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Abstract—Diabetic Retinopathy (DR) is one of the leading 

causes of blindness amongst the working age population. The 
presence of microaneurysms (MA) in retinal images is a 
pathognomonic sign of DR. In this work we have presented a novel 
combination of algorithms applied to a public dataset for 
automated detection of MA in colour fundus images of the retina. 
The proposed technique first detects an initial set of candidates 
using a Gaussian Matched filter and then classifies the initial set 
of candidates in order to reduce the number of false positives. A 
Random Forest ensemble classifier using a set of 79 features (the 
most common features used within literature) was used for 
classification. Our proposed algorithm was evaluated on a subset 
of 20 images from the MESSIDOR dataset. We show that the use of 
the Random Forest classifier with the 79 features improves the 
sensitivity of the detection, compared to using a K-Nearest 
Neighbours classifier that has been proposed in other techniques.  
In addition, the Random Forest is capable of ranking features 
according to their importance. We have ranked the 79 features 
according to their importance. This ranking provides an insight 
into the most important features that are necessary for 
discriminating true MA candidates from spurious objects. 
Eccentricity, aspect ratio and moments are found to be among the 
important features.  

Keywords—Image processing, Medical Image Analysis, Retinal 
Imaging, Microaneurysm Detection, Random Forest, Diabetic 
Retinopathy. 

I. INTRODUCTION 

Diabetic Retinopathy (DR) is one of the leading causes of 

blindness in the working age population, and over 2% of the 

population in the UK is affected [1]. Fundus images of the retina are 

used to diagnose DR. The appearance of microaneurysms (MA) is a 

pathognomonic sign of DR (Figure 1). Computer-aided detection and 

diagnosis of MA in retinal images has been an active area of research 

due to its application in DR detection and adaptability to public 

screening programs. However, MA detection is still a challenging 

problem due to the varying size and shape of MA in retinal images 
[2]. 

In general, most MA detection techniques have three main stages 

in common: 1) preprocessing, 2) MA Candidate detection and 3) 

candidate classification. The main purpose of preprocessing is to 

correct for non-uniform illumination. MA Candidate detection seeks 

to detect an initial set of regions where MA candidates are likely to 

exist. Ideally, the initial candidates detection phase should detect 

majority of the candidates and some false positive regions. A 

comparison of several candidate detection steps is presented in 

Murugan [3]. MA candidate classification uses a classifier to improve 

the sensitivity of the algorithm by filtering out false positives from the 

previous stage. Based on some features the classifier determines 

whether it is a true candidate or false positives. There are a few 

unsupervised techniques that do not rely on a classification stage [4]–
[10].  

 

Figure 1. A colour retinal image with microaneurysms of various 

contrasts highlighted. 

Early algorithms have performed MA detection on flourescene 

angiograms [11]–[13]. In these methods, a Gaussian matched filter 

was used to detect the initial set of microaneurysms and a rule-based 

classifier was used to classify the set to filter out false candidate 

detections. More recent techniques have tackled the problem of MA 

detection on colour fundus images. The main reason for this is that 

colour images, unlike flourescene images, are more common in 

screening programs and are also non-invasive to capture.  

The methods explained in this paragraph are all based on MA 

detection in colour fundus images. A large portion of the methods rely 

on a Gaussian matched filter [14]–[16], or a variant of the Gaussian 

filter [7], [17], [18] in order to detect the initial set of candidates. 

Other methods for initial candidate detection include thresholding [8], 

[9], [19], Moat operator [20], double ring filter [21], mixture model-

based clustering [10] 1D scan lines [4], [5], extended minima 

transform [22], [23], Hessian matrix Eigenvalues [24], [25], Frangi-

based filters [26] and hit-or-miss transform [27]. A variety of 

classification techniques have been used in order to reduce the number 

of false positive detections. These include Linear Descriminant 

Analysis (LDA) [14] K-Nearest Neighbours (KNN) [15], [16], [18], 

[25], Artificial Neural Networks [21], [27], Naive Bayes [22] and 

Logistic Regression [28]. A number of techniques did not rely on a 

classifier (unsupervised methods) [4], [5], [8], [9] . These techniques 

have the advantage of eliminating the need for a training set, but may 
not perform as well as supervised methods.  

