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19 Abstract

20 Addressing food security issues arising from phosphorus (P) scarcity is described as one of 

21 the greatest global challenges of the 21st Century. Dependence on inorganic phosphate 

22 fertilisers derived from limited geological sources of P creates an urgent need to recover P 

23 from wastes and treated waters, in safe forms that are also effective agriculturally – the 

24 established process of P removal by chemical precipitation using Fe or Al salts, is effective 

25 for P removal but leads to residues with limited bioavailability and contamination concerns. 

26 One of the greatest opportunities for P recovery is at wastewater treatment plants (WWTPs) 

27 where the crystallisation of struvite and Ca-P from enhanced biological P removal (EBPR) 

28 sludge is well developed and already shown to be economically and operationally feasible in 

29 some WWTPs. However, recovery through this approach is limited to <25% efficiency 

30 unless chemical extraction is applied. Thermochemical treatment of sludge ash produces 

31 detoxified residues that are currently utilised by the fertiliser industry; wet chemical 

32 extraction can be economically feasible in recovering P and other by-products. The 

33 bioavailability of recovered P depends on soil pH as well as the P-rich material in question. 

34 Struvite is a superior recovered P product in terms of plant availability, while use of Ca-P and 

35 thermochemically treated sewage sludge ash is limited to acidic soils. These technologies, in 

36 addition to others less developed, will be commercially pushed forward by revised fertiliser 

37 legislation and foreseeable legislative limits for WWTPs to achieve discharges of <1 mg P/L. 

38

39

40 Keywords:

41 Phosphorus recovery; wastewater; sewage sludge; struvite; sorption; bioavailability.  



ACCEPTED MANUSCRIPT

3

42 Abstract

43 Keywords:

44 1 Introduction

45 2 Management of P within WWTPs

46 2.1 Capture and accumulation of P – an overview

47 2.2 Chemical precipitation

48 2.3 Enhanced biological phosphorus removal (EBPR)

49 3 Sludge enhancement and P recovery from sludge

50 3.1 Anaerobic digestion and dewatering

51 3.2 Wet chemical extraction

52 3.3 Incineration and P release from sewage sludge ash

53 4 Recovered P products from treated sludge

54 4.1 Struvite

55 4.2 Ca-P precipitates

56 4.3 Thermochemically treated sewage sludge ash

57 5 Experimental P recovery through sorption processes

58 6 Bioavailability of recovered P products

59 7 Conclusions

60 Acknowledgements

61 References

62



ACCEPTED MANUSCRIPT

4

63 1 Introduction

64 Phosphorus (P) is an essential plant nutrient and makes up around 0.2% of plant dry weight 

65 (Jiang and Yuan, 2015; Schachtman et al., 1998). In aquatic ecosystems, low concentrations 

66 of P benefit the biological productivity of freshwater lakes, reservoirs and rivers. 

67 Concentrations of just ~0.02 mg P/L can be considered to cause eutrophication (Correll, 

68 1998), having negative ecological effects where promoted algal growth (Yao et al., 2013) can 

69 cause hypoxia and negative effects from algal toxins (Bláha et al., 2009; Žegura et al., 2011). 

70 Negative impacts within ecosystems caused by an excess of P has led governments to limit 

71 the P concentration in waters. As a whole, the Water Framework Directive 2000/60/EC 

72 (European Commission, 2008) in conjunction with the Council Directive 91/271/EEC 

73 concerning urban wastewater treatment (European Commission, 1991), identify sensitive 

74 areas where high levels of P would have large ecological impacts – and enforce the control of 

75 P in wastewater discharges, respectively. As an annual average, it is required that P 

76 concentrations within wastewater effluents are below 1–2 mg P/L, depending upon the 

77 sensitivity of the receiving environment and the size of the wastewater treatment plant 

78 (WWTP), or are reduced by 80% from the influent concentration (European Commission, 

79 1998, 1991). Austria, Germany and Switzerland have now made P recovery mandatory from 

80 municipal sewage sludge (European Sustainable Phosphorus Platform, 2017).

81 The P loading within many ecosystems is a result of P discharges from WWTPs or the use of 

82 P in agriculture. Figure 1 summarises key P flows and losses throughout the global 

83 agricultural production and food consumption system. The inorganic P cycle is extremely 

84 inefficient and wasteful. Losses of P to natural water bodies from wastewater discharge 

85 represents approximately 10 % of inorganic P derived fertiliser applied to arable soil globally 

86 (see “A” in Figure 1). These losses create both a need and an opportunity, with respect to P 
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87 recovery and re-use, needed not only to ensure good ecological status of waterways, but also 

88 to maintain the global productivity of agriculture.

89

90 Figure 1. Diagram of key P flows. The widths of the arrows semiquantitatively represents 
91 figures reported by Cordell et al. (2009) in million tonnes (Mt) of P per year. Yellow, red and 
92 green arrows represent flows of P between major points of use in the food production and 
93 consumption system; key P losses and the potential flow of recovered-P from WWTPs, 
94 respectively.  Losses such as those arising from fertiliser production and distribution, 
95 agricultural residues, and food chain losses are not shown. The blue boxes indicate major 
96 points of use. The grey ovals indicate major P sinks. Point “A” denotes the flow of P 
97 contained in treated or untreated sewage to natural water bodies and represents approximately 
98 1.5 Mt P/year. Point “B” denotes the flow of P contained in erosion losses and is about 8 Mt 
99 P/year. *Other uses includes industrial uses such as the production of some detergents. 

100

101 With increasing global populations and increased difficulty in accessing P reserves, many 

102 studies have raised concerns regarding depletion of mined P sources (Childers et al., 2011; 

103 Cordell et al., 2011, 2009; Cordell and Neset, 2014; Gilbert, 2009; Smil, 2000; Withers et al., 

104 2014). Mined P rock exists mostly in ancient marine sedimentary deposits, the majority of 
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105 which are situated in Morocco and Western Sahara (Van Kauwenbergh et al., 2013). 

106 Estimated at ca 67 000 Mt (USGS, 2014), the global production of P rock is widely thought 

107 to hit a peak this century (Walan et al., 2014), with some predicting that economically 

108 mineable P rock reserves could become scarce or exhausted within 100 years (Childers et al., 

109 2011; Cooper et al., 2011; Smil, 2000). The decreasing quality of P rock, in terms of 

110 contamination with cadmium for example (Mar and Okazaki, 2012), and price spike events 

111 (Mew, 2016) are additional concerns. With an expanding global population relying on 

112 decreasing and deteriorating P resources, the development of technologies for improved 

113 recovery and re-use of P is becoming an increasingly urgent environmental, economic and 

114 societal issue. The rising cost of P rock extraction will inevitably favour the development of 

115 these technologies. 

116 WWTPs provide one of the biggest opportunities for P recovery (Schoumans et al., 2015; 

117 Smil, 2000) given the relatively high and constant P load in sewage. The recovery of P from 

118 wastewaters can provide an array of benefits: (1) meeting the effluent P limits required by 

119 legislation; (2) reducing eutrophication problems; and (3) providing a potential source of 

120 fertiliser of agricultural and economic value. The latter simultaneously reduces the reliance 

121 on inorganic (rock-P derived) fertilisers in agriculture.

122 However, municipal wastewaters contain many contaminants, both organic and inorganic, 

123 including heavy metals and metalloids (Nguyen et al., 2013), pesticides (Köck-Schulmeyer et 

124 al., 2013), pharmaceuticals (Antoniou et al., 2013), personal care products (Brausch and 

125 Rand, 2011), nanomaterials, perfluorinated compounds (PFCs) (Richardson and Ternes, 

126 2014), hormones (Loos et al., 2013), recreational drugs (Wilkinson et al., 2016) and 

127 pathogens (Cai and Zhang, 2013). Therefore, the application of untreated effluent to 

128 agricultural land would pose associated risks to human food consumption (Schoumans et al., 
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129 2015). Hence, wastewaters generally require recovery processes with a certain degree of 

130 selectivity to remove P into a solid form that can be safely and effectively used as fertiliser. 

131 Here we critically review P recovery technologies currently used in WWTP processes 

132 (chemical precipitation, enhanced biological P removal (EBPR), various sludge treatments, 

133 struvite and Ca-P crystallisation, and thermochemical treatment) and other emerging 

134 technological options, particularly with respect to recovery efficiency and the use of 

135 recovered P as a mineral-P substitute. We conclude this review by providing some 

136 recommendations for future work, namely the diversification of technological approaches to 

137 recover P and further consideration of the bioavailability and potential contamination of 

138 recovered products.

