucasian populations is between 
25.5 and 33.5% (Hauptmann, Tappeiner, & Schifferli, 1988) making partial C4 deficiency the most 
common immune protein deficiency in humans. C4A deletion is also an established risk marker for 
systemic lupus erythematosus (Y. L. Wu et al., 2008) as well as other autoimmune disorders and 
infectious diseases (Hauptmann et al., 1988). Still, no GWAS chip contains a single marker for C4A 
deletion, or, in fact, no more than a few markers from the whole C4A/C4B genes. A C4A deletion 
does not necessarily mean physical deletion of the gene. Nevertheless, no form of C4A deletion is 
represented by any polymorphisms on current GWAS chips.  
 
The complement proteins have common and useful polymorphisms that were used to define 
complotypes as constellations of complement components C2, factor B, C4A and C4B. The 
complotypes were considered as the most informative molecular markers defining the common HLA 
haplotypes in the 1980s and 1990s (Simon et al., 1997; Whitehead et al., 1984). Polymorphisms of 
these genes were used to determine HLA haplotype identity in HLA-matched transplant pairs 
[Dorak, 1993 #2467. However, once PCR-based genotypings took over, interest in complotypes 
faded. Since 2010, only nine papers have been published with complotype included in their titles or 
abstracts. It appears that the usefulness of complotypes disappeared along with our inability to 
genotype them by high-throughput methods. High-throughput methods may be superior on average, 
but their deficiency for polymorphisms in genes that have paralogs and are in CNV regions is 
obvious (M. Li, Li, & Guan, 2008). 
 
Another major structural variation in the MHC concerns the HLA-DR/DQ region. This region always 
contains the HLA-DRA and -DRB1 genes encoding the alpha and beta chains of the HLA-DR 
molecule. However, on most haplotypes, there is a second expressed HLA-DRB gene, which may 
be -DRB3, -DRB4, or -DRB5 (Andersson, 1998). These second expressed DRB genes, however, 
are mutually exclusive and only one of them can be on a haplotype. The pseudogene HLA-DRB9, 
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which is a duplication copy of the ancestral DRB gene, is present on all haplotypes, but other 
pseudogenes such as DRB2, DRB7 and DRB8 only exist on certain haplotypes. The reference 
sequence of the MHC has derived from the PGF cell line (HLA-DRB1*1501) used in the MHC 
Haplotype Project (R. Horton et al., 2008). Its haplotype contains the HLA-DRB5 gene (encoding 
DR51 serotype). The DRB5 gene is missing in more than 80% of chromosomes in European origin 
populations, but it is featured in HLA-DR region maps as if constantly present. Until now, any SNP 
mapping to the coordinates of the HLA-DRB5 gene has been considered a SNP in this gene, 
despite that the individual may even be missing this gene, and may have -DRB3 or -DRB4 in its 
place. Another implication is that the -DRB3 or -DRB4 genes are themselves polymorphic genes 
(Robbins et al., 1997), but their variants are not included in GWAS chips as they do not map to the 
reference sequence.  
 
The structural variation in this region is not currently considered in the analysis of data. Two 
problems arise that may result in the loss of otherwise useful information. First is the presence of 
duplication products of the ancestral DRB gene confounds genotyping, and secondly, the presence 
of a SNP in the paralogous position (i.e., a pseudoSNP) may result in excess heterozygosity and 
violation of HWE (Leal, 2005), as has been specifically documented for the xMHC SNPs in the 1KG 
data (Brandt et al., 2015). These difficulties for genotyping are in addition to the extreme 
polymorphism of the region which makes it very difficult to design typing assays.  
 
The number of closely related DRB genes is six (DRB1/4/6/7/8/9) on the HLA-DRB1*0401 
haplotype. The overall structural variation creates an anomalous situation in that some SNP 
positions may not even be present in some haplotypes. The presence/absence polymorphisms may 
result in low rates of genotype calls and subsequently exclusion of polymorphism data when in fact 
the missing genotype is the perfectly natural consequence of a missing gene. This is not taken into 
account in the analysis of data; in fact, such data do not exist as SNPs of this type would be 
excluded from the microarrays at the quality control step. The current NCBI SNP Database lists 
almost 4,000 SNPs mapping to the HLA-DRB5 gene, which is included in the reference sequence, 
but none have shown any disease associations. At least through LD, some of these would be 
expected to be associated with disease if they were included in GWAS chips and passed the quality 
control steps. Due to not taking into the structural variation, these SNPs would have violated HWE, 
and would be excluded from chips. An inspection of the ImmunoChip SNP content reveals a total 
lack of SNPs in a region that is larger than 50kb corresponding to the second expressed DRB gene 
region.  
  
The xMHC region is also very rich in paralog genes as a result of genomic duplications in the past, 
which are common events (Abi-Rached, Gilles, Shiina, Pontarotti, & Inoko, 2002; Flajnik & 
Kasahara, 2010; Kasahara, 1999a; Katsanis et al., 1996). Nearly one-third of the genes residing in 
the MHC have paralogous copies in at least one of the three regions established to be paralogous 
to MHC on 9q33-q34, 1q21-q25/1p11-p32, and 19p13.1-p13.3 (Roger Horton et al., 2004; 
Kasahara, 1999a; Shiina et al., 2001). An example of paralogy within the MHC is the CYP21A2 
gene, which is adjacent to its pseudogene CYP21A1P. Very high sequence similarity between these 
two paralogs complicates genotyping efforts. CYP21A2 encodes 21-hydroxylase and is the cause of 
the most common autosomal recessive condition of childhood, congenital adrenal hyperplasia 
(CAH; OMIM 201910). 21-hydroxylase is involved in adrenal sex steroid biosynthesis and is likely to 
play a role in hormonally mediated conditions, which may include breast cancer (Woolcott et al., 
2010; X. Zhang, Tworoger, Eliassen, & Hankinson, 2013). No GWAS on any condition has ever 
examined any polymorphism of CYP21A2 and any data on polymorphisms of this gene have been 
generated by conventional methods as is routinely done in medical genetics laboratories. The most 
common mutation of CYP21A2 that is involved in late-onset CAH is V282L (rs6471), which is listed 
in dbSNP with some data showing the mutant allele frequency up to 0.540 in some populations 
obviously due to genotyping error. The problem with CYP21A2 genotyping by high-throughput 
methods is specifically due to the interference by its pseudogene CYP21A1P that lies adjacent to 
the active gene.  