Haloi [29] recently applied deep neural networks to detect MAs in 

colour images. Deep neural networks have gained popularity in the 

field of computer vision in the recent years since they do not require 

manual feature engineering (selection of features). Moreover, 

algorithms based on deep learning have produced results that out-

perform other state-of-the-art algorithms in other computer vision 

applications. However, deep learning requires massive datasets for 

training [30] and such large labeled retinal image datasets are not 
commonly available. 
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The objective of the present work is as follows: 1) to present a 

new technique for microaneurysm detection based on an ensemble 

classifier for classification. 2) Introduce 79 of the most common 

features used in the literature and perform feature ranking in order to 

identify the features that are most important for discriminating 
microaneurysm candidates from spurious objects.  

The rest of the paper proceeds as follows. Section II describes the 

methodology of the proposed algorithm. In Section III, the 

experiments that were performed to assess the algorithm are 

described, results presented and discussed. A final discussion and 
concluding remarks are presented in Section IV. 

II. METHODOLOGY 

The proposed algorithm is based on the technique proposed by 

Fleming [16] with two main variations in the classification stage 1) an 

extended set of 79 features has been used and 2) A Random Forest 

classifier was used rather than K-Nearest Neighbours (KNN). The 

algorithm consists of three main stages A) Image preprocessing, B) 

Initial Candidates Detection and C) Candidates classification. In the 

following subsections we describe the stages involved in the algorithm 

while highlighting the main contributions that the technique 
introduces. 

A. Preprocessing 

    The preprocessing steps proceed as follows: Given a colour image 

input, 𝐼RGB , the green channel 𝐼𝐺  is extracted since MA candidates 

have the highest contrast in this channel (Figure 2(a)). 𝐼𝑚𝑒𝑑, a median 

filtered image is generated by applying a 3 × 3 median filter to 𝐼𝐺  for 

the purpose of salt & pepper noise removal. 𝐼𝑎𝑑𝑎𝑝𝑡 is generated by 

performing Contrast-adaptive histogram equalization to 𝐼𝑚𝑒𝑑 in order 

to enhance the contrast in the image (Figure 2(c)). 𝐼𝑛𝑜𝑖𝑠𝑒 is generated 

by convolving a 3 × 3 Gaussian filter (𝜎 = 2) with 𝐼𝑎𝑑𝑎𝑝𝑡 for further 

noise reduction. 𝐼𝑠ℎ𝑎𝑑𝑒, a shade corrected image is generated in order 

to correct for non-uniform illumination, shade correction is applied to 

the contrast-enhanced image. During shade correction the background 

is estimated by applying a 68 × 68 median filter. The filter size is 

chosen to be large enough in order to eliminate vessels and other 

features in the image (producing 𝐼𝑏𝑔 as shown in Figure 2(b)): 

 𝐼𝑠ℎ𝑎𝑑𝑒 =  𝐼𝑎𝑑𝑎𝑝𝑡/𝐼𝑏𝑔 (1) 

    Global contrast normalization is performed on the resulting image 

by dividing it by its standard deviation. The normalized image 𝐼𝑐𝑜𝑛 is 

generated by: 

 
 𝐼𝑐𝑜𝑛 =  

𝐼𝑠ℎ𝑎𝑑𝑒

𝑠𝑡𝑑(𝐼𝑠ℎ𝑎𝑑𝑒)
 

(2) 

where 𝑠𝑡𝑑(𝑥) represents the standard deviation of image x. Finally, 

blood vessels are removed from the image by applying a linear 

morphological black top-hat transform (also known as bottom-hat 

transform) in 8 directions (𝜃 ∈ {𝜃𝑖 ∶ 𝜃𝑖 = 22.5 × 𝑖;  𝑖 = [0. .7]}). The 

length of the tophat structuring element was chosen to be 15 px long 

(measured as the width of the largest blood vessel in the images). The 

resulting image of the aforementioned operations is the preprocessed 

image 𝐼pp (Figure 2(d)). Figure 2 shows examples of each 

preprocessing step mentioned in this section. 