139 2 Management of P within WWTPs 

140 2.1 Capture and accumulation of P – an overview

141 P exists in a variety of forms within wastewater and these vary throughout the WWTP 

142 process; P in particulate forms are more easily and completely removed through clarification 

143 steps (Dueñas et al., 2003) whereas dissolved P species, both organic and inorganic, require 

144 more targeted chemical or biological processes for their removal. P concentrations reported 

145 for municipal wastewaters are generally below 10 mg P/L (Kim and Chung, 2014; Petzet and 

146 Cornel, 2013; Qiu and Ting, 2014; Yuan et al., 2012).

147 Preliminary screening is firstly applied in WWTPs to remove larger particles followed by a 

148 primary treatment step. This involves the settlement and removal of suspended solids and 

149 organic fractions, which can be achieved by chemical addition or filtration (Tchobanoglous et 

150 al., 2014). Petzet and Cornel (2013) report that 17–26% of an incoming total P load, 

151 predominantly in particulate forms, can be transferred to primary sludge in initial settlement 
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152 at a WWTP. Secondary treatment, especially in larger WWTPs and those discharging to 

153 sensitive environments, is then applied (European Commission, 1991). This can involve the 

154 use of microbes to break down soluble organic compounds that remain after the preliminary 

155 and primary treatment steps (through trickling filter beds or other treatments), and/or the 

156 addition of chemicals to promote the coagulation and flocculation of solids. Other than 

157 particulate P removed here through secondary clarification, specific P removal techniques 

158 such as chemical precipitation or enhanced biological phosphorus removal (EBPR) can be 

159 integrated into the treatment process to target dissolved forms of P. Tertiary and advanced 

160 treatments are applied for the further removal or degradation of dissolved contaminants, 

161 especially when the treated water will be reused. Aside from addressing ecological and 

162 statutory issues, P removal at WWTPs prevents the build-up and blockage of pipes by 

163 crystalline deposits and precipitates of P (De-Bashan and Bashan, 2004; Rittmann et al., 

164 2011).

165 Standard primary and secondary treatments often do not remove sufficient P to meet the 

166 required discharge concentration. Under normal secondary treatment (the activated sludge 

167 process) around 31–48% of influent P can be transferred into sludge (Petzet and Cornel, 

168 2013). With the P removed through primary settlement, this can leave up to approximately 

169 50% of the total influent P load to be removed by an enhanced P removal technique before 

170 discharge into a receiving water body (Desmidt et al., 2015). 

171 Techniques specifically used to remove P from wastewaters can be operationally categorised 

172 as chemical, biological or physical. They include the established techniques of chemical 

173 precipitation and enhanced biological phosphorus removal (EBPR). In each case P is 

174 removed by the conversion of the various dissolved P forms into a solid (De-Bashan and 

175 Bashan, 2004). 
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176 Figure 2. The flow of P through a typical WWTP process, the positions of P recovery technologies (dashed circles) and routes of application of 
177 recovered P to agriculture with concerns highlighted in red. Percentage of P (white boxes with dashed line) represents what can be 
178 approximately assumed to be removed or carried over to the next treatment stage as a percentage of the influent P load. The dashed yellow 
179 circles with question marks indicate where emerging technological approaches could target P recovery.
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180 2.2 Chemical precipitation

181 Precipitation was first attempted to control eutrophication problems in the 1950s (Morse et 

182 al., 1998) and is the main commercial approach to P removal today (Wendling et al., 2013). 

183 The precipitative removal of P is usually achieved through the addition of di- or trivalent 

184 metal salts of Fe, Al or Ca (Table 1). P in the form HPO4
2-, H2PO4

- or H3PO4 (dependent 

185 upon reaction pH), as well as organic P and particulate P fractions, are coagulated to form a 

186 metal phosphate sludge and subsequently removed after flocculation and settlement. 

187 Chemical precipitation is more efficient at earlier stages in the waste water treatment process 

188 when the concentration of P in solution is highest. Processes involving seeded precipitation, 

189 where crystallisation is encouraged and controlled through the addition of a seed material, are 

190 being developed to offer more efficient and less costly treatment (Petzet et al., 2012; Song et 

191 al., 2006). 

192 Fe and Al salts are considered the most suitable and are generally added as chlorides or 

193 sulphates (Morse et al., 1998), calcium can also be used and is generally added as lime 

194 (Ca(OH)2). Fe salts are generally preferred as they are cheaper than Al – Fe-P chemistry 

195 relating the municipal wastewater is discussed in detail elsewhere (Wilfert et al., 2015).

196 In terms of emerging options, a recent study has investigated the use of potassium ferrate for 

197 P precipitation combined with water disinfection (Kwon et al., 2013). The latter arises from 

198 its status as a powerful oxidant while precipitation and coagulation of Fe-P occurs through 

199 reduction of Fe (VI). The disinfection rate obtained was faster than for chlorine of the same 

200 concentration. Within secondary effluent (1.46 mg total P/L), ferrate was able to remove 

201 more than 80% of P in the dosage range of 5–25 mg Fe/L. The two most obvious 

202 disadvantages of chemical precipitation are the requirement and cost of chemical additions, 
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203 and the generation of large volumes of sludge that are often unsuitable for reuse due to the 

204 low recoverability of P and possible incorporation of contaminants in the P-rich precipitate.

205

206 Table 1. Details of the three metals conventionally used in the chemical precipitation of P in 
207 WWTPs, including the optimal pH for the process, the most common precipitates formed and 
208 the advantages and disadvantages of using each.

209

Element Optimal 
pH

Most common 
precipitate form

Advantages Disadvantages

Fe 4.5–5 
(Thistleton 
et al., 
2002)

Strengite 
(FePO4· 2H2O) 
(Grzmil and 
Wronkowski, 
2006)

• Relatively 
inexpensive
• Effective in the 
precipitation of P 

• Precipitate 
unsuitable for use as 
fertiliser.

Al ~6 (Lin 
and 
Carlson, 
1975)

Variscite 
(AlPO4· 2H2O) 
(Lin and Carlson, 
1975)

• Most effective 
precipitant. (Yeoman 
et al., 1988) 
• At pH 6, both 
biological treatment 
and precipitation with 
Al could be operated.

• Expensive
• Precipitate 
unsuitable for use as 
fertiliser  
• Doses of >60mg 
Al/L have a toxic 
effect on autotrophic 
bacteria within a 
membrane bioreactor 
(Zahid and El-Shafai, 
2012) – dosage must 
be carefully 
considered.

Ca >10.5 
(Jenkins et 
al., 1971)

Hydroxyapatite 
(Ca5(PO4)3OH)

• Relatively 
inexpensive 
• Ca-P precipitates 
can be similar in form 
to rock-P and suitable 
for use in industry
• Potentially suitable 
as fertiliser

• High pH 
requirement 
• High pH can create 
detrimental conditions 
for biological 
treatment 
• Additional 
neutralisation step 
may be required
• Large volume of 
generated sludge
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210 Numerous by-products and wastes have also been investigated as potential precipitants. Red 

211 mud, an abundant mining waste, has been studied for its potential for precipitation of P due to 

212 its high content of Al and Fe. Through the treatment of red mud, Poulin et al. derived a solid 

213 product that had P removal efficiency similar to commercial coagulants, namely 70–98% in 

214 solutions containing 5–100 mg P/L respectively (Poulin et al., 2008). Municipal solid waste 

215 fly ash has also been investigated, with reported removal rates of approximately 6 mg P/g 

216 (Zhong et al., 2014). Hydrated oil shale ashes in subsurface flow filters have been assessed in 

217 long period pilot-scale experiments treating municipal and landfill leachate wastewater in 

218 Estonia, achieving 99% removal from wastewaters ranging in P concentration from 0.13–17.0 

219 mg total P/ L (Kõiv et al., 2010). In this case the direct precipitation of Ca-P was suggested to 

220 be the controlling P removal mechanism. 

221 Other waste materials providing strong precipitation effects include calcined waste paper 

222 sludge. The formation of brushite (CaHPO4·2H2O) was found to be the main mechanism 

223 controlling P removal in a laboratory scale study, which reached 1.5 mmol P/g (46.6 mg P/g) 

224 calcined paper sludge (Wajima and Rakovan, 2013). Drinking waterworks sludge was also 

225 found to be effective for P removal in laboratory scale experiments due to its high content of 

226 Al and Fe: 99% removal could be achieved from an initial concentration of 2 mg P/L and a 

227 sludge dose of 10 g/L in synthetic wastewater, at pH value 5–6 (Yang et al., 2014).