 
Another example of paralogy is the heat shock protein (HSP) genes HSPA1A, HSPA1B and 
HSPA1L. These three genes are extremely similar in their sequences, and part of a large HSP 
superfamily (Calderwood & Ciocca, 2008). As a result, their genotyping is extremely difficult 
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(Contreras-Sesvold, Sambuughin, Blokhin, & Deuster, 2010) and almost impossible with high-
throughput methods. This must be why the HSPA1B SNP rs1061581 has never been examined in 
GWAS despite its replicated associations with susceptibility to cancer in candidate gene studies 
(Guo et al., 2011; Ucisik-Akkaya, Davis, Gorodezky, Alaez, & Dorak, 2010). 
 

xMHC Region Associations in GWAS  
Although the earliest serological associations with autoimmune diseases stood the test of time 
(Brewerton et al., 1973; Stastny, 1978), due to the presence of many inconclusive and inconsistent 
reports, pre-GWAS era HLA-disease associations were often met with some scepticism. It is 
unfortunate that most of those HLA association studies indeed did not conform to the current 
standards of genetic epidemiological research, and may have suffered from small sample size, 
methodological imperfections including HLA typing errors, disregard of population structure, and 
lack of replication.  
 
GWAS have unravelled many unsuspected susceptibility markers for many traits (Manolio, 2013). 
GWAS have achieved much more than candidate gene studies in terms of identifying genotype-
phenotype correlations. However, there is still a degree of disappointment with the cumulative 
results; only a modest amount of disease heritability has been explained, even after multiple studies 
targeting the same disease (Maher, 2008; Manolio et al., 2009).  
 
It is generally assumed that GWAS provide approximately uniform representation of the entire 
genome. However, the xMHC, which accounts for a disproportional number of disease associations, 
is underrepresented in GWAS chips. Still, GWAS have reported many top hits within the xMHC in a 
variety of disorders and traits with or without an immune basis. Most notably, the strongest markers 
for drug hypersensitivities have been located within the MHC, and several have been FDA approved 
for clinical use (Profaizer & Eckels, 2012).  
 
Cancer susceptibility is historically linked to the histocompatibility loci. The earliest disease 
susceptibility study in animals examining MHC effects highlighted its role in leukaemia in mice (Lilly, 
Boyse, & Old, 1964) followed by other cancers (Oomen, Van der Valk, & Den Engelse, 1983) 
including breast (Dux & Demant, 1987; Muhlbock & Dux, 1974; Ropcke, Moen, Hart, & Demant, 
1990) and lung cancer (Demant, Oomen, & Oudshoorn-Snoek, 1989; Oomen et al., 1983; Snoek et 
al., 2000). Those studies were not limited to virally-induced leukaemia and mammary tumours, but 
also examined spontaneous, chemically- and hormonally-induced tumors. Until the GWAS era, 
replicated associations were few and far in between. In the GWAS era, robust associations have 
emerged in lung cancer (Broderick et al., 2009; Guo et al., 2011; Y. Wang et al., 2008), breast 
cancer (Michailidou et al., 2015), prostate cancer (Kote-Jarai et al., 2011), testicular germ cell 
tumour (Rapley et al., 2009), liver cancer (Kumar et al., 2011), multiple myeloma (Chubb et al., 
2013), Hodgkin lymphoma (Moutsianas et al., 2011; Urayama et al., 2012), follicular lymphoma 
(Conde et al., 2010), nasopharyngeal carcinoma (Tse et al., 2009), cervical cancer (Chen et al., 
2013), and glioma (Bethke et al., 2008). As in other diseases, with increasing use of rare variants, 
much larger sample sizes and meta-analysis approaches in association studies, more associations 
are being reported (Fitzgerald et al., 2013; Haiman et al., 2013; Kuchenbaecker et al., 2015; 
Timofeeva et al., 2012; C. Wu et al., 2014). 
 
GWAS have shown associations of xMHC variants not only with autoimmune disorders and 
infectious diseases (Chapman & Hill, 2012; Handunnetthi et al., 2010; Rioux et al., 2009) as 
expected, but also with a diverse set of other diseases such as Barrett esophagus (Su et al., 2012), 
metabolic disorders (Chasman et al., 2009), obesity (Thorleifsson et al., 2009), schizophrenia (S. W. 
G. o. t. P. G. Consortium, 2014; Ripke et al., 2013; Sekar et al., 2016), Parkinson disease (Nalls et 
al., 2011), age-related macular degeneration (Cipriani et al., 2012), drug hypersensitivities 
(Profaizer & Eckels, 2012), and even with educational attainment (Rietveld et al., 2013) and wine 
preference (Pirastu et al., 2015). The potential reasons for such a large number of xMHC 
associations with a variety of traits are listed in Box 2.  
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Box 2. Potential reasons for disproportionate number of disease associations with xMHC 
region SNPs 

 Extreme polymorphism (Durbin et al., 2010; Gaudieri et al., 2000)   

 Extreme diversity of gene content (Roger Horton et al., 2004; Shiina et al., 2009) 

 Pleiotropic (immune and non-immune) functions of HLA molecules (Hassan & Mourad, 2011; 
Truman, Garban, Choqueux, Charron, & Mooney, 1996)  

 Selection acting on HLA loci and hitchhiking of deleterious alleles with them (Lenz et al., 
2016; Mathieson et al., 2015) 