 

A. MA Candidates Detection 

    During this step we produce an initial set of candidates. The target 

is to maximize the amount of true candidates detected. The false 

positives will be reduced during the classification phase, therefore the 

highest priority in this phase is to maximize the amount of true 

positives [19]. 

 
Figure 2. Proposed algorithm steps a) Green channel image, 𝐼𝐺  b) 

Estimated background (𝑰𝒃𝒈), c) Histogram equalized image (𝑰𝒂𝒅𝒂𝒑𝒕), 

d) shade-corrected image (𝑰𝒔𝒉𝒂𝒅𝒆). In all images the labeled MA 

groundtruths have been overlayed in red. 

    A 15 × 15 Gaussian filter is applied to detect local minima regions 

in the image. The result of the Gaussian filter is a probability map 

between 0 and 1 where higher values indicate higher chance of that 

pixel being an MA pixel. The resulting image is  𝐼𝑔𝑎𝑢𝑠𝑠: 

 𝐼gauss = 𝐼pp ∗ 𝑔𝑎𝑢𝑠𝑠(𝜎), where 𝜎 = 1.0 (3) 

The value of 𝜎 was empirically chosen after trying a range of 

values. In order to get the initial candidates a thresholding operation is 

performed. The resulting image is  𝐼thresh: 

 I𝑡ℎ𝑟𝑒𝑠ℎ = thresh(Igauss, τ) (4) 

    Where thresh(f, t) is the thresholding operation applied to image f 
using a threshold value of t. The value of τ is chosen such that at most 

5% of the pixels will belong to the MA candidate regions [16]. 

    In order to enhance the shapes of the detected microaneurysm 

candidates, a region growing operation was performed using the initial 

candidates as input. This region growing uses the same method 

documented in [16]. It involves iteratively growing along the 

connected components from the minimum intensity pixel until a 

maxima point is reached with respect to an energy function. The 

energy function is defined as the average value of the gradients around 

the boundary of the grown region. All the parameters of this stage 

have been kept the same except the maximum grown size. While the 

method suggested a maximum grown size of 3000 pixels, we found 

that this causes large blood vessel regions to be picked up as a result 

of this. We empirically found that a value of 100 pixels for the 

maximum area caused the amount of false positives to decrease 

significantly while achieving almost the same sensitivity. The value 

was chosen to be over twice the size of the average MA size in the 

groundtruth images. The result of this stage is the image IRG. 

C. MA Candidates Classification 

The objective of the classification phase is to classify each MA 

candidate detected during the Candidates Detection phase as either an 

MA or a spurious object. The idea is to eliminate as many false 



positive candidates as possible (while retaining the true candidates). A 

classifier is used for this purpose. The classifier needs to be trained on 

some labeled example cases of both true and spurious candidates. 

Based on these examples it builds a model that is able to filter unseen 

examples as either true or spurious. The input to the classifier is a set 

of ‘features’ extracted from each candidate. These features need to be 

distinctive in order to allow the building of an accurate model. 

    
Figure 3. Examples of candidates falsely detected on vessels. Red 

circles represent intial candidate MA detected by the proposed method 

     For our proposed technique we have chosen to use Random Forests 

as our classifier. Random Forests is an ensemble-based technique 

based on decision-tree learning. An ensemble classifier is one which 

combines the decision of multiple weak classifiers. The reasons for 

our choice of this classifier are: 1) It has performed well for other 

computer vision tasks [31], [32]; 2) It can rank features as it builds the 

classification model, which is very insightful to know which of our 

features are most effective and 3) Decision-tree learners are robust to 

outliers and poor features [33]. We have extended Fleming’s [16] 

feature set of 10 features to include a set of 79 features. These were 

based on the features that have been reported in the literature. Table 2 

displays a list of the 79 features that were fed into the classifier. These 

features are explained below in the same order of appearance as the 

table: 

 Fleming’s features (1-9): These are the features introduced 

by Fleming in his technique [16]. Most of these techniques 

rely on fitting a paraboloid to each candidate’s intensity 

profile in order to estimate some parameters from the 

paraboloid. These features are based on both the shape and 

intensity of the object. Details about these features is 

presented in the original paper [16]. 