228 2.3 Enhanced biological phosphorus removal (EBPR)

229 EBPR was developed during the 1970s (Barnard, 1975; Yuan et al., 2012), and is extensively 

230 used today. Most full-scale P recovery technologies currently applied require the pre-

231 accumulation of P (as bio-P sludge) using EBPR processes. EBPR relies on polyphosphate 

232 accumulating organisms (PAOs) or denitrifying PAOs to accumulate P intracellularly as 

233 polyphosphate granules, thus avoiding any requirement for chemical precipitants (Oehmen et 
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234 al., 2007; Wong et al., 2013). The process is enabled by alternating anaerobic and aerobic 

235 conditions; PAOs take up volatile fatty acids under the anaerobic phase, which are stored as 

236 polyhydroxyalkanoates and subsequently metabolised in the aerobic phase to supply the 

237 energy needed by the PAO to accumulate P (Kristiansen et al., 2012). Sludge, highly enriched 

238 in PAOs, can accumulate as much as 20% cell dry weight as P, compared with 1–2% in non 

239 PAO-enriched sludge (Tchobanoglous et al., 2014). Bacterial genus Acinetobacter was at first 

240 thought to be the primary PAO (Fuhs and Chen, 1975) in EBPR, however members of 

241 Actinobacterial genus Tetrasphaera (Kong et al., 2005) and the bacteria Candidatus 

242 Accumulibacter Phosphatis (He and McMahon, 2011; Hesselmann et al., 1999) are now 

243 considered to be more responsible for P accumulation in WWTPs (Kristiansen et al., 2012). 

244 In addition to bacterial strains, microalgae have been investigated as suitable PAOs for P 

245 assimilation in  wastewater treatment (Solovchenko et al., 2016). 

246 The accumulation of P within bio-P sludge and its settlement can facilitate the recovery of P 

247 and allow for direct utilisation as fertiliser, depending on contaminants present. Alternatively, 

248 further treatment can facilitate the solubilisation and recovery of P in a form such as struvite 

249 (MgNH4PO4·6H2O) (Baur, 2009). A recent paper investigated the use of microalgae and 

250 cyanobacterial strains for the accumulation of P from parboiled rice mill effluent. These P 

251 enriched PAOs showed moderate P release as a biofertiliser and was comparable to that of 

252 commercial fertilisers (Mukherjee et al., 2015).

253 In full scale WWTPs, EBPR processes can typically remove over 85% of P in municipal 

254 wastewater influent, often to concentrations <0.1mg P/L (Gautam et al., 2014; Gebremariam 

255 et al., 2011). Although efficient in many cases, there are however questions over the stability 

256 of its performance (Oehmen et al., 2007; Zheng et al., 2014). Various process inefficiencies 

257 and failures are reported to be associated with EBPR. One of the largest causes of 

258 deterioration and failure in EBPR systems arises from the occurrence of glycogen 
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259 accumulating organisms (GAOs) (López-Vázquez et al., 2008), which compete with PAOs 

260 for carbon substrate (Oehmen et al., 2007; Yuan et al., 2012). GAOs can function under 

261 aerobic or anaerobic conditions (Zheng et al., 2014) and are found widely in EBPR processes 

262 (Burow et al., 2007). Considerable effort has therefore been focused on establishing the 

263 conditions that might limit their growth (Oehmen et al., 2006, 2005, 2004; Wang et al., 2010; 

264 Whang and Park, 2006, 2002; Whang et al., 2007). This has established that at pH 8, the 

265 abundance of GAOs is restricted while optimal PAO activity is maintained (Oehmen et al., 

266 2005). The type of carbon substrate and its concentration is also important (Shen and Zhou, 

267 2016); propionate for example was found to be more beneficial than acetate for PAO growth 

268 (Wang et al., 2010; Zeng et al., 2013). The presence of toxic substances in the influent, such 

269 as Cr (VI) (≥0.5 mg/L), can also inhibit P removal, being toxic to PAOs (J. Fang et al., 2015).

270 Without carbon addition to ensure high and constant concentrations, the EBPR system can be 

271 very susceptible to changes in the influent composition. Consequently, climates with a 

272 tendency for sporadic heavy rainfall, which can drastically perturb nutrient concentrations, 

273 can affect biological P removal (Manyumba et al., 2009). The addition of organic carbon to 

274 the process however is unfavourable as it incurs additional cost to the EBPR process and 

275 increases the overall carbon footprint (Guerrero et al., 2015). Organic carbon additions 

276 derived from waste sources have been successfully investigated which may reduce cost and 

277 increase the sustainability of the process; waste activated sludge fermentation liquid was 

278 found to be a more effective carbon source that acetic acid (Ji and Chen, 2010), crude 

279 glycerol, a biodiesel waste product, was successfully dosed in an EBPR process and resulted 

280 in better control over P removal (Guerrero et al., 2015). 

281 High temperatures, 30°C as opposed to 20°C, encourage GAO growth (Whang and Park, 

282 2002) with lower temperatures found to be beneficial for PAO growth (López-Vázquez et al., 

283 2008) and therefore P removal. Low aeration rates and thus low dissolved oxygen (DO) also 
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284 favour PAOs over GAOs (Carvalheira et al., 2014). These variables may impact on the final 

285 P concentrations in the treated effluents and discharges may exceed those permitted by 

286 legislation. 

287 EBPR processes are considered to be a more sustainable compared to chemical processes and 

288 can often offer significant economic advantages in larger WWTPs (Manyumba et al., 2009). 

289 EBPR requires less or no chemical addition and has the potential for the full-scale recovery 

290 of P. However, where process inefficiencies are frequent and/or legislation requires 

291 consistently low P concentrations in effluent discharge, it is also common for larger WWTPs 

292 to deploy chemical precipitation in conjunction with EBPR to ensure requirements are 

293 consistently met (Kim and Chung, 2014; Kwon et al., 2013). This reduces the amount of P 

294 that can be solubilised and recovered through bio-P sludge digestion or direct application as 

295 fertiliser. Other limitations include the complexity of operations and a large energy and space 

296 requirement (Nguyen et al., 2014a). The future use of EBPR processes may therefore not 

297 extend beyond those WWTPs with a relatively narrow geographic, spatial and economic 

298 context. 

299 3  Sludge enhancement and P recovery from sludge

300 A major disadvantage of chemical precipitation of P is the possible co-precipitation of toxic 

301 ions such as arsenic and fluoride as well as organic contaminants, pathogens or viruses 

302 (Mehta et al., 2014) among others. This is highly relevant in terms of the handling of the final 

303 product and its suitability for land application. The potential for precipitation using Al and Fe 

304 to yield suitable P-bearing soil amendments is limited, since Al can be toxic to many plants at 

305 high concentration, especially in acidic soils (Poschenrieder et al., 2008), and P in Al- and 

306 Fe-P solids may limit the P solubility to plants and is considered unrecoverable for the 

307 purpose of fertiliser production (Donnert and Salecker, 1999; Wendling et al., 2013). 
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308 The direct application of dewatered bio-P sludge has been found to be as effective as mineral 

309 fertiliser (Erdincler and Seyhan, 2006; Kahiluoto et al., 2015), but similarly, there are 

310 increasing concerns over the transfer of chemical and biological contaminants to the 

311 environment, affecting food supply (De-Bashan and Bashan, 2004; Krzyzanowski et al., 

312 2014; Yuan et al., 2012). It has been shown that sewage sludge application to soil, although it 

313 increases the available nutrient content of the soil, also increases heavy metal concentration 

314 in both soil and plant. At a sludge application dose of  20 t/ha or higher, Cd concentrations in 

315 rice grain were found to be above the Indian safe limit (Latare et al., 2014). Switzerland has 

316 already banned the use of sewage sludge in agriculture (Franz, 2008; Schoumans et al., 

317 2015).

318 Other issues with the direct application of sewage sludge include the difficulty in its 

319 transportation and application, given that sludges are bulky and dense. Dewatering of sludge 

320 can reduce haulage costs and removes the necessity for specialist farm equipment, but incurs 

321 energy and financial costs (Yuan et al., 2012). The recovery of P from WWTP sludges in 

322 purer and more effective forms than that derived directly from sewage sludge is being sought 

323 through the approaches outlined in the following subsections, which includes a number of 

324 emergent technologies. These approaches are becoming necessary to ensure the safe recovery 

325 of P and compliance with current and future legislation.

