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SUMMARY 

 

Poly(3-alkylthiophene)s (P3ATs) are considered to be an important class of 

electrochromic materials because of their convenient processability and 

environmental stability. The adhesion of electrochromic polymer coatings on a 

conducting substrate is a significant factor affecting the durable 

colour-changing life of electrochromic devices. Traditional electrochromic 

coatings on transparent ITO glass electrodes often have poor cycling lifetimes, 

due to incompatibility between the polymers and the inorganic substrates. 

However, providing a bonding network between the active electrochromics and 

the ITO glass is an efficient method to increase the adhesion and hence to 

extend the service time successfully; the research described here involves 

Suzuki-Miyaura coupling of N-(3-methoxysilylpropyl)pyrrole (3TPP) onto 

poly(3-hexylthiophene) (P3HT), as a precursor to a sol-gel reaction. The 

Si-O-Metal network produced between the siloxane groups and metal oxide 

after the sol-gel reaction served to enhance the adhesion of the 

poly(3-hexylthiophene) onto ITO glass. With this stronger bonding, the 

colour-switching service time was found to be extended considerably by the 

observation of repeated electrochemical cycling tests. In addition, the 

optoelectrical and electrochemical properties of copolymers with various molar 

substitution ratios of 3TPP on P3HT were investigated by cyclic voltammetry 

and UV-visible spectroscopy. The π-π* transition energy of P3HT increased 

with the degree of bromo-substitution, but diminished again after substituting 

with 3TPP. The hysteresis in electrochromic switching also became more 

noticeable with increased bromo-substitution on the P3HT, but it decreased 

when 3TPP was attached to the thiophene rings. 
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1. INTRODUCTION 
 

Electrochromism is broadly defined as a reversible optical change in a material 

induced by an applied voltage or current, and many inorganic and organic 

species show electrochromism throughout the electromagnetic spectrum [1]. 

For good optical contrast between redox states, high chemical stability in the 

oxidatively doped state and ease of synthesis, electrochromic conjugated 

polymers have been investigated widely in the past two decades [2]. 

Poly(3-alkylthiophene)s (P3ATs) are considered to be promising materials for 

electrochromic applications because of their high solubility [3], convenient 

processability and environmental stability [4]. They have also been applied 

extensively in field-effect transistors [5, 6], optical and electronic sensors, 

light-emitting devices and non-linear optics [7]. However, their incompatibility 

with inorganic conductive substrates results in poor adhesion of organic 

polymers on indium-tin oxide (ITO) glass, which can lead to a short 

colour-changing lifetime when they are used as electrochromic materials [8]. 

New processes have been developed which could incorporate virtually any 

conventional vinyl polymer into an inorganic network via the sol-gel reaction [9, 

10, 11]. Recently, substituting the 3- and 4- positions of the thiophene ring with 

other functional groups has attracted a great deal of attention, since the 

electrical and the optical properties of P3ATs can be modified by changing the 

electronic and steric interactions [12]. Unfortunately, some commonly-used 

methods of substitution have complicated synthetic procedures and the 



functional groups can inhibit the monomer polymerisation or cause irregular 

polymer structure if the normal oxidative polymerisation technique is used [13, 

14]. A more convenient alternative approach to polymer modification uses the 

Suzuki-Miyaura reaction [15, 16], i.e. the palladium-catalysed coupling of aryl 

halides or pseudo-halides with an arylboronic acid. Possessing good thermal 

and chemical stability, organoboron reagents are sensitive electrophiles and 

good reactants for carbon-carbon bond formation [17], especially for coupling 

biphenyl groups; this method also avoids using heavy metals and polluting the 

environment.  