 Vessel features: (17, 25, 26): These are binary features (0 

or 1) that indicate whether or not a candidate seems to lie on 

a vessel. Since MA objects never lie on vessels [16], it is 

highly likely that a candidate that lies on a vessel is a 

spurious one [16] (Figure 3). Discriminating between 

vessels and MA candidates is quite important since we 

experimentally found that 70% of the initial candidates 

detected are false positives that lie on vessels [13]. The first 

isVessel feature (17) uses the method suggested by Fleming. 

However we found that this feature is not discriminative 

enough and does not detect many candidates that lie on 

vessels. Therefore we introduced two other features: 

isvessel_loose (25) and isvessel_QUARTZ (26). 

isvessel_loose is an adaptation of Fleming’s isVessel feature 

with more relaxed constraints. isvessel_QUARTZ detects the 

vessel tree structure using [34] and marks any candidate that 

overlaps with this vessel structure as a spurious candidate. 

 Shape features (10-16, 18-24): Moment Invariants (10-16) 

are 7 features that describe the shape of an object [35]. In 

order to calculate moments we crop a small region (101x101 

px) centered around the candidate binary image and use that 

subimage to compute the 7 features for each candidate. 

Other shape features include aspect ratio, major & minor 

axis length. Some of these feature overlap with Fleming’s 

features, however these are calculated at a pixel level rather 

than after fitting a paraboloid to the candidate. 

 Gaussian Features (27-58): Using the Gaussian matched 

filter response as features have been used extensively in 

literature. Since microaneurysms vary in size, the features 

have taken this into account by varying the value of 𝜎 while 

applying the Gaussian filter (i.e. applying the filter at 

multiple scales). Some definitions related to these features 

will follow. Some of the symbols mentioned below are 

utilized in Table 2. Let 𝐼𝑠ℎ𝑎𝑑𝑒  be the shade corrected image 

(Section II B) and:  

 𝐺𝜎 = 𝐼𝑠ℎ𝑎𝑑𝑒 ∗ 𝑔𝑎𝑢𝑠𝑠(𝜎) (5) 

 

be the Gaussian filter response for sigma = 𝜎 and 𝐺𝜎(𝑥, 𝑦) 

be the filter response at coordinates (𝑥, 𝑦). Let 𝜎 be the set 

of sigma values 𝜎 ∈ {1,2,4,8,16,32}. Let 𝐶̅ be a set of initial 

candidates detected (after region growing). Each candidate 

(𝑐) is a set of coordinates (𝑥𝑖 , 𝑦𝑖). Let 𝑠𝑒𝑒𝑑(𝑐) be the 

coordinates (𝑥𝑠, 𝑦𝑠) of the minimum intensity defined as 

follows: 

 𝑠𝑒𝑒𝑑(𝑐) = (𝑥𝑠 , 𝑦𝑠)
= argmin

(𝑥,𝑦)∈𝑐
(𝐼𝑠ℎ𝑎𝑑𝑒(𝑥, 𝑦)) 

(6) 

A 1-Dimensional Gaussian is a special case of 𝐺𝜎 applied 

linearly in one direction. 𝐺𝑠,𝑡
1𝐷(𝑥, 𝑦) is the 1D Gaussian 

applied at angle 𝑡 and a scale (standard deviation) of 𝑠. In 

our case we have applied the 1D Gaussian at a constant 

scale (𝑠 = 1). Let the set 𝜃 be the set of angles applied at 

each coordinate. In our experiments: 

 𝜃 ∈ {𝜃𝑖 ∶ 𝜃𝑖 = 10 ∗ 𝑖;    𝑖 = [0. .9]} (7) 

 Intensity Features (59-76): These are calculated directly 

from the intensity in the image at multiple bands: the red 

(R), blue (B), green (G) band in the RGB colour space; the 

Hue (H), saturation (S) and value (V) bands of the HSV 

space. 

 Morphological Features (77-79): These three features are 

based on applying a linear morphological close operator (15 

px) at different angles and are aimed at discriminating 

vessels from microaneurysms. This is because the linear 

structures of vessels would respond differently at different 

angles of the linear operator while the circular nature of MA 

objects would cause the response to be more uniform. 