 Presence of strongest trans-eQTLs (Fehrmann et al., 2011; Westra et al., 2013) and 
meQTLs (van Dongen et al., 2016) in the genome 

 Effect of HLA alleles on the microbiome (Kubinak et al., 2015; Marietta, Rishi, & Taneja, 
2015) 

 
 
Another point relevant to any discussion of the xMHC in the pathogenesis of any disease, and to 
possible explanation of extra-ordinarily large numbers of disease associations with its variants is the 
trans-eQTL effects of xMHC SNPs (Fairfax et al., 2012; Fehrmann et al., 2011; Westra et al., 2013). 
It appears that the effect of xMHC SNPs on gene transcription extends well beyond the genes 
nearby, to genes on other chromosomes. With a recent large twin study showing that a substantial 
proportion of gene expression heritability is trans to the structural gene (Grundberg et al., 2012), the 
trans-eQTL effects of xMHC polymorphisms may be one of the mechanisms of their diverse disease 
associations (Fairfax et al., 2012; Fehrmann et al., 2011). Likewise, in the BIOS QTL Browser (van 
Dongen et al., 2016), the strongest meQTLs are xMHC variants overlapping with the strongest 
trans-eQTLs. Thus, xMHC is not only the most gene-dense and polymorphic region, but its 
polymorphisms also correlate with expression and methylation levels of distant genes. The high 
density of eQTLs and meQTL in xMHC may be the reason for the observation that xMHC genes 
have the highest number of genotype network across the genome (Dall'Olio et al., 2014). 
 

What GWAS Could Have Shown  
It is clear that GWAS have unravelled many unexpected associations throughout the genome 
including the xMHC. GWAS catalogue and other similar databases list thousands of associations 
from the xMHC, but their independence from one another and from HLA types already known to be 
associated with the same trait is not always examined. Different platforms use different sets of 
SNPs and the reported associations in the same trait may even be identical due to strong LD 
between the associated markers. There is currently no simple way of checking whether a SNP 
association corresponds to an already known HLA association although available HLA types 
together with genome-wide SNP genotypes from 1KG and HapMap samples may provide some 
clues (Erlich et al., 2011; Gourraud et al., 2014; Major, Rigo, Hague, Berces, & Juhos, 2013). Since 
imputation is now a common practice, the associations with imputed SNPs add another 
complication to the interpretation of xMHC associations. The best reports consist of examinations of 
LD between the reported marker (the lead SNP) and other known associations in the same region, 
imputations of HLA types and adjustments by them to check the independence of the SNP 
association, and a full imputation and association statistics. While some studies worked out the 
correlations at the time of publications, some earlier GWAS were not analysed comprehensively 
enough and a lot of associations reported as top hits could have been better scrutinised. 
 
What GWAS has achieved has achieved is generally considered impressive, but more could have 
been done for the analysis of xMHC polymorphisms. At present, there are more than 16,000 HLA 
alleles (Table 1). Typing at this high-resolution level polymorphism is crucial for transplantation 
success, and as an aid in clinical diagnosis of certain disorders and drug toxicities. However, there 
are much simpler polymorphisms that have a huge impact on the physiological roles of the HLA 
proteins. Most well-known such polymorphisms concern HLA class I codons 114 and 116, HLA-
Bw4/w6 and HLA-C1/C2 epitopes, -DRB1 codon 86, -DQB1 codon 57 and -DPB1 codon 56 (Figure 
2). 
 
These polymorphisms are generated by multiple nucleotide substitutions and cannot be identified by 
simple SNP typing. In addition, there are also phylogenetic groups (such as the DR53 family 
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consisting of HLA-DRB1*04, *07 and *09), cross-reactive groups (CREGs) of HLA class I alleles, 
and functional supertypes of both HLA class I and II alleles. Of these, HLA-Bw4/w6, HLA-C-C1/C2, -
DRB1 codon 86, -DQB1 codon 57, and -DPB1 codon 56 are dimorphisms, which divide the alleles 
of the given locus into two mutually exclusive and collectively exhaustive groups. These 
polymorphisms show strong associations with diseases and their associations cannot be assessed 
by analysis of individual SNPs or individual HLA alleles. Special considerations are needed for their 
assessment and that has not been done in any genetic association study, including GWAS, to date. 
 
There are already recognized associations with diseases or physiologic traits of some of these 
dimorphisms and other broad groupings, but recent studies have not recognized their value due to 
the shift to emphasis on individual SNP associations. With few exceptions such as HLA-B*5701, -
DRB1*1501 and the DR53 lineage, no single SNP is currently known to represent either a single 
HLA allele or any of the functional HLA groups. Besides those shown in Figure 2, there are 
additional sequence feature variant types (SFVT) which overlap with some of the groups shown in 
Figure 2. These SFVTs, when taken into account, can explain disease associations better than HLA 
types themselves (Karp et al., 2010; Thomson et al., 2010), but none of these functional groups are 
deliberately examined for their associations with disease in GWAS. Since there are no SNP proxies, 
which are likely to be constellations of SNPs rather than single SNPs, the only way to analyse 
associations with these functional groups is to impute HLA types and infer the SFVTs and other 
specificities for comparison between cases and controls.   
 
The classical MHC functional groups can be inferred from HLA types. In current practice, however, 
neither HLA association studies nor GWAS -following the prediction of HLA types by recently 
developed algorithms(Karnes et al., 2017)- routinely examine associations of functional HLA groups. 
This may be due to aiming to keep the number of statistical comparisons to a minimum, or the lack 
of awareness. Dedicated genotyping assays are available for the better known dimorphisms: HLA-
Bw4/Bw6 (Bari et al., 2011; Ugolotti et al., 2011; Yun et al., 2007) and HLA-C1/C2 (Bari et al., 2011; 
Schellekens et al., 2007; Ugolotti et al., 2011; Yun et al., 2007) as well as for HLA-DPB1 (Cano & 
Fernandez-Vina, 2009) dimorphisms, which can be used in secondary studies following GWAS.  
 