326 3.1  Anaerobic digestion and dewatering

327 Anaerobic digestion (AD) is the process most commonly used for stabilisation of sludge, 

328 offering organic solids and pathogen destruction as well as energy recovery in the form of 

329 methane (Mehta et al., 2014; Tchobanoglous et al., 2014). AD of bio-P sludges can generate a 

330 liquor of approximately 10–50 times higher P concentration than the WWTP influent (Yuan 

331 et al., 2012). The majority of the heavy metal load is retained within the sludge, whilst P is 
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332 released from the biodegradable fractions into the liquid phase. In terms of emerging organic 

333 contaminants, it was shown that within AD processes, detected emerging contaminants such 

334 as the antidepressant venlafaxine and benzoylecgonine, the main metabolite of cocaine, were 

335 preferentially adsorbed and concentrated within the solid material; the majority of the 13 

336 compounds detected were not degraded by AD processes (Boix et al., 2016). 

337 Concentrations of P in the supernatant of AD processes can vary considerably: 30% of total P 

338 has been estimated to be dissolved in the aqueous phase arising from AD of bio-P sludge, 

339 whereas <10% is thought to be dissolved after AD of chemical sludges (Petzet and Cornel, 

340 2013). This is due to the re-fixation of P into the sludge through precipitation with Fe, Al, Ca 

341 and Mg or through adsorption (Petzet and Cornel, 2012). AD of bio-P sludge as a 

342 solubilisation technique is a primary step in facilitating the precipitation of struvite in many 

343 commercial P recovery processes such as Crystalactor®, NuReSys®, Pearl®, Phosnix® and 

344 PHOSPAQ™ (Schoumans et al., 2015). Assimilation of solubilised compounds, in particular 

345 emerging organic contaminants, found in AD supernatants into final recovered P products 

346 such as struvite may be of particular concern and warrants further investigation.

347 3.2 Wet chemical extraction

348 Wet chemical extraction, involving either acid or alkaline dissolution, supports greater 

349 solubilisation of P from sludge, sludge ash or other sludge residues, although it can 

350 simultaneously solubilise contaminants, of which heavy metals/metalloids are of particular 

351 concern. Therefore, the separation of metals and P is highly important when operating wet 

352 chemical extraction for P recovery. Additionally, because in recovery through struvite 

353 crystallisation, Fe, Al and Ca can compete with Mg to form complexes with orthophosphate, 

354 their minimisation leads to improving the efficiency of the recovery process. 
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355 Through the acid digestion of various forms of digested sludge, using sulphuric acid (pH 1.8), 

356 it has been established that incineration – compared to original, diluted and centrifuged 

357 digested sludges – is the better preliminary step for precipitation of struvite. This is because 

358 Al, Ca, and Fe could be removed to the greatest extent (98%, 97%, and 80% respectively) 

359 (Güney et al., 2008). However, for the effectiveness of P solubilisation, Fe-PO4-containing 

360 raw sewage sludge was more beneficial for the release of P (Sano et al., 2012). Advantages to 

361 using alkali extraction as opposed to acid extraction, is that the release of heavy 

362 metals/metalloids can be suppressed to lower levels. This may limit the need for filtration 

363 technologies, which can be costly and prone to fouling. However, alkali treatment can also 

364 reduce the recovery of P to as low as 30% (Mattenberger et al., 2008). 

365 The PHOXNAN (Blöcher et al., 2012) process involves the release and accumulation of P 

366 from sludge into a solution suitable for recovery through wet oxidation by the addition of 

367 sulphuric acid (pH 1.5). P resides in the resulting solution as H3PO4, while the organic 

368 content is decreased and other micro-organic pollutants are oxidised. An ultrafiltration 

369 membrane separates the remaining solids, a step that is followed by nanofiltration to remove 

370 cations. P is accumulated in the final solution mainly as phosphoric acid. In another study, 

371 alkaline hydrolysis of excess secondary sludge from an anaerobic/aerobic process was carried 

372 out at an optimal pH value of 13, with both P and N being recoverable from the supernatant 

373 (Bi et al., 2014). The process enables the release and recovery of 42.0 % PO4
3- (P) and 7.8 % 

374 NH4
+ (N) in the form of struvite. The treatment of sludge with supercritical water gasification 

375 was found to release up to 95.5 % P (Acelas et al., 2014). In this case, oxalic acid was 

376 reported to have a better performance than sulphuric acid in the leaching of P. 

377 Neither acid nor alkali treatments offer an ideal option for the full solubilisation and recovery 

378 of P. The choice of treatment should be considered carefully with respect to the initial 

379 accumulation of P in primary and/or secondary treatment. Petzet et al. reported that P 
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380 recovery via wet chemical treatment of sewage sludge ash (SSA) could be optimised by a 

381 combination of both acid and alkaline leaching (Petzet et al., 2012). Through an acidic pre-

382 treatment, alkaline insoluble Ca-P fractions are converted to Al-P which can then be easily 

383 dissolved through alkaline treatment and separated through the precipitation of Ca-P. The Al 

384 fraction can then be reused in chemical precipitation processes in the primary stream. For 

385 WWTPs using Al based precipitation and thus generating a high Al SSA, the P-recovery rates 

386 were found to be as high as 70–77%. Even where Fe-based precipitation was operated, it was 

387 reported that a considerable amount of the required Al is supplied by the decay products of 

388 detergent zeolites (Petzet et al., 2012).

389 3.3 Incineration and P release from sewage sludge ash

390 The incineration of sludge provides complete oxidation of organic constituents at high 

391 temperatures. Mono-incineration, where the sludge is incinerated separately to other wastes, 

392 can be a favoured option since it can greatly decrease sludge volume, energy can be 

393 recovered and, since phosphate is thermally stable and does not volatilise during the process, 

394 P is retained and concentrated in the ash. SSA has been found to contain on average 11.6% 

395 P2O5 (Cyr et al., 2007) (a form and content comparable to P-rock ores) (Aydin et al., 2010; 

396 Weigand et al., 2013). SSA is not generally appropriate for direct application to land 

397 however, due to the retention of heavy metals/metalloids and the strong binding of P (Ottosen 

398 et al., 2014) due to higher crystallinity of P2O5 generated at higher temperatures. In solubility 

399 tests with ammonium citrate, one indicator of short-term bioavailability, only 26% of P 

400 present in SSA was found bioavailable (Krüger and Adam, 2015). The recovery of P in a 

401 purer form may increase the bioavailability of P and reduce the contamination risk.

402 The release of P from SSA can be achieved by the dissolution of the ashes in acid, the 

403 separation of heavy metals and the precipitation of calcium phosphate, ferric hydroxide and 
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404 aluminium hydroxide, as in the Ash2®Phos process. This process is reportedly economically 

405 profitable since it is dealing with a waste which would otherwise incur a cost for disposal and 

406 the commercial products produced (mono/di-ammonium-phosphate and Fe and Al 

407 precipitants) (EasyMining-Sweden, 2017). P content (>95%) from SSA was recovered by 

408 acidification with HCl (Xu et al., 2012). Heavy metals were subsequently removed from 

409 solution using a cation exchange resin. P was recovered in the form of struvite (97% pure), 

410 which has high P bioavailability of 94% and low metal content, thus comparable to a high 

411 quality fertiliser. Electrodialysis was also studied as an option for the separation of heavy 

412 metals/metalloids and P after pre-treatment with sulphuric acid. The process separated P from 

413 heavy metals/metalloids effectively with up to 70% mobilisation of the P from the SSA 

414 (Guedes et al., 2014).
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415 Table 2. Examples of commercial processes for P recovery and the form of the final P product derived.

416

Process Information and process description Final 
product

Reference

AirPrex® 
process

Crystallisation of struvite applied directly in the digested sludge stream. CO2 is stripped to 
increase pH. MgCl2 is added. AirPrex® systems are currently operational at several 
WWTPs in Germany and The Netherlands. The world’s largest AirPrex® system is being 
constructed at the WWTP of Amsterdam. Developed by Berliner Wasserbetriebe 
(Germany).

Struvite (Eliquo Water & Energy BV, 
2016; Tchobanoglous et al., 
2014) 

DHV 
Crystalactor®

The sludge side stream is fed into the reactor and recirculated. Quartz sand is initially 
added as seed material to accelerate precipitation. Pellets settle to the bottom. Developed 
by DHV (NL). 