In the following section we describe the method that was used to 

assess the performance of the proposed algorithm. 

III. EXPERIMENTAL RESULTS 

In order to evaluate the performance of the proposed algorithm we 

have relied on a subset of the MESSIDOR dataset [36] . A set of 20 

images were chosen from this dataset to cover a wide range of 

retinopathy as shown in Table 1. The images were all either healthy or 

suffered from early-stage Diabetic Retinopathy (DR) and were good 

resolution images. There were no abnormalities such as laser scars in 

the images. The purpose of this selection was to have a dataset of ideal 

scenario images for assessment. This means that the results of the 

assessment on this dataset should produce the ideal performance of a 

given algorithm or technique. In other words, the dataset should 
identify the ‘peak performance’ of the algorithm being tested. 

    The images were groundtruthed by an expert grader. During the 

groundtruthing the grader marked all the microaneurysms that were 

visible to him. A circular marker was used rather than pixel-based 



marker [26]. Majority of the literature has relied on object-based 

metrics to measure the accuracy of detection. This is because it gives a 

more sensible measure of performance – indicating the amount of MA 

objects detected in the image relative to the total MA objects present. 

Furthermore, reliance on pixel-based metrics can be misleading due to 

the inbalance in proportion between very few MA pixels and a large 

number of background pixels.  

The images in the dataset belonged to 1 of 3 different resolutions. In 

order to maintain uniformity, all the images were resized to the width 

of the smallest image (1440px) while maintaining the image aspect 

ratio. This was also done to speed up the processing of the images. 

During resizing ‘bicubic interpolation’ with antialiasing was used. 

The dataset was split into 10 images for training and 10 images for 

testing. The training features were used to generate the model while 

the test features were used to measure the accuracy of the model.      

One parameter that needs to be selected for the Random Forest 

classifier is the number of trees generated as a part of the model 

(𝑁𝑡𝑟𝑒𝑒𝑠). A larger number of trees (𝑁𝑡𝑟𝑒𝑒𝑠) reduces the error but it 

comes at the cost of increased computation. An advantage of the 

bagging process employed by Random Forests is that the 

generalization error can be estimated during the training process (out-

of-bag error). This makes it easier to select a suitable value for 𝑁𝑡𝑟𝑒𝑒𝑠. 

In order to select a suitable value for 𝑁𝑡𝑟𝑒𝑒𝑠 we perform the 

classification while varying this parameter and calculate the error for 

each step. The result of this is shown in Figure 4. Based on this 

process a value of  𝑁𝑡𝑟𝑒𝑒𝑠 = 150 was selected since no significant 

error change at grown trees number > 150. 

Table 1. Distribution of DR grades (a) and resolutions (b) of images in 

the dataset. 

(a) 

Retinopathy 

Grade 

Number of 

MAs 

Image 

Count 

DR0 0 4 

DR1 1-5 7 

DR2 6-14 6 

DR3 >15 3 

 TOTAL 20 
 

(b) 

Image 

Count 

Image 

Resolution 

10 2240 x 1488 px 

2 2304 x 1536 px 

8 1440 x 960 px 
 

  In order to measure the accuracy of the model, we measured the 

sensitivity of the proposed method. Given image 𝐼𝑖 in our dataset (for 

𝑖 = [1. .20]), let 𝐺𝑖 be the set of true MA objects (groundtruth) for 

image 𝐼𝑖 and 𝐶𝑖 be the set of detected candidates after classification 

(Section II C) for image 𝐼𝑖. The sensitivity is defined as: 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

∑ │𝐺𝑖 ∩ 𝐶𝑖│20
𝑖=1

∑ │𝐺𝑖│20
𝑖=1

 
(8) 