Currently, the HLA region is treated the same as any other region in the genome in GWAS data 
analysis, if not excluded from data analysis (see for example, Ref. (Deelen et al., 2014)). The HLA 
region has unique characteristics that need to be considered in data analysis. The most popular 
multiallelic HLA grouping currently in use for disease association studies is the DRB1 alleles bearing 
the “shared epitope” relevant in rheumatoid arthritis aetiology. HLA-DRB1 alleles with amino acid 
sequences QKRAA, QRRAA, or RRRAA at positions 70-74 (shared epitope) are usually analysed 
as a single cluster in RA association studies (Barnetche, Constantin, Cantagrel, Cambon-Thomsen, 
& Gourraud, 2008; Bax, van Heemst, Huizinga, & Toes, 2011). This epitope exists on eight HLA-
DRB1 alleles (04:01, 04:04, 04:05, 04:08, 01:01, 01:02, 09 and 10:01). These alleles are usually 
grouped together in the analysis based on the HLA typing data. Likewise, HLA-B/C typing data are 
used to infer the HLA-Bw4 / Bw6 (Martin et al., 2002) and C1 / C2 epitope (Martin et al., 2010) 
status in certain disease association studies. These epitopes are not characterized by a single or a 
few SNPs but are possessed by heterogeneous groups of HLA alleles. As is currently done, GWAS 
data analysis does not detect associations with these epitopes. 
 

Statistical Analysis of the xHLA Region GWAS Data 
The xMHC region is currently analysed as anywhere else in the genome in GWAS. From the routine 
use of the additive model to the traditional thresholds for statistical significance, this approach is 
potentially counter-productive for detecting associations in this region. Besides, the unique features 
of xMHC previously discussed need to be taken into account for most effective analysis of the data 
from this region.  
 
Confounding by genomic features of the xHLA region 
When the unique features of the HLA region are not taken into account in GWAS analysis, a lot of 
data may be wasted. Dismissal of SNPs due to violation of HWE resulting from the presence of 
paralogs or CNV, and low genotype call rates because of structural variation (absence/presence 
polymorphisms) are a couple of examples of loss of valuable data. Most of these SNPs are 
eliminated during the SNP selection process for the GWAS chip, and if they make it to the chip, they 
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face a similar outcome at the analysis phase. An example is the common deletion of the C4A gene. 
Currently, the number of C4A genes in the diploid genome is not determined prior to the analysis 
and all samples with zero (rare), one, two or more copies of C4A gene are analysed together. We 
believe the resulting problems with HWE are the main reasons for lack of data from the complement 
region of the MHC. SNPs in such regions can be genotyped by alternative methods to assess their 
contribution to disease risk. Thus, as far as the MHC region is concerned, no GWAS is truly 
genome-wide until highly functional regions of the MHC region are genotyped by complementary 
approaches.  
 
Besides exclusion of SNPs due to genomic features of the region, the reliance on a single reference 
sequence based on just one HLA haplotype is also problematic. All HLA haplotypes are different in 
their length due to variable gene content, and the differences can be very large (R. Horton et al., 
2008). This issue has recently been addressed and a new method based on a population reference 
graph for analysis of HLA region data is introduced (A. Dilthey, Cox, Iqbal, Nelson, & McVean, 
2015). This method takes into account the sequencing data from eight common HLA haplotypes. 
While expected to be of primary use for mapping sequencing reads, it may also help with 
interpretation of the genotyping results where the current set of reference sequences is substantially 
incomplete (A. Dilthey et al., 2015).  
 
Linkage disequilibrium 
LD in the genome is important for the success of association studies and in the interpretation of 
results. High LD regions pose difficulty in identification of causal variants among the statistically 
similar SNP (ssSNP) set that has generated the association signal. LD varies in different parts of the 
genome and among populations, sometimes causes associations to disappear in a replication study 
or even to change their directions because of high correlation. High and long-range LD is 
interpreted as one of the hallmarks of the MHC (T. M. S. Consortium, 1999) with some haplotypes 
being better known for their long range LD than others.    
 
LD extends over larger physical distances in xMHC than in the rest of the genome (31.1 kb versus 
22.3 kb), but these blocks are shorter in genetic distances (0.012 cM versus 0.017 cM) 
(Vandiedonck & Knight, 2009). While on average the extent of LD may appear to be similar to 
elsewhere in the genome, a haplotype-specific LD variation has long been known (Ahmad et al., 
2003; Cullen, Perfetto, Klitz, Nelson, & Carrington, 2002; Gregersen et al., 1988; Thomsen et al., 
1994). As has already been known (Worwood et al., 1997), when assessed by the half-length of LD, 
the HLA-B*0801 haplotype had an extra-ordinary degree of LD compared with the HLA-B*1801 
haplotype (3.5 vs 0.4Mbp) (Cullen et al., 1997). As a result of haplotypic variation in LD, the D’ 
values calculated on different HLA backgrounds show large variations in strength and extent 
(Blomhoff et al., 2006). As a consequence of haplotype frequency variation, the extent of global LD, 
the haplotype blocks constructed and the tags selected might be different in different studies of the 
xMHC region. Thus, the underlying HLA haplotypic architecture is an important parameter to take 
into account when constructing LD maps of the xMHC (Blomhoff et al., 2006) 
 