Struvite, 
Mg-P or 
Ca-P

(Giesen, 2016; Tchobanoglous 
et al., 2014) 

NuReSys® 
process

Air is initially added and CO2 is stripped from the side stream followed by MgCl2 addition 
in the stirred crystalliser tank where struvite forms pellets. NaOH is added to maintain pH 
in the range 8.1-8.3. Pellet size can be controlled by stirring speed. Developed by 
Akwadok/NuReSys (Belgium).

Struvite (NuReSys, 2016; 
Tchobanoglous et al., 2014) 

Ostara 
Pearl® 
process

Struvite crystallisation is achieved through treatment of sludge side stream in a fluidised 
bed crystalliser. Effluent is recirculated and MgCl2 and NaOH are added as the Mg source 
and for pH maintenance respectively. Developed at the University of British Columbia 
and introduced at full-scale by Ostara Nutrients Recovery Technologies Inc. (USA).  

Struvite 
(Crystal 
Green®)

(Ostara, 2016; Tchobanoglous 
et al., 2014)   

Phosnix® 
process

A cylindrical reaction zone with a conical bottom section is applied. Mg(OH)2 and NaOH 
added as a source of Mg and for the control of pH respectively, and aerated to strip CO2. 
Struvite settles to the bottom where it is removed with the effluent recirculated. 
Developed by Unitika Ltd (Japan).

Struvite (Katsuura, 1998; 
Tchobanoglous et al., 2014) 

PHOSPAQ™ 
process

A side stream process consisting within an aerated zone. Air lift is designed to provide 
mixing, strip CO2 and increase pH, and provide DO for biological treatment. MgO is used 
as the Mg source for the precipitation of struvite. Developed by Paques (The Netherlands). 

Struvite (PAQUES, 2016; 
Tchobanoglous et al., 2014)
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FIX-Phos Calcium silicate hydrate (CSH) particles are added into the anaerobic digester. The CSH 
adsorbs P as Ca-P and controls struvite formation by reducing the P concentration in the 
digestate. The Ca-P on CSH can be separated and recovered from the digested sludge.

Ca-P on 
CSH

(Petzet and Cornel, 2012)

P-RoC® P recovery from waste water similar to the Crystalactor® process however complex pre-
treatment steps such as pH adjustment or CO2 stripping can reportedly be avoided. 
Crystallisation products showed a P content of 11 % to 13 % which was comparable to 
phosphate rock. 

Ca-P on 
CSH

(Berg et al., 2001)

PHOXNAN The process combines low pressure wet oxidation with two membrane filtration steps. 
High temperature and pressure at acidic conditions (sulphuric acid added to adjust pH to 
1.5) are used for sludge oxidation with pure oxygen. Organic components are decreased 
and organic pollutants are oxidised. Due to the low pH, P exists in solution mainly as 
H3PO4 and H2PO4. The first membrane uses ultrafiltration to separate solids, the second 
membrane uses nanofiltration to eliminate metal ions. 

H3PO4 (Blöcher et al., 2012)

Aqua Reci Commercially, the process makes use of supercritical water oxidation. Leaching is 
accomplished with a base, which selectively dissolves P. By addition of calcium, P can be 
precipitated.

Ca-P (Levlin, 2007; Stendahl and 
Jäfverström, 2004)

EcoPhos® HCl or H2SO4 is used for the digestion of any phosphate raw material including P-rock or 
SSA. The EcoPhos® process involves the treatment of the obtained slurry to remove 
dissolved impurities and solid residues and produces a phosphate product such as 
dicalcium phosphate or H3PO4.

DCP or 
H3PO4

(DeRuiter, 2014; Ecophos, 
2017)

Mephrec The process utilises temperatures of up to 2000 °C where the sewage sludge melts under 
the addition of oxygen, with all organic pollutants destroyed. The metals obtained can be 
recycled, the slag is a form of fertilizer with high plant availability, free of heavy 
metals/metalloids and organic pollutants – similar to Thomas phosphate fertiliser (a P-rich 
slag produced in the steel industry). 

Detoxified 
mineral P

(Nuremberg GmbH, 2016)

AshDec Ash and natural earth alkali salts are exposed to a temperature of 1 000-1050°C. The 
heavy metals/metalloids react with the salts, become gaseous and evaporate. The 
phosphate compounds are transformed into plant available species.

Detoxified 
mineral P

(Outotec, 2017)
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418 4 Recovered P products from treated sludge

419 P recovery processes from sewage sludge, including commercial and large scale approaches 

420 and the characteristics of the final products obtained are detailed in Table 2. Recent 

421 description and comparison of commercial approaches for P recovery from municipal 

422 wastewater is provided in detail elsewhere (Egle et al., 2016, 2015). Current EU fertiliser 

423 regulation recognises only primary mineral-derived P products as fertiliser whereas the rest of 

424 these recovered P products cannot yet be labelled as such (European Union, 2003) – the 

425 legislation however is currently under revision to include recovered P residues such as 

426 struvite, ashes and pyrolysis materials (European Commission, 2016; Huygens et al., 2017). 

427 This revision also limits the composition of fertiliser products in terms of impurities and level 

428 and bioavailability of nutrients, therefore selective routes to obtain these products will be 

429 beneficial.  Among the recovered products in Table 2, struvite stands out due to its usability 

430 directly as a slow release fertiliser (Bouropoulos and Koutsoukos, 2000).

431 4.1 Struvite

432 Struvite precipitation has been the main focus for P recovery commercially, and is widely 

433 recommended for treatment of sludge digester liquors in large WWTPs operating EBPR 

434 processes (Martí et al., 2010). Struvite crystallises as hard crystalline deposits when a molar 

435 ratio and concentration of Mg:NH4:PO4 exists of 1:1:1 and exceeds the product solubility 

436 constant, respectively (Crutchik and Garrido, 2016). For crystallisation to occur readily, a 

437 concentration between 100 and 200 mg PO4
3-/L is required (Rittmann et al., 2011), which 

438 tends to be at least 10 times higher than typically found in the liquid phases of municipal 

439 wastewater treatment. The crystallisation of struvite and other P-rich precipitates results in a 

440 very low degree of impurities. This is advantageous because the selectivity of this process 
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441 leads to a safe product that can be applied to soil directly, despite the possible presence of 

442 heavy metals and other contaminants in the EPBR effluents. Solution pH can be increased by 

443 the addition of a base or through CO2 stripping (Petzet and Cornel, 2013); struvite becomes 

444 highly insoluble at alkaline pH and therefore increasing solution pH can lead to increased and 

445 accelerated struvite formation (Ariyanto et al., 2014). The effective precipitation of struvite 

446 has been shown feasible in the treatment of side streams originating from the digestion of 

447 EBPR sludge (Mattenberger et al., 2008). Practically and economically, however, struvite 

448 production is currently viable only in large WWTPs where enhanced biological accumulation 

449 of P can be applied.

450 The precipitation of struvite is usually initiated with the addition of a Mg source as most 

451 municipal wastewaters contain more N and P than Mg (Rahman et al., 2014), however some 

452 streams can require PO4
3- additions where the P content is low. The source of Mg used may 

453 contribute up to 75% of the overall production costs of struvite (Dockhorn, 2009), however if 

454 P is accumulated using EBPR then Mg may be the only chemical requirement in the WWTP 

455 process. The most common source of additional Mg is MgCl2 or MgO, though many other 

456 materials have been used experimentally. Lahav et al. (2013) investigated using concentrate 

457 from seawater nanofiltration as a cheap Mg (II) source for precipitating struvite from 

458 municipal sludge centrifuge wastewater. Wood ash and bittern salts have also been found to 

459 be good sources of Mg in struvite crystallisation processes (Lee et al., 2003; Sakthivel et al., 

460 2012).

461 Where chemical precipitation is operated, Fe or Al may be present at high concentrations. P 

462 may consequently co-precipitate during solubilisation in AD or other WWTP processes. A 

463 stream of sufficiently concentrated P may then not be available to support effective struvite 

464 precipitation and ensure high rates of P recovery. High Ca2+/PO4
3- ratios have been found to 
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465 be detrimental to struvite formation in pilot- and full-scale plants treating potato and dairy 

466 wastewater, respectively (Moerman et al., 2009). 