 

In the present work, ring position 4 of poly(3-hexylthiophene) (P3HT) was 

substituted to form random copolymers with 10%, 30%, 50% and 100% 

bromination by electrophilic substitution (Scheme 1). A series of 

poly(3-hexylthiophene-co-3-bromo-4-hexylthiophene)s (P3Br4HT) was 

investigated to determine the quantitative limit of bromination which could 

maintain useful electrochemical properties. Next, the corresponding molar 

ratios of N-(3-trimethoxysilylpropyl)pyrrole (3TTP) were substituted for the 

bromo-group of P3Br4HT by Suzuki coupling catalysed by palladium acetate 

(Scheme 2). 1H-NMR 400 Hz and FT-IR were used to confirm the successful 

bromo-substitution and combination between 3TPP and P3HT. GPC was used 

to observe the distribution of molecular weights for all the products. The 

siloxane groups of P3(TPP)4HT were acidified by 4-dodecylbenzensulfonic 

acid (DBSA) and a Si-O-Metal network was constructed between ITO glass 

and the conjugated polymers via a sol-gel-like reaction (Scheme 3). Because 

the Si-O-Metal bonding in the sandwich structure was difficult to characterise 

by instruments directly, model experiments were carried out to form similar 



bonds by reaction with metal oxide powders, and then to characterise them by 

FT-IR spectroscopy. 

 

The electrochemical properties of P3HT, P3(TPP)4HT 10% and 30% were 

investigated by cyclic voltammetry. The optoelectronic properties and repeated 

cycling performance were examined by UV-visible spectrometry, to indicate 

whether the colour-changing service life would be extended by the formation of 

an inorganic oxide network. 
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2. EXPERIMENTAL 

 

2.1 Chemicals and instrumentation 

P3HT was synthesised from 3-hexylthiophene (Aldrich 99%) via oxidative 

polymerisation18 and 3TPP was obtained from ABCR GmBH & Co. KG. 

Pinacolborane (Aldrich 97%), (oxydi-1,2-phenylene)bis(diphenylphosphine) 

(DPEphos, Aldrich 98%), lithium perchlorate (Aldrich 95% A.C.S. reagent), 

4-dodecylbenzenesulfonic acid (DBSA) (Fluka 90%), N-bromosuccinimide 

(NBS) (Fluka ≥ 95.0%), palladium (II) acetate (Aldrich 98%), trimethylamine 

(Fluka ≥ 98.0%(GC)) and anhydrous chloroform (Aldrich 99%). Potassium 

hydroxide was obtained from Avocado (≥ 85%), and all general solvents were 

from Thermo Fisher Scientific Inc.   

Fourier-transform infrared (IR) spectra were measured using a Perkin-Elmer 

Spectrum One ATR, and nuclear magnetic resonance (NMR) spectra were run 

on a Bruker 400 MHz FT-NMR with ACD/NMR Processor Academic Edition 

Software. The UV-visible spectra were measured on a Varian Cary 100 

spectrophotometer and the mass spectra on a Varian 1200L Quadrupole MS. 



 

2.2 Synthetic procedures 

2.2.1 The bromination of P3HT 

P3HT (0.3g, 0.0018 mol) was dissolved in dry chloroform (10 mL) and stirred. 

NBS (0.3g, 0.002 mol) was added to the reaction flask and heated to ~80 oC. 

After becoming bright red, the solution was stirred overnight. The reaction was 

quenched by saturated aqueous sodium sulfite (20mL). The aqueous layer 

was separated, washed twice with chloroform (10mL) and the organic layers 

were re-combined. After drying with magnesium sulfate, the chloroform was 

removed by rotary evaporation. Yield 0.294g (99%). 1H NMR (400 MHz CDCl3): 

δ = 2.93, 2.73, 2.69, 1.58, 1.25, 0.84. FT-IR: 2954, 2900, 2855, 1728, 1463, 

1377, 1172, 1099, 837, 724 cm-1.  