Definition of statistical significance 
Rather than using a traditional P value threshold, both odds ratios and P values may be taken into 
account for selection of SNPs. This hybrid approach has been shown to be superior to the ranking 
of SNPs by their P value in a simulation study (J. Wang & Shete, 2011). It has been shown that 
many of non-significant but “suggestive” SNPs may be associated with the disease (Lipman et al., 
2011), but are missed due to the statistical threshold used. Replication of findings not exceeding the 
strict threshold in the first study should be considered as an equally valid approach in exploratory 
studies (Chanock et al., 2007). The associations of susceptibility alleles will rarely reach the 
required level of significance in GWAS if a Bonferroni correction is used, and the number of false 
negatives is likely to be large (Rice, Schork, & Rao, 2008). The drawbacks of Bonferroni type 
manipulations have been recognized, and solutions have been described (Lipman et al., 2011; Shi 
et al., 2011). The main approach for handling the multiple comparisons issue is becoming the false 
discovery rate (FDR) procedure, which provides adequate protection against type I error (Benjamini 
& Hochberg, 1995; Sabatti, Service, & Freimer, 2003). The FDR procedure is easy to apply and not 
as conservative as the Bonferroni correction. Thus, it does not increase the type II error rate while 
reducing type I error rate. The biological significance has received much less emphasis than 
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statistical significance in GWAS. There are examples in the literature that statistical significance 
does not necessarily correlate with biological significance. For example, in GWAS for type 2 
diabetes, PPARG rs1801282, one of the best replicated genetic effects with known functional 
correlation for this phenotype, has P values of 0.83, 0.019, 0.0013 in the individual studies and a 
value of 1.7×10-6 in the combined analysis of over 32,000 subjects (Williams et al., 2007). It is 
unlikely that this gene would be highlighted were it not for prior knowledge (Williams et al., 2007). 
 
Model choice and multi-SNP approaches  
GWAS data are generally analysed by using the additive genetic model assuming a uniform, linear 
increase in the odds ratio from wildtype genotype to heterozygous genotype and to variant 
homozygous genotype. This model is shown to be powerful enough to detect dominant effects, but 
may be underpowered to detect recessive or overdominant effects (Bush & Moore, 2012; Salanti et 
al., 2009). The extreme polymorphism of the HLA genes is due to balancing selection that 
encourages heterozygosity, and heterozygote advantage for HLA polymorphisms has been shown 
in infectious (Carrington et al., 1999) and autoimmune diseases (Nelson et al., 2004). Thus, 
currently overdominant model associations, which are common in the MHC region, are undetectable 
in GWAS data.  
 
It has also been pointed out that exclusively recessive-fit or exclusively dominant-fit associations 
may be missed as a result of routine use of the additive model (Lettre, Lange, & Hirschhorn, 2007; 
Salanti et al., 2009; Sellers, 2004; Vukcevic, Hechter, Spencer, & Donnelly, 2011; Zheng et al., 
2007). This issue is particularly problematic for the recessive model, especially when the minor 
allele frequency is not close to 50% (Freidlin, Zheng, Li, & Gastwirth, 2002; Lettre et al., 2007; 
Zheng et al., 2007). Examples of unravelling genetic associations when the best fitting association 
model is used have been presented in the literature (Puschmann et al., 2011; Salanti et al., 2009). 
Specifically, the existence of non-additive effects in the HLA region have been reported at least in 
autoimmune disorders (Goudey et al., 2017; Lenz et al., 2015). To overcome the potential of 
missing associations in non-additive models with the exclusive use of the additive model, one can 
either analyse the data under each model or if the inheritance model is not known, use a robust 
approach such as maximin efficiency robust test (MERT) or the maximum test (MAX) (Conneely & 
Boehnke, 2007; Freidlin et al., 2002; Gonzalez et al., 2008; Q. Li, Yu, Li, & Zheng, 2008). The 
testing of multiple genetic models for genome-wide genotype data can now be achieved online 
using GWAR even by inexperienced users (Dimou, Tsirigos, Elofsson, & Bagos, 2017). 
 
The least absolute shrinkage and selection operator (LASSO), a shrinkage and variable selection 
method for linear regression penalizing the absolute size of coefficients, has been used for 
association analysis with a large number of SNPs simultaneously (Ayers & Cordell, 2010; Hoggart, 
Whittaker, De Iorio, & Balding, 2008; Shi et al., 2011). MOSGWA is a more recently developed 
alternative model selection approach which is based on a modification of the Bayesian Information 
Criterion (Dolejsi, Bodenstorfer, & Frommlet, 2014). MOSGWA detects a number of interesting 
SNPs for complex diseases, including those in the MHC region, which are not found by other 
methods. LASSO has been shown to reduce false-positive results while retaining statistical power 
(Shi et al., 2011) as well as to detect interactions in the MHC region otherwise undetectable (J. Wu, 
Devlin, Ringquist, Trucco, & Roeder, 2010). Although LASSO can simultaneously analyse all SNPs, 
it does not perform well to detect associations masked by the phenomenon called "unfaithfulness" in 
regions like the MHC characterized by correlations among markers (Yang et al., 2011). Correlation 
cancellation occurs in regions where so many markers are correlated and their individual 
contribution to the risk is weakened. In a genome-wide survey, associations masked by 
“unfaithfulness” involving SNPs with at least 1 Mb distance were identified, and all of them were 
located in the MHC (Yang et al., 2011). Such associations are unlikely to be detected by standard 
marginal tests or interaction tests, and the marginal effects of correlated SNPs do not express their 
significant joint effects faithfully due to the correlation cancellation. These hidden associations can 
be unmasked by the use of the software called "hidden pattern finder" (Yang et al., 2011). The 
unfaithfulness phenomenon has not been considered in the analysis of MHC region data in any 
GWAS, and may have resulted in missing existing associations in the MHC region. The recently 
proposed "multiple enhancer variant" hypothesis for common traits, which suggests that several 
variants in LD impacting multiple enhancers may collectively affect gene expression (Corradin et al., 
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2014), may well apply to the MHC region associations. If this is the case, correlation cancellation 
may result in missing such associations.  
 