Where |… | represents set cardinality. Thus the sensitivity is the 

proportion of true candidates detected in proportion to the total 

number of true candidates. A candidate c ∈ C is considered to be 

equivalent to  g ∈ G if the pixel coordinates of g and c overlap by at 

least 1 pixel. Note that we are measuring the sensitivity on a candidate 

level rather than on a pixel level. Since we cannot determine the 

number of true negatives, we used a Free Receiver Operating Curve 

(FROC) rather than a traditional ROC curve [11]. In an FROC curve, 

the x-axis is replaced with the average number of false positive 

candidates per image instead of the specificity. Figure 5 shows the 

FROC curve for both Random Forest (black) and K-Nearest 

Neighbours (red). The blue curve represents the performance of 

Fleming’s state-of-the-art algorithm on our dataset, the red curve 

represents the performance of Fleming’s algorithm with the extended 

feature set (Table 2). A value of K=15 was used for the KNN 

classifier [16]. In order to generate the FROC curves, the ‘strictness’ 

of each classifier was varied. In the case of the KNN classifiers used 

by Fleming, the k-threshold value was varied between 1 and 15 [16]. 

The Random Forest classifier produces a probability value (P) 

between 0 and 1 representing the likelihood of a candidate of 

belonging to 0 or 1. We use a threshold value Pt to produce the final 

classification (i.e. class = 0 if P ≤ Pt, otherwise class = 1) . In the 

case of the Random Forest classifier we varied the value of Pt to 

generate the FROC curve. Random Forests generate trees at random 

and generates the attribute splits at random as well [31], [32]. Due to 

this feature of the classifier, every run produces results with slightly 

different accuracy. To overcome the varying results, we have applied 

the Random Forest classifier multiple times and presented the best 

(solid line), worst (dotted line) and median (dashed line) performance 

result as shown in Figure 5. Based on the figure we note that 

including additional features to the KNN classifier used by Fleming 

improves the performance (as shown by the blue and red curves). 

Furthermore, we can see that an ensemble classifier outperforms the 

KNN classifier used by Fleming (as shown by the blue and red 

curves), suggesting that Random Forests are more robust to outlier 

features.  

 
Figure 4. Out-of-bag (OOB) Classification Error Vs Number of trees 

in Random Forest classifier. 

    One of the interesting advantages of the Random Forest Classifiers 

is that it can measure the importance of each feature. This gives us an 

indication of the features that have the most discriminative power to 

separate a true candidate from a spurious one. Figure 6 shows the 

feature importance for each of the 79 features. Feature importance is 

computed using the average mean squared error (MSE) at each node. 

Among the important features are some shape features such as 

eccentricity, 2nd moment and aspect ratio; some features that 

discriminate MAs from vessels such as morphological tophat; 

intensity features such as the mean candidate intensity (red channel), 

mean candidate intensity (Hue channel), candidate contrast [21] (red 

channel), candidate standard deviation (shade corrected image), and 

the Standard deviation of the Gaussian matched filter response (σ =
1). This suggests that a diverse set of feature types is necessary in 

order to discriminate true microaneurysms from spurious ones. 

Interestingly, the binary features isVessel, isVessel_loose and 
isVessel_QUARTZ were not among the effective features. 

IV. SUMMARY AND CONCLUSIONS 

    This work introduces a new approach based on Fleming’s method 

for micornauerysm detection that relies on a Random Forest ensemble 

classifier (bagging) for microaneurysm classification. Our evaluations 

on a set of 20 images from the MESSIDOR dataset showed that the 

use of the Random Forest as a classifier improves the performance 

over the use of a K-Nearest Neighbors (KNN) classifier used by 

Fleming. This is mainly because the Random Forest classifier is less 

affected by noise or outlier features (due to the way decision tree 

learners work) [33]. In addition, Random Forests are also very 



efficient to train and can be easily parallelized across multiple 

computers or threads, since each tree is independent of the other trees. 

We have ranked the importance of 79 common features that have 

appeared in the literature and concluded that a diverse range of 

features are important to distinguish between true microaneurysms  

and spurious candidates.  

 
Figure 5.  FROC curve of the proposed algorithm compared to 

Fleming [17]. 

Table 2. Features list. Some symbols below are defined in Section III. 