 

 

 

2.2.2 The synthesis of N-((3-trimethoxysilyl propyl)-2-bromopyrrole) (2B3TPP) 

3TPP (0.41g, 0.0018 mol) and NBS (0.30g, 0.002 mol) were placed in a round 

bottom flask and stirred in THF (10 mL) in a dry ice bath for 8h. The work-up 

steps were similar to those for bromination of P3HT, but the washing solvent 

was diethyl ether (10mL) instead of chloroform. Yield 0.39g (1.3 mmol; 70%) 

1H-NMR (400 MHz CDCl3): δ = 6.69-6.62 (m, 1H), 6.11-6.08 (m, 2H), 3.74-3.70 

(m, 2H), 3.53-3.54 (m, 9H), 1.84-1.81 (m, 2H), 0.64-0.54 (m, 2H). 13C-NMR 

(400 MHz CDCl3): 121.9, 111.7, 107.9, 107.6, 68.0, 50.6, 25.7, 6.1. FT-IR: 

3411, 3017, 2944, 2842, 1701, 1640, 1215, 1088, 817, 668 cm-1. M+ = 307 & 

309 m/z, due to Br isotopes. 

 



2.2.3 One-step boronation and Suzuki coupling reaction 

N-((3-trimethoxysilylpropyl)-2-bromopyrrole) (2B3TPP) (0.0013 mol) was 

added to a stirred solution of N-triethylamine (0.53g, 0.0052 mol) and THF (10 

mL). Palladium (II) acetate (5 mol%) and DPEphos (10 mol%) were added, 

along with pinacolborane (0.49g, 0.039 mol). The mixture was heated to 80 oC, 

and stirred for approximately 1 h. The appropriate amounts of P3Br4HT (Table 

1) were added, along with potassium hydroxide (0.22g; 0.0052 mol) and 

palladium (II) acetate (5 mol%) and the mixture was stirred at 100 oC for 24 h. 

When the reaction was complete, the solution was poured into methanol (30 

mL) to precipitate the product, and filtered. The compound was dried at 60oC 

under vacuum for 12 h.  

 

2.2.4 The formation of an inorganic linkage between ITO glass and 

P3(TPP)4HT via sol-gel-like reaction 

Poly(3-(N-(3-trimethoxylsilylpropyl)pyrrole-2yl)-4-hexylthiophene) 

(P3(TPP)4HT) (0.1g) and DBSA (0.1g) were dissolved in THF (5 mL) and 

stirred for 24 h. The mixture was poured into methanol (10 mL) to dissolve the 

excess acid, and the product was precipitated. The solid compound was 

collected on filter paper and dried in a vacuum oven at 60oC under reduced 

pressure for 2 h. The dry product was dissolved in chloroform (2 mL) and 

spin-coated onto ITO glass. After spraying water onto the surface, the 

ITO-coated glass was dried in an oven at 80oC for 48 h.  

 

2.2.5 Model experiment to form bonds between oxide powders and siloxane 

groups via a sol-gel reaction 

The inorganic network between ITO glass and P3(TPP)4HT was difficult to 



detect by FT-IR because the background absorption was too strong and broad 

below 1000 cm-1.  Combining TEOS and TiO2 nanoparticles by a sol-gel 

reaction was used as a convenient model experiment to observe indirectly the 

bonding between siloxane groups and ITO glass. TiO2 5 nm powder (1.04g, 

0.02 mol) was dispersed in water, together with TEOS (1.04g, 5 mmol) and 

0.2M HCl solution (5mL), and stirred at 100oC for 24 h. The mixture was placed 

in an oven at 80oC under reduced pressure to remove the water until the grey 

compound had dried completely. Also, 40 µm indium tin oxide powder (In2O3 : 

SnO2 = 0.9 : 0.1) (0.001 mol) from Sigma-Aldrich Ltd was reacted with TEOS 

(0.3 mmol) in 0.2N HCl solution (5mL). The mixture was stirred at 50oC for 1 

week until it was completely dry, and was studied by IR spectroscopy.  

 

2.3 Molecular weight analysis by Size Exclusion Chromatography (SEC or 

GPC)  

A calibration plot was obtained using polystyrene standards with relative 

molecular masses of 1170, 3470, 5440, 12500, 27500, 51500, 125000 and 

277000. The mobile phase was THF (HPLC grade) and the detector 

wavelength was 350 nm for all samples. 