Bayesian approaches have many advantages over frequentist methods such as including prior 
information, easier and more intuitive interpretation of results and being more powerful in certain 
conditions (Balding, 2006). Bayesian approaches may be particularly attractive to model MHC 
region associations in GWAS as they are capable of combining different genetic risk models 
(Stephens & Balding, 2009) and modelling the relationships in an integrated "systems biology" 
manner, for example with hierarchical modelling to jointly evaluate numerous risk markers and 
covariates (Heron, O'Dushlaine, Segurado, Gallagher, & Gill, 2011; Stephens & Balding, 2009) as 
has been done in earlier HLA association studies (Thomas et al., 1992). The Bayesian GWAS 
framework uses external biological and functional genomics-based information to inform prior 
probabilities of SNP associations, and using priors based on independent functional knowledge 
could improve the statistical inference, but would be challenging because of heterogeneity and 
potential bias (Stranger, Stahl, & Raj, 2011). 
 
Analysis of additional layers of variation in the classical MHC region 
Exploration of HLA alleles, haplotypes, supertypes and lineages as susceptibility markers has not 
been given much importance in GWAS. It is practically impossible to run association studies for all 
HLA alleles defined by DNA sequencing at the highest resolution (n>16,000 as of March 2017), but 
algorithms have been developed to predict four-digit HLA alleles from HLA tag SNP data (Karnes et 
al., 2017), which has been used successfully (Neville et al., 2017), and also work in admixed 
populations (Nunes et al., 2016). This approach is useful, but there are many other levels of 
functional MHC specificities as discussed before. These polymorphisms can be incorporated in the 
analysis of GWAS data either by using proxy SNP constellations (when available), or by 
manipulating the data after HLA imputation.  
 
The HLA alleles themselves show many important disease associations, but these cannot be 
unravelled by individual SNP analysis since HLA alleles are defined by multiple nucleotide 
substitutions. Most GWAS that have found top hits in the MHC have not used either HLA typing or 
HLA prediction to correlate their findings to known HLA alleles. When this examination is carried 
out, the MHC SNPs showing associations frequently correlate to an HLA allele or haplotype. We 
have, however, found examples that certain MHC SNPs that associate with disease risk correlate 
not with individual alleles, but evolutionary or functional groups of them (Kennedy, Singh, & Dorak, 
2012). Most of the specificities shown in Figure 2 could correspond to yet unknown multi-SNP 
haplotypes in GWAS data. Given that most are expected to represent HLA types showing 
evolutionary relationships, searching associations with them would reflect the spirit of the novel 
approach called evolutionary-based grouping of haplotypes in association analysis (Seltman, 
Roeder, & Devlin, 2003; Tzeng, 2005). The software package developed for cladistic-based analysis 
of genetic data (the Evolutionary-Based Haplotype Analysis Package, EHAP) has not been used in 
GWAS, but would have probably detected associations with HLA functional and/or evolutionarily-
related clusters within the MHC. It is well known that such groupings exist, but even HLA 
association studies often fail to consider them. Given the popularity of GWAS and the number of top 
hits from the MHC, a more complete analysis may reveal associations stronger than existing ones.  
 
In future GWAS analysis, combining conventional sequence variant analysis with the information on 
tissue-specific eQTL status, CNV, alternative splicing and epigenetic status is expected to be 
standard procedure, and should help most with the analysis of xMHC data. Besides, the use of 
population reference graphs to make use of all of the genomic data from this region (A. Dilthey et 
al., 2015), typing for all functional specificities not just for SNPs and HLA types, and the 
development of novel statistical methods taking into account the LD structure and other genomic 
features of the region should provide a more complete picture of the involvement of the extended 
MHC region in disease development.  
 

Conclusion  
Here, we contrasted the features of the xMHC region with the rest of the genome, and discussed 
how these differences may have affected the results from this region in existing GWAS, and how 
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they may result in modifications of design, conduct, analysis and interpretation of future GWAS. The 
analysis of existing data using standard methods does not have the power to unmask all potential 
associations. The missing heritability concept for GWAS (Manolio et al., 2009) probably applies to 
the xMHC region more than other regions. This is due to insufficient coverage of the xMHC region in 
GWAS chips as a natural consequence of enrichment of this region by paralogous genes, extensive 
CNVs and structural variation. While we cannot thoroughly assess all existing SNPs in the xMHC 
region, overlooking other layers of functional specificities further contributes to the potential failure of 
GWAS to detect genetic predisposition conferred by the xMHC region variants. We conclude that 
despite already showing the highest number of disease associations, the true extent of the 
involvement of the xMHC region in disease genetics yet to be uncovered. 
 
 

URLs and Resources for xMHC Region Research: 
 HLA Nomenclature (Anthony Nolan Research Institute): 

http://hla.alleles.org/nomenclature/stats.html  
Regular updates on classic and non-classic HLA allele numbers, including pseudogenes. 

 

 GRASP Database: https://grasp.nhlbi.nih.gov/Search.aspx  
The largest catalogue of GWAS results which can be searched by genomic location 

 

 NCBI dbMHC: https://www.ncbi.nlm.nih.gov/projects/gv/mhc 
An NCBI database on MHC-related data  

 

 NCBI MAP Annotation:  
https://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606  
The latest genome map where the up-to-date list of genes and transcripts can be found for 
any genomic location 

 

 Human Genome Region MHC: 
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh38 
The Genome Reference Consortium site on the MHC region 

 

 Top 100 Expressed Genes in Whole Blood in GTEx Database: 
http://www.gtexportal.org/home/eqtls/tissue?tissueName=Whole_Blood  
List of genes expressed at the highest level in GTEx project 

 

 Database of Genetic Variants: http://dgv.tcag.ca/dgv/app/home  
A searchable catalogue of human genomic structural variation 

 

 SNP2HLA: http://www.broadinstitute.org/mpg/snp2hla  
One of the software packages that impute classical HLA alleles and their amino acid 
sequences from SNP data 

 

 HLA types of participants of: 
- 1KG: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078410 (Table S1) 
- HapMap (class I): https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-
42 (additional file 7)  

 

 Immunogenetic bioinformatics sites: 
- IMGT Immunoinformatics website: http://www.imgt.org/about/immunoinformatics.php  

Links to databases, tools and resources on immunoglobulins, T cell receptors and 
major histocompatibility loci, including HLA gene sequences, polymorphisms and 3D 
structures.. 