Index Feature name Index Feature name 

1 Number of peaks 36-41 𝐺𝜎𝑖∈𝜎(𝑠𝑒𝑒𝑑(𝑐)) 

2 Major Axis length 42-47 mean
(𝑥,𝑦)∈𝑐

(𝐺1(𝑥, 𝑦)) 

3 Mean of minor and major 

axis 

48-53 std
(𝑥,𝑦)∈𝑐

(𝐺𝜎𝑖
(𝑥, 𝑦)) 

4 Eccentricity 54 𝐺2(𝑠𝑒𝑒𝑑(𝑐)) − 𝐺1(𝑠𝑒𝑒𝑑(𝑐)) 

5 Depth of candidate 55 𝐺4(𝑠𝑒𝑒𝑑(𝑐)) − 𝐺2(𝑠𝑒𝑒𝑑(𝑐)) 

6 Depth of candidate 56 𝐺8(𝑠𝑒𝑒𝑑(𝑐)) − 𝐺4(𝑠𝑒𝑒𝑑(𝑐)) 

7 Energy 57 𝐺16(𝑠𝑒𝑒𝑑(𝑐)) − 𝐺8(𝑠𝑒𝑒𝑑(𝑐)) 

8 candidate depth / mean 

diameter of MA candidate 

58 𝐺32(𝑠𝑒𝑒𝑑(𝑐)) − 𝐺16(𝑠𝑒𝑒𝑑(𝑐)) 

9 Energy with depth correction 59 Sum of candidate intensities (R) 

10-16 Moment Invariants 60 Sum of candidate intensities (G) 

17 isVessel 61 Sum of candidate intensities (B) 

18 Aspect Ratio (major axis 

length / minor axis length) 

62 Sum of candidate intensities 

(shade) 

19 major axis length 63 mean candidate intensity (R) 

20 minor axis length 64 mean candidate intensity (G) 

21 Perimeter 65 mean candidate intensity (B) 

22 Area 66 mean candidate intensity (shade) 

23 Eccentricity 67 standard deviation of the candidate 

(shade) 

24 Compactness 68 Max - min candidate value (R) 

25 isVessel (loose) 69 max - min candidate value (G) 

26 isVessel (QUARTZ) 70 max - min candidate value (B) 

27 max
𝑠∈𝜎

(𝐺𝑠(𝑠𝑒𝑒𝑑(𝑐))) 71 candidate contrast (R) 

28 min
𝑠∈𝜎

(𝐺𝑠(𝑠𝑒𝑒𝑑(𝑐))) 72 candidate contrast (G) 

29 mean
𝑠∈𝜎

(𝐺𝑠(𝑠𝑒𝑒𝑑(𝑐))) 73 candidate contrast (B) 

30 max
𝑡∈𝜃

(𝐺1,𝑡
1𝐷(𝑥, 𝑦)) 74 candidate contrast (H) 

31 min
𝑡∈𝜃

(𝐺1,𝑡
1𝐷(𝑥, 𝑦)) 75 candidate contrast (S) 

32 mean
𝑡∈𝜃

(𝐺1,𝑡
1𝐷(𝑥, 𝑦)) 76 candidate contrast (V) 

33 std
𝑡∈𝜃

(𝐺1,𝑡
1𝐷(𝑥, 𝑦)) 77 maximum candidate response of 

the morph close ratio 

34 1D gaussian response at angle 

perpendicular to the 

maximum response (30) 

78 minimum candidate response of 

the morph close ratio 

35 max(30,34) 79 mean  candidate response of the 

morph close ratio 

 

    Among the important –features are those that discriminate the 

circular shape of the microaneurysm such as eccentricity, aspect ratio 

and moments. Features that are capable of discriminating MA 

candidates from vessels are also very important, since we have 

empirically found that 70% of the candidates that were spurious lied 

on vessels or on vessel cross sections. In other words, a classifier that 

manages to filter out false positives that lie on vessels will boost the 

sensitivity values greatly since 70% of the false positives will be 

eliminated. Morphological closing operator, and 1D gaussians are 

examples of features respond highly to microaneurysms and not very 

high to spurious objects of vessels.     

To the best of our knowledge, this account on feature importance 

performed using a large feature set (79 features) has not been 

performed before and is therefore essential to present an insight for 

future work regarding the most important features that can 

discriminate microaneurysms to filter out spurious detections. A more 

extensive analysis of the 79 features, including feature selection, will 
be presented in future work. 

 

Figure 6. Feature importance as defined in Table 2. 
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