 

2.4 The electrochemical properties observed by cyclic voltammetry 

0.01g polymer samples were dissolved in chloroform (2mL) and spin-coated 

(1300 rpm) onto ITO glass (30 mm × 15 mm) electrodes to form the working 

electrode. The thickness of the coatings was estimated from the intensity of 

their ππ* absorption. An (Ag/AgCl/1M KCl) reference electrode was used, 

together with a platinum counter electrode. The electrolyte was 0.1M 

LiClO4/CH3CN, i.e. lithium perchlorate (0.32g, 0.03mol) dissolved in anhydrous 



acetonitrile (30 mL). The potential was scanned from -1000 mV to +2000 mV, 

at 100mV/s.  

 

2.6 In-situ colour-switching analysis by UV-visible spectrophotometry, and 

switching time measurements 

The working electrode was a rectangular piece of ITO glass (41mm X 9mm) 

spin-coated with polymer solutions (ca. 0.5 wt%) in chloroform, and then 

placed in an oven at 80OC for 24h. Ag/AgCl was again used as the reference 

electrode and platinum foil as a counter electrode. The electrodes were placed 

in a quartz cuvette with 0.1M LiClO4/CH3CN solution and connected to a 

potentiostat (Ministat Precision Potentiostat). The wavelength region was 350 

to 900nm.  

 

For the switching time experiments, the UV-vis spectroscopy mode was 

changed to kinetic scan (absorbance vs. time) and the wavelength was fixed 

on the polaron absorption peak (the value for P3HT was 827 nm, for 

P3(TPP)4HT 10% 729 nm and for P3(TPP)4HT 30% 775 nm). The data 

collection started when the potential was switched from 0.33 V to 1.08 V, and 

this was done repeatedly for five minutes. The switching time (T1/2) was 

defined as that required to produce 50% of the final absorbance change, in 

accordance with common practice in the passive displays industry.  

 

 

3. RESULTS AND DISCUSSION 

 

3.1 1H-NMR spectroscopy 



The peak due to protons on the thiophene rings was found at 6.96 ppm in the 

1H-NMR spectrum of P3HT (Figure 1 (a)). When position 3 was completely 

substituted by bromine, the peak at 6.96ppm vanished and other peaks due to 

the hexyl groups had less splitting, due to the absence of protons on the 

thiophene rings. In the spectrum of the target compound P3(TPP)4HT (Figure 

1(b)), the peaks indicating protons on the thiophene rings were observed at 

lower field (between 5.9 ~ 8.1 ppm) because of the electron-withdrawing effect 

of the pyrrole rings. Hence successful coupling between thiophene and pyrrole 

via the Suzuki-Miyaura reaction was inferred from the proton NMR spectrum. 

 

3.2 FT-IR spectroscopy 

In the FT-IR spectrum of P3HT (Figure 2 (a)), the C-H bending and C=C 

stretching peaks of the thiophene ring were found at 1509, 1458 and 1377 

cm-1. After substituting with bromine to the extent of 10% at position 3 of P3HT 

(Figure 2 (b)), the peak at 1509 cm-1 disappeared and a very small new peak at 

1728 cm-1 became visible, increasing proportionally with the degree of 

substitution. The reason for this peak shifting to the higher wavenumber was 

probably that the C=C bonds became less conjugated since bromine’s steric 

crowding caused greater torsion between adjacent monomers. In the spectra 

of samples with various substitution percentages of 3TPP on P3HT (Figure 3), 

the peaks at 1589 and 1566 cm-1 respectively indicated “C=C and C=N 

stretching” modes from the pyrrole ring, and also a siloxane peak at 1071 cm-1 

was observed for P3(TPP)4HT. These three peaks were reduced in intensity 

with decreasing proportions of 3TPP (30% to 10%). Once again, the spectral 

data indicated that the functionalisation of P3HT by 3TPP via the Suzuki 

coupling reaction was successful. 