- IPD and IMGT/HLA database: http://www.ebi.ac.uk/ipd 
A centralised system for the study of polymorphism in genes of the immune system, 
including HLA and KIR genes. 

- ImmunoBase: https://www.immunobase.org  

http://hla.alleles.org/nomenclature/stats.html
https://grasp.nhlbi.nih.gov/Search.aspx
https://www.ncbi.nlm.nih.gov/projects/gv/mhc
https://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh38
http://www.gtexportal.org/home/eqtls/tissue?tissueName=Whole_Blood
http://dgv.tcag.ca/dgv/app/home
http://www.broadinstitute.org/mpg/snp2hla
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078410
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-42
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-12-42
http://www.imgt.org/about/immunoinformatics.php
http://www.ebi.ac.uk/ipd
https://www.immunobase.org/
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A web based resource focused on the genetics and genomics of immunologically 
related human diseases, including a genome browser for cumulative results and 
results from 20 autoimmune disorders. 

 
- ImmPort: https://immport.niaid.nih.gov/home  
A data warehouse to promote re-use of immunological data generated by NIH-NIAID funded 
investigators. Contains datasets of completed research projects, including HLA genetic 
associations.  

 
  

https://immport.niaid.nih.gov/home
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Table 1. Descriptive information on genome coordinates, gene content and 
polymorphisms of the classical MHC region 
 

a. Genome coordinates on chromosome 6 
a
 

 
     Telomeric end    Centromeric end  
Classical MHC region   29672373 (ZFP57)   33148800 (HCG24) 
 

Classical class I region 29672373 (ZFP57)   31511124 (MICB) 
Class III region   31511125 (PPIAP9)    32224067 (NOTCH4) 
Classical class II region  32224068 (C6orf10)   33148800 (HCG24) 

 
b. Gene content  
Total number of genes (all categories)  271  

 Protein-coding genes     151 
b
 

 Non-coding RNA      39 
c
  

 Pseudogene        81 
 
c. Polymorphism 

i. Classical HLA gene polymorphisms 
d
 

Total number of HLA alleles    16,755 
 
Total number of HLA class I alleles   12,351 

HLA-A        3,913 
HLA-B        4,765 
HLA-C        3,510 

 
Total number of HLA class II alleles     4,404 

HLA-DRA              7 
HLA-DRB1       2,311 
HLA-DQA1            78 
HLA-DQB1       1,079 
HLA-DPA1            45 
HLA-DPB1          828 

 
 

ii. Sequence polymorphisms 
e
 

Total number of SNPs classical MHC region  253,309 
 
  Class I region   125,747 
  Class III region      51,221  
  Class II region        76,341 

 
 
a
: From NCBI Map Annotation Release 108.6 in March 2017. Genes in brackets are the most centromeric and 

most telomeric ones in each region.  
b
: including 5 open reading frame and 20 yet uncharacterised genes. 

c
: Including 8 antisense-RNA, 9 microRNA, 1 long non-coding RNA, 8 antisense and 6 small nuclear/nucleolar 

RNA genes.  
d
: From HLA Nomenclature website (Anthony Nolan Research Institute), March 2017 update.  

e
: From Ensembl (GRCh38.p7; March 2017) using the coordinates given above (SNPs and indels excluding 

flagged variants). 
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Table 2. Gene set enrichment analysis results of the complete xMHC gene list on 
PANTHER tool for gene list analysis a,b 
 

Gene ontology biological process 
Fold 

enrichment 
P 

value 

Antigen processing and presentation > 5 
1.18E-

16 

Antigen processing and presentation of peptide antigen > 5 
2.33E-

16 

Nucleosome assembly > 5 
1.35E-

15 

Antigen processing and presentation of exogenous peptide antigen > 5 
5.02E-

15 

Antigen processing and presentation of exogenous antigen > 5 
1.23E-

14 

Chromatin assembly > 5 
1.52E-

14 

Interferon-gamma-mediated signaling pathway > 5 
2.33E-

14 

Protein-DNA complex assembly > 5 
9.66E-

14 

Nucleosome organization > 5 
9.66E-

14 

Chromatin assembly or disassembly > 5 
3.02E-

13 

DNA packaging > 5 
2.14E-

12 

Protein-DNA complex subunit organization > 5 
3.10E-

12 

Response to interferon-gamma > 5 
7.22E-

12 

Cellular response to interferon-gamma > 5 
8.11E-

12 

Immune response 3.49 
1.83E-

11 

DNA conformation change > 5 
1.30E-

10 

Cellular macromolecular complex assembly 4.8 
2.59E-

09 

Antigen processing and presentation of peptide or polysaccharide 
antigen via MHC class II 

> 5 
7.47E-

09 

Antigen processing and presentation of peptide antigen via MHC 
class I 

> 5 
1.49E-

08 

Defense response 2.95 
1.01E-

07 

Regulation of immune system process 2.99 
1.07E-

07 

Innate immune response 3.48 
3.92E-

07 

Antigen processing and presentation of exogenous peptide antigen 
via MHC class II 

> 5 
6.67E-

07 

Antigen processing and presentation of peptide antigen via MHC 
class II 

> 5 
8.62E-

07 

immune system process 2.44 
9.56E-

07 

Antigen processing and presentation of endogenous peptide > 5 1.05E-
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antigen 06 

Positive regulation of cell-cell adhesion > 5 
1.97E-

06 

Regulation of cell-cell adhesion > 5 
2.86E-

06 

Antigen processing and presentation of endogenous antigen > 5 
3.03E-

06 

Protein complex assembly 3.3 
5.47E-

06 

Protein complex biogenesis 3.3 
5.47E-

06 

Regulation of T cell activation > 5 
5.96E-

06 

Positive regulation of T cell activation > 5 
8.38E-

06 

Positive regulation of immune system process 3.39 
9.26E-

06 

Regulation of leukocyte cell-cell adhesion > 5 
9.40E-

06 

Antigen processing and presentation of exogenous peptide antigen 
via MHC class I, TAP-independent 