467 Uncontrolled precipitation of struvite can occur within centrifuges, digesters and sludge 

468 liquor pipes (Petzet and Cornel, 2012). Where the controlled precipitation of struvite is 

469 carried out in side stream processes, after the dewatering of the digested sludge, this 

470 undesired precipitation can make the processes less efficient with potential additional costs 

471 being incurred from the maintenance of equipment. The commercial Airprex® process (Table 

472 2) precipitates struvite directly in the sludge stream and can therefore have economic benefits 

473 regarding scaling of pipes and sludge dewatering equipment. The recovery of the struvite 

474 then depends on the subsequent separation of digested sludge. Waternet, Amsterdam, which 

475 recovers P as struvite from bio-P sludge using the Airprex® process, reportedly makes an 

476 annual saving of €500 000 due to improved dewatering and reduced scaling problems – the 

477 recovered struvite product is sold to the fertiliser industry for between €50–100/t for fertiliser 

478 production (Waternet, 2017). For the use of struvite in agriculture it is important to minimise 

479 contaminants, for example heavy metals and metalloids may become incorporated into the 

480 precipitated struvite. Arsenic, for example, has been found sequestered into a synthetic 

481 struvite at concentrations of up to 547±15 mg/kg (Lin et al., 2013). This potentially renders 

482 struvite recovered from some waste streams unusable in agriculture without removal of heavy 

483 metals/metalloids.

484 Struvite has an economic value as an effective slow release fertiliser, for example it was sold 

485 in Japan at a USD value of $250 per tonne in 2001 (Forrest et al., 2008; Ueno and Fujii, 

486 2001). Other than in municipal WWTPs, struvite precipitation has recently been investigated 

487 in a broad variety of wastewater streams from bakery production (Uysal et al., 2014); the 

488 semiconductor industry (Warmadewanthi and Liu, 2009); swine and poultry farming (Jordaan 

489 et al., 2010; Taddeo and Lepisto, 2015; Yang et al., 2012); slaughterhouse wastewater 
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490 (Kabdaşli et al., 2009); landfill leachate (Huang et al., 2014); human urine (Lind et al., 2000) 

491 and within the potato processing industry (Uysal and Kuru, 2013). Some studies have been 

492 found effective, in precipitating struvite from agro-industrial wastewaters, at pilot- and full-

493 scale (Moerman et al., 2009), whereas largely, studies still remain to be proven effective at 

494 full-scales. 

495 4.2 Ca-P precipitates

496 P content in recovered Ca-P products can vary from 12–20% and can be assumed to have a 

497 higher solubility than that of well-crystallised Ca-P (Cabeza et al., 2011). From a commercial 

498 viewpoint, however, the recovery of P in the form of Ca-P is beneficial since it has more 

499 diverse applications in industry than struvite (Okano et al., 2013). Calcium phosphate (mainly 

500 as hydroxyapatite, Ca5(PO4)3OH) reflects the composition of rock phosphate and should be 

501 easily adopted as a secondary P source in existing industry and infrastructure (Song et al., 

502 2006; Tervahauta et al., 2014). Indeed, many established commercial processes already 

503 derive Ca-P precipitates as the final product (Table 2).

504 Hydroxyapatite is the most common form of Ca-P precipitate and forms at high pH, typically 

505 >10 (Rittmann et al., 2011). At lower pH, dicalcium phosphate dihydrate (CaHPO4 2H2O) 

506 and octacalcium phosphate (Ca8H2(PO4)6 ·5H2O) are expected to be the more stable phases. 

507 However, these precipitated phases are thought to transform into the more 

508 thermodynamically stable hydroxyapatite over time (Desmidt et al., 2015; Seckler et al., 

509 1996). 

510 Calcium silicate hydrates (CSHs) have been studied as a seed for Ca-P precipitates. 

511 Amorphous CSHs (Okano et al., 2013) and tobermorite-rich waste materials from the 

512 construction industry (P-RoC) (Berg et al., 2001) have been investigated. Other calcium rich 

513 materials investigated include cattle bone (Jang and Kang, 2002). In the precipitation of Ca-P, 
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514 bicarbonate alkalinity often requires control as competition between hydroxyapatite and 

515 calcium carbonate precipitation can occur. This is often provided through the removal of 

516 carbonates by acidification and CO2 stripping, but the addition of a base such as NaOH to 

517 increase pH can increase the cost of the process. It has been noted, however, that using CSH 

518 as a seed material avoids the need to modify the influent and that removal of carbonate was 

519 unnecessary, with phosphate and carbonate co-precipitated to the solid surface (Song et al., 

520 2006).

521 Commercial processes based on Ca-P precipitation include FIX-Phos, in which Ca-P is 

522 directly precipitated (on CSH) into sludge. This holds the same risks identified for the 

523 corresponding struvite process (see section 4.1). 

524 4.3 Thermochemically treated sewage sludge ash

525 Thermochemical treatment is an option for deriving a metal-depleted solid with higher 

526 bioavailable P. After mono-incineration, the addition of Mg and Ca chlorinated salts and 

527 water, thermochemical treatment at approximately 1000°C was found to increase P-

528 bioavailability due to the formation of Mg- and Ca- bearing phosphates such as chlorapatite, 

529 farringtonite and stanfieldite (Adam et al., 2009). Heavy metals/metalloids are depleted 

530 mainly due to their volatilisation as heavy metal chlorides. The legal limits of Fertilizer 

531 Ordinance in the EU were reportedly met in most cases. KCl added to SSA favoured Cu 

532 removal over Zn, but the converse was the case for MgCl2 (Mattenberger et al., 2008). This 

533 has relevance to the thermochemical treatment of incinerated biological sludges since they 

534 tend to contain higher concentrations of Cu and Zn (Franz, 2008). In most cases Cd, Cu, Zn 

535 and Pb can be removed up to at least 90 wt% from SSA. However, even with higher Cl 

536 addition at the same incineration temperatures (1000°C), Cr and Ni have been found to have 

537 low volatility (Fraissler et al., 2009; Vogel and Adam, 2011). 
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538 Two commercial processes in the literature, AshDec and Mephrec, offer recovered products 

539 in the form of mineral-P from thermochemical SSA treatment. The AshDec process is a 

540 calcination process based on fluidised bed technology (Outotec, 2017). The Mephrec process, 

541 through metallurgic treatment at high temperature, provides a slag that contains P of high 

542 plant availability, free from heavy metals/metalloids and organic pollutants, and similar in 

543 form to Thomas-phosphate fertiliser. This is used by the fertiliser industry after further 

544 processing but can be safely used in organic farming (Nuremberg GmbH, 2016). 

545 5 Experimental P recovery through sorption processes

546 Several experimental technologies are being developed that have shown high efficiency for P 

547 recovery at bench or small pilot scale: membrane filtration (Gerardo et al., 2015; Qiu and 

548 Ting, 2014), electrodialysis (Zhang et al., 2013), and nanoparticle-based sorbents (Lu et al., 

549 2015; Su et al., 2015; Tu and You, 2014) as well as various modified mineral- and biological-

550 based sorbents (Chiou et al., 2015; C. Fang et al., 2015; Nguyen et al., 2014b; Yu et al., 

551 2015). However, cost and practicality have so far prevented these technologies from being 

552 adopted in commercial scale operations.

553 Sorption techniques have been shown to have potential for removal of a wide range of 

554 contaminants from dilute wastewater effluents (Busquets et al., 2014; Nguyen et al., 2013; 

555 Sivasankar et al., 2013). The use of easily obtainable or synthesisable materials as well as 

556 waste materials may reduce the need for more expensive chemical additives or modification 

557 to existing WWTP infrastructures. As well as encouraging the precipitation of P by seeding, 

558 mentioned in preceding sections, sorbent-based processes can include other coexisting 

559 mechanisms such as ion exchange, ligand exchange, and electrostatic interactions to directly 

560 sorb P from the waste stream. Such processes can potentially fit into existing WWTP 

561 infrastructures and provide enhanced P removal and recovery. Sorbents have not been widely 
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562 employed in WWTPs as stand-alone P recovery processes. Similarly, the potential of 

563 recovered sorbed-P fertiliser or soil amendment has not been widely considered or assessed. 

564 However, a wide variety of materials evaluated for the sorption of P have shown high 

565 potential, these have been compiled in Table 3.

566 An extensive review of agricultural by-products and wastes for the sorptive removal and 

567 recovery of P recently concluded that organic materials require some form of pre-treatment 

568 before use in P recovery, due to the lack of anion binding sites (Nguyen et al., 2014a). 