> 5 
1.02E-

05 

Positive regulation of homotypic cell-cell adhesion > 5 
1.12E-

05 

Antigen processing and presentation of exogenous peptide antigen 
via MHC class I, TAP-dependent 

> 5 
1.17E-

05 

Positive regulation of leukocyte cell-cell adhesion > 5 
1.20E-

05 

Regulation of homotypic cell-cell adhesion > 5 
1.46E-

05 

Regulation of lymphocyte activation > 5 
1.72E-

05 

Antigen processing and presentation of exogenous peptide antigen 
via MHC class I 

> 5 
2.00E-

05 

Regulation of immune response 3.36 
2.08E-

05 

Macromolecular complex assembly 2.91 
2.84E-

05 

Antigen processing and presentation of endogenous peptide 
antigen via MHC class I 

> 5 
3.34E-

05 

MHC protein complex assembly > 5 
8.35E-

05 

Cytokine-mediated signaling pathway 4.55 
9.61E-

05 
a PANTHER tool is accessible at http://www.pantherdb.org  
b
 The list is truncated at the arbitrary statistical threshold of P < 1 x 10-4 

 
 
  

http://www.pantherdb.org/
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Table 3. Representative HLA and disease associations, and their corresponding 

GWAS associations 
a
 

 

Disease HLA association 
GWAS association 

(SNP ID; chromosome 6 
position 

b
) 

GWAS  
P value 

GWAS 
reference 
(Pubmed 

ID) 

Psoriasis HLA-C*06:02 (PSORS1) rs4406273;  31298313 (
c
) 4.5E-723 

d
 23143594 

Myasthenia gravis HLA-C*07:01 rs7750641; 31161533 (
c
) 1.7E-114 23055271 

HIV-1 control HLA-B, HLA-C rs9264942; 31306603 2.8E-35 21051598 

Ankylosing spondylitis HLA-B*27 rs7743761; 31368323 5.0E-304 20062062 

Malaria HLA-B*53 No association in xMHC - - 

Abacavir drug 
hypersensitivity 

HLA-B*57:01 No GWAS - - 

Dengue shock syndrome - rs3132468; 31507709 4.4E-11 22001756 

Sarcoidosis - rs2076530; 32396039 3.0E-11 22936702 

Idiopathic membranous 
nephropathy 

HLA-DRB1*03 rs2187668; 32638107 (
c
) 8.0E-93 21323541 

Type 1 diabetes 
DRB1*04-DQA1*03:01-
DQB1*03:02;  DRB1*03-
DQA1*05:01-DQB1*02:01 

rs9273363; 32658495 1.0E-307 17554300 

Rheumatoid arthritis 
(cyclic citrullinated 
peptide positive) 

HLA-DRB1*04:01, HLA-
DQA1*03:01 

rs660895; 32609603 (
c
)  1.0E-300 23143596 

Systemic lupus 
erythematosus 

HLA-DRB1*03:01  rs1270942; 31951083 (
c
) 2.0E-165 26502338 

Multiple sclerosis HLA-DRB1*05:01 rs3135388; 32445274 (
c
) 3.8E-225 19525953 

Systemic sclerosis 
(Anti-topoisomerase-I 
antibody positive) 

DRB1*11:04-
DQA1*05:01-DQB1*03:01 

rs3129763; 32623148  9.2E-187 21779181 

Systemic sclerosis 
(Anti-centromere antibody 
positive) 

DRB1*11:04 rs9275390; 32701379 1.1E-130 21779181 

Pemphigus vulgaris HLA-DQB1*03:01 rs9275184; 32686937 7.7E-21 22437316 

Leprosy (HLA-DRB1, DQA1) rs9271100; 32608701 8.0E-95 25642632 

Narcolepsy HLA-DQB1*06:02 rs9271117; 32609018 6.0E-14 24204295 

Ulcerative colitis HLA-DRB1*11:01 rs6927022; 32644620 4.7E-133 23128233 

Graves’ disease 
HLA-DRB1*03:01, HLA-
DQA1*05:01 

rs1521; 31382927 2.0E-65 21841780 

Celiac disease 
HLA-DQA1*05:01, HLA-
DQB1*02:01 

rs2187668; 32638107 (
c
) 5.8E-209 20190752 

Selective IgA deficiency HLA-DQB1*02:01 rs116041786; 32634619 3.0E-92 27723758 

 
a
 The HLA and disease associations are based on (Trowsdale & Knight, 2013) with some additions. 

GWAS data was extracted from GRASP v2.0.0.0 (https://grasp.nhlbi.nih.gov) and EBI GWAS Catalog 
(http://www.ebi.ac.uk/gwas).   
b
 Chromosome 6 positions are hg19 coordinates. 

c
 These GWAS associations correspond to the known HLA allelic associations. 

d
 The psoriasis association is the statistically most significant association in any GWAS.  

 
 
 
 
 
  

https://grasp.nhlbi.nih.gov/
http://www.ebi.ac.uk/gwas
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Figure 1. Number of significant GWAS associations along the genome. The chromosomal 
location of significant trait associations from GWAS (N = 18,682) are shown for all autosomes. Data 
from NHGRI GWAS catalog. Reproduced from “Lenz TL, Spirin V, Jordan DM, Sunyaev SR. Excess 
of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection. Mol 
Biol Evol 2016;33(10):2555-64. doi: 10.1093/molbev/msw127” by permission of Oxford University 
Press on behalf of the Society for Molecular Biology and Evolution.  
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Figure 2. Well-known groupings of HLA alleles based on genetic, functional or evolutionary 
features. 
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