569 Surface modifications can significantly enhance the capture efficiency, but poor reusability of 

570 materials recycled from agriculture has been reported. Capture and recovery of P by biochars 

571 has been investigated and modification of the feedstock, mainly through incorporation of Fe 

572 or Mg, has been shown to be necessary to enable efficient uptake of P (Shepherd et al., 2016; 

573 Yao et al., 2013). Although the application of P-bearing biochar to soil has been suggested, 

574 the technology is still in its infancy. While efficient P removal can be brought about through 

575 material modifications, the added cost to the process may make their application to soil 

576 uneconomic. Among the potential mineral sorbents zeolitised fly ash, layered double 

577 hydroxide (LDH) minerals and Li-intercalated gibbsite have exhibited high potential for P 

578 sorption from solution (Wendling et al., 2013). Their subsequent direct use as nutrient 

579 bearing soil amendments or as P fertiliser has been suggested, but not yet demonstrated. 
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580  Table 3. Sorbent materials used for the uptake of P: Sorption capacities, application and mechanisms.

Sorbent material Sorption capacity/ 
efficiency

Information about study/ experiment Reference

Powdered sulphate-
coated zeolite

Powdered 
hydrotalcite

Sulphate coated 
activated alumina

111.5mg P/g

26.1 mg P/g

49.7 mg P/g

Three novel composite adsorbents, sulphate- coated zeolite (SCZ), 
hydrotalcite (SCH) and activated alumina (SCAA). Sulphate coating 
improved sorption capacity in the case of SCZ and SCAA.  Adsorption 
thought to have occurred fast. Main mechanism: ion-exchange between 
phosphate and sulphate on the surface of the adsorbents.

(Choi et al., 2012)

Lanthanum 
hydroxide

107.5 mg P/g Surface area 153.3 m2/g. Performed well across a wide range of pH 
values. Main mechanism: ligand exchange.

(Xie et al., 2014)

Cerium-zirconium 
binary oxide 
nanoparticles

36.6 mg P/g Ce/Zr binary oxide nanoparticles were synthesised with different 
structure, crystal size, surface properties, and phosphate adsorption 
performance. Main mechanism: inner-sphere complexing mechanisms 
were thought to dominate, the surface -OH groups playing a major role.

(Su et al., 2015)

Cement based 
materials

30.0 mg P/g High Si, Ca, Al and Fe content within cement materials. Main 
mechanism: precipitation with Ca predominantly.

(Wang et al., 2014)

Zirconium loaded 
okara

14.4 mg P/g The phosphate removal was rapid, reaching 95% in 30 min from an 
initial concentration of 5 mg P/L. Adsorption tested between 10 – 500 
mg P/L. 

(Nguyen et al., 2014b)

Magnetic Fe-Zr 
binary oxide

13.7 mg P/g Incorporation of Fe into Fe-Zr oxide allows for magnetic recovery. Zr 
oxide was a suitable adsorbent for P. Main mechanism: ion-exchange of 
Zr species and partly originated from magnetite species of Fe–Zr binary 
oxide.

(Long et al., 2011)

Scallop shell 
synthesized ceramic 
biomaterials

13.6 mg P/g Scallop shells, montmorillonite and starch (1:1:1) were mixed to a paste. 
The ceramic samples were dried at 105°C for 24 h in an oven and 
calcined at 600°C. A surface area of 53.74 m2/g was reported.

(Chen et al., 2013)
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Nano bimetal 
ferrites (CuFe2O4 – 
Green synthesis)

13.5 mg P/g Manufactured from industrial sludge. Fast sorption rate within first 
10mins reached equilibrium within 120mins. Magnetic. Large potential 
for desorption and recovery. Main mechanism: inner-sphere 
mechanisms.

(Tu and You, 2014)

Amine-
functionalized silica 
magnetite

>~13 mg P/g A magnetic adsorbent: amine-functionalized silica magnetite. The 
maximum adsorption was found to occur at pH 3.0. 

(Chiou et al., 2015)

Zirconium loaded 
bifunctional fibers 
(fibrous ligand 
exchange adsorbent)

Breakthrough point at 
~340BV

Adsorbent slightly preferred phosphate to arsenate. Sorbent reversible 
and suitable for multiple reuse cycles. Main mechanism: ligand 
exchange – sorption slightly enhanced due to co-ion and Donnan 
invasion mechanisms (Cl- and SO4

2-). 

(Awual et al., 2014)

Nano-sized iron 
oxide coated sand

69.1% P removal 
without magnetic field 
application, 75% with. 

20mL/min flow rate through column of 20cm height, 5cm width. Main 
mechanism: precipitation of Fe-P deposits on the surface of sand.

(Khiadani Hajian et al., 2013)

Chemically surface-
modified silica filter

Effective up to 1.5L of 
influent with 36 filters 
(900g) to remove to P 
to below 1 mg/L. 20 
seconds per 500mL 
with 36 filters.

Glass modified silica granules packed into 25g porous cylindrical filters. 
After regeneration, filters (36) unable to reduce P concentration to below 
2 mg/L.  Main mechanism: ion-exchange.

(Kim et al., 2012)
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582 Using sorbent materials for the removal and recovery of P for subsequent direct use as a 

583 fertiliser or soil amendment is attractive, provided that the sorbent material is economic and 

584 has adequate P affinity without retention of contaminants. If modifications are required to 

585 provide these, the cost and complexity of additional processing have to be considered. Rather 

586 few materials shown to be effective as sorbents for P are also suitable for direct application to 

587 agricultural land. Waste materials are an attractive option for having a low (or no) price and 

588 for their often wide availability, but incur the cost of compliance with regulation (European 

589 Union, 2003). Variability in composition is a further challenge. Also, materials showing high 

590 affinity for P in sorption studies may also have minimal potential for P release. Effective 

591 sorption is often brought about by high Fe or Al contents which, as discussed, may then limit 

592 solubilisation of P within the soil, or may be toxic in surrounding aquatic environments.

593 Other issues regarding the sorption of P from wastewaters is the co-sorption of toxic 

594 compounds that contain heavy metals/metalloids, or metals that compete with phosphate and 

595 other anions for sorption sites; selective recovery of P should therefore be a key goal of any 

596 recovery process. A Zn-Al LDH material reported in the literature provides an example for 

597 such selectivity. Intercalated with pyromellitic acid this sorbent achieved 97.4% selectivity 

598 toward P at pH 7 from complex solutions containing H2PO4
-, SO4

2-, CO3
2-, NO3

- and Cl- (Yu 

599 et al., 2015). Although this material showed a selective and effective P sorption compared to 

600 other options, the practicality of the material in terms of recyclability, usability or cost was 

601 not discussed. For innovation in sorbent technologies to translate to WWTP use, their 

602 potential feasibility should be assessed and demonstrated at an early stage. Their efficiency at 

603 low or high P concentrations should be assessed in relation to their suggested use; as filtration 

604 media in a tertiary process in the primary stream or for sorption of P within a side stream 

605 process treating sludge liquors and dewatered sludge, respectively. But their end use is an 

606 equally important consideration in developing sorbents for P recovery – the effective 
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607 bioavailability of P and its re-release into soil when used as a fertiliser or P-bearing soil 

608 amendment, or its potential for regeneration, i.e. re-use after desorption of P and its separate 

609 recovery. Sorption of P remains a flexible, efficient and potentially effective option; either as 

610 a potentially lower-cost alternative to crystallisation technologies, or as an additional 

611 technology that provides for enhanced P removal and recovery potential. 

612 6 Bioavailability of recovered P products

613 Not all P in soil is bioavailable to plants and P is a key limiting nutrient in terrestrial 

614 ecosystems (Elser, 2012; Maltais-Landry et al., 2014). Phosphorus therefore plays a critical 

615 role in productive agriculture (Withers et al., 2014), but its plant availability however can 

616 often be low: it forms sparingly soluble fractions due to adsorption, precipitation or 

617 conversion to organic fractions in soil (Werner and Prietzel, 2015), via geochemical 

618 processes that depend on several soil properties such as the abundance of Ca, Al and Fe 

619 oxides, pH and organic matter content. The bioavailability of P in recycled P products can be 

620 assessed using chemical analogues for plant acquisition (i.e. using extractants) or more 

621 directly in pot or field trials. For P to be utilised by plants it must be soluble or solubilised, 

622 but solubility and potential bioavailability depends on a number of soil-related factors, so its 

623 assessment as an effective and suitable fertiliser should be undertaken in diverse 

624 environments. The use of Ca and Mg in crystallisation processes has been shown to have high 

625 potential for P recovery, owing to the solubility of precipitated Ca and Mg products in soil. 

626 The bioavailability of struvite has been more widely investigated: i.e. through cultivation of 

627 Chinese cabbage (Ryu et al., 2012); maize (Liu et al., 2011); maize and tomato plants (Uysal 

628 et al., 2014); corn and tomato plants (Uysal and Kuru, 2013). Struvite-P has been found to be 

629 relatively soluble and bioavailable across a wide range of pH conditions and soil types. 

630 Recovered Ca-P products have been investigated to a lesser extent.
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631 Struvite can be considered as the better product compared with Ca-P, in terms of 

632 bioavailability. Through isotopic labelling techniques with 33P, a reference hydroxyapatite 

633 and a recovered product partly composed of hydroxyapatite, were found to be less effective, 

634 in terms of the plant availability of P, than triple super phosphate (TSP), reference struvite 

635 and a recovered product composed of both struvite and hydroxyapatite (Achat et al., 2014a). 

636 However, using the same recovered products in pot and soil incubation experiments with 

637 slightly acidic soil growing ryegrass and fescue, both were as effective as TSP and the 

638 struvite reference material (Achat et al., 2014b). When the plant uptake of P derived from the 

639 applied products was compared with that derived from the TSP, the reference hydroxyapatite 

640 was found to have only 22% relative effectiveness, compared with 85-96% for the recycled 

641 products and 111% for the reference struvite. This was likely due to higher solubility of 

642 poorly crystallised phases of Ca-P associated with the recycled products (Achat et al., 2014b). 

643 The recovered P products containing struvite and Ca-P were derived from pig manures and 

644 dairy effluents. 

645 The bioavailability of various recycled P products has also been compared with TSP and P-

646 rock in pot experiments with maize in two contrasting soil environments (pH (CaCl2) 4.7 and 

647 6.6) over a period of 2 years. Recycled struvite products were found to be as effective as TSP 

648 in both soils, but the Ca-P product was only effective in the acidic soil (Cabeza et al., 2011). 

649 The restricted effectiveness of Ca-P to acidic soils is due to the enhanced disintegration of the 

650 P-rich material in higher H+ concentrations and its relative stability in alkaline conditions. 

651 Similarly, an alkali sinter phosphate made from meat and bone meal was as effective as TSP 

652 in the acidic soil, while a cupola furnace slag was in the neutral soil (Cabeza et al., 2011). 

653 Both the SSA and a meat and bone meal ash had low effectiveness, in terms of P uptake and 

654 P concentration in the soil solution, and were comparable to rock-P. It was concluded that P 

655 products obtained through chemical processes were suitable for direct application as 
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656 fertilisers, especially struvite, and the ash products could be potential raw materials for P 

657 fertiliser production (Cabeza et al., 2011). 

658 The thermochemical treatment of SSA is a promising technology in deriving heavy metal 

659 depleted residues containing P in bioavailable forms. Two SSA products thermochemically 

660 treated with either MgCl2 or CaCl2 were investigated for their plant availability in pot trials 

661 with ryegrass using 33P (Nanzer et al., 2014). The shoot uptake of P from the Mg treated SSA 

662 was found to be higher than the Ca treated SSA (15.7 and 8.3 mg P/kg acidic soil, 

663 respectively). The effectiveness of the Mg treated SSA relative to a water-soluble P fertiliser 

664 was 88% in an acidic soil, 71.2% in a neutral soil but was reduced to 4% in an alkaline soil 

665 (Nanzer et al., 2014). 

666 Large gaps still remain in the understanding of the release and plant availability of P in soils 

667 from recovered products derived from WWTPs. From review, the use of indirect isotopic 

668 labelling techniques would appear to be the best method in assessing the contribution of 

669 recovered-P to plant available P in soil and P utilised by the plant. Further investigation and 

670 empirical information regarding the availability, plant uptake and cycling of P in soils related 

671 to the application of recovered products and residues will lead to a greater understanding and 

672 confidence in their use as alternatives to inorganic-P derived fertilisers. It is additionally 

673 important that both the removal process and reuse of P are considered on a case-by-case basis 

674 – not all recovery processes will be applicable to all wastewaters, and similarly not all 

675 recovered products will be equally effective across different soil environments. As sorbent 

676 materials can be derived from a wide variety of materials and processes, providing a myriad 

677 of physical and chemical characteristics, P sorbed to and within the surface and structure of 

678 these solids may have wide ranging applications.
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679 7 Conclusions

680 The diminishing quantity and quality of P-rock reserves, and the eutrophication of water 

681 bodies, are instigating a critical need to recover P from WWTPs in forms suitable for 

682 agricultural application. There are numerous recovery options that vary in application (i.e. 

683 sludge, sludge liquor, primary stream, SSA) and technology used (precipitation, EBPR, AD, 

684 wet chemical extraction, thermochemical treatment). The chemical precipitation of struvite 

685 and Ca-P, from the digested EBPR sludge stream, are the favoured routes that are 

686 technologically well developed and already in operation in a number of WWTPs. The mono-

687 incineration of sludge followed by thermochemical treatment of the SSAs are also promising 

688 steps in the production of secondary P residues suitable as a detoxified P fertiliser.

689 EBPR currently forms the basis of chemical crystallisation technologies in providing a 

690 process stream of suitable concentration for efficient P recovery. The minimisation of Fe and 

691 Al, especially where P is to be recovered from anaerobic digestate, is important to maximise 

692 P release. Where chemical accumulation processes are required to be operated due to spatial, 

693 economic or infrastructural requirements the metal salt applied and the resulting sludge 

694 composition should be considered regarding the suitability of the sludge residue for 

695 processing by the fertiliser industry or its use directly as a detoxified residue after 

696 thermochemical treatment. 

697 Technologies such as thermochemical treatment, wet chemical extraction and electrodialysis 

698 may be used to increase the total recovery potential to around 90%, and in some cases, have 

699 been shown to be economically feasible. However, the present cost of some existing and 

700 novel technologies is not yet offset by a marketable product due the current omission of 

701 recovered products from fertiliser legislation. Where P must be removed on in some cases 

702 recovered, to comply with statutory limits and regulation, a range of approaches will be 
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703 valuable and necessary despite not being profitable – the inclusion of recovered P products 

704 such as struvite and ashes in to the revised fertiliser legislation will then create a value and a 

705 market for these products. This is important in enabling recovered-P products to substitute 

706 and compete with primary fertilisers on the market and could foreseeably require 

707 subsidisation or regulatory forcing until an increase in price of primary fertilisers ensures that 

708 widespread agricultural adoption is economical.

709 Around 90% of the incoming P load can be incorporated into sewage sludge, however to 

710 consistently achieve P limits of <1 mg/L, WWTPs require a further removal of P before 

711 discharge, with future legislation foreseeably requiring increasingly lower concentrations of P 

712 in discharge. Consequently, a gap in wastewater treatment strategy has presented itself; the 

713 “polishing” of effluents, other than by additional chemical dosing, in a tertiary treatment 

714 setting where EBPR may not be able to reliably meet required concentrations. Experimental 

715 technologies (ion-exchange, novel sorption processes, membrane filtration, etc.), although not 

716 yet commercially operational, may become key in providing an enhanced P removal and 

717 recovery potential. Sorbents, if effective, may easily be incorporated into existing 

718 infrastructures and may provide alternatives to technologies unachievable at smaller WWTPs 

719 – currently the precipitation of struvite/ Ca-P can only be practically applied at large WWTPs 

720 operating EBPR. The focus of experimental technologies and especially sorption processes is 

721 deriving recovered-P products or residues of suitable purity, form, economy and 

722 bioavailability for their safe and effective application as fertiliser to agricultural land. 

723 Struvite compares well to TSP and other mineral-P fertilisers in pot trials under a range of 

724 soil pH values, but full field trials and longer term tests are still lacking. The application of 

725 recovered-P products and residues to soils and their use by crops needs further investigation 

726 and empirical information – understanding the bioavailability and availability of recovered P 

727 and its use by plants in a wide range of soils and environments is important to increase 
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728 confidence in the precise and effective use of these products as a substitute for conventional 

729 inorganic-P derived fertilisers. This will be vital for the widespread recovery of P and the 

730 adoption of recovered-P as fertiliser.
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Highlights

 P recovery is a pressing issue and wastewater provides a substantial opportunity

 Struvite/Ca-P crystallisation is limited to <25% P recovery of the influent P load

 Crystallisation, thermo- and wet-chemical processes are being commercially applied 

 Revised fertiliser legislation and P limits drives wider adoption of technologies 

 All approaches should focus on obtaining agriculturally effective forms of P