 

3.3 SEC (GPC) analysis 

Upon increasing the degree of bromo-substitution, the number-average and 

weight-average relative molecular masses of P3HT, (initially 1773 and 4777 

respectively) increased proportionally (Table 1). After combining the 3TPP 

10%, 30% or 100 % with P3HT, the number-average RMM decreased again 

and the polydispersity was smaller compared with the P3HT. It appears that 

the indicated dispersity values were unreliable due to the fact that some parts 

of polymer may have been crosslinked. The SEC detector would clearly only 

respond to the soluble part rather than the entire product in that case.   

 

3.4 Solubility tests 

Of the three major polymers, P3HT had a high solubility in CHCl3 (Table 1) but 

was only partially soluble in CH2Cl2 and THF; this is in agreement with 

previous studies [3,4]. However, after brominating the P3HT, its solubility was 

increased, probably due to expansion of the intermolecular space by the bulky 

groups. Due to the interaction between aromatic groups, P3Br4HT had a good 

solubility in toluene. When 3TPP was attached to the thiophene ring, the 

solubility of P3(TPP)4HT again increased remarkably. As a result of the 

interaction between the siloxane groups and polar solvents, the novel product 

was partially soluble in acetonitrile or methanol, but was still insoluble in water. 

 

3.5 The interaction between TiO2 and TEOS and metal oxide surfaces, 

observed by FT-IR 

In the spectrum of TiO2 (Figure 4 (a)), a very strong peak was observed below 

about 650 cm-1, and after the sol-gel reaction with TEOS, a new peak 



appeared at 1080 and 950 cm-1. The peak at 1080 cm-1 was indicative of the 

siloxane groups, and if the siloxane group were acidified, Si-OH, the peak 

should be obtained at lower than 900 cm-1. Thus, the peak at 950 cm-1 was 

attributed to a new Ti-O-Si bond after sol-gel reaction between TiO2 and Si-OH 

(Figure 4 (b)). In fact, the same peak appeared at 980 cm-1 in the FT-IR 

spectrum of indium-tin oxide after a sol-gel reaction with TEOS (Figure 5 (a)). It 

was expected that the Metal-O-Si interaction would be detected in the region 

from 1000 to 900 cm-1 of the FT-IR spectrum.  

 

3.6 Cyclic Voltammetry 

The oxidation and reduction peaks of P3HT were observed respectively at 

1700 mV and 620 mV (vs. Ag/AgCl) (Figure 6 P3HT).  Upon 10 mol% 

substitution with bromine at position 3 (Figure 6 P3Br4HT 10%), the oxidation 

peak shifted to 1870 mV. In addition, new oxidation and reduction peaks were 

observed at 1250 mV and -1660 mV. As the proportion of substitution was 

increased, the redox peaks began shifting to a higher potential, suggesting that 

bromine atoms were removing electrons from the conjugated groups. The 

bulky bromine groups were also causing steric hindrance within the polymer 

chain, due to the rearrangement of the monomer units into the out of plane 

position, contributing to the hysteresis effect.  Upon increasing the degree of 

substitution to 30 mol% (Figure 6 P3Br4HT 30%), the major oxidation peak 

increased to 2000 mV, which eventually resulted in the polymer chains 

becoming damaged by the strongly-oxidising conditions.  From this, we can 

deduce that to avoid polymer chain breakage, a limit of 30 mol% substitution 

should be used. 

 



After substituting P3HT with 3TPP to the extent of 10 mol%, the oxidation peak 

in the first cycle shifted to higher potential (over 2000 mV), and the potential 

difference between the reversible redox peaks increased considerably from 

950 mV to 1040 mV (Figure 7 (b)). This phenomenon indicates that the bulky 

groups caused the monomer rings to twist out of planarity, so the hysteresis 

effect became greater. However, on increasing the proportion of 3TPP to 30 

mol% (Figure 7 (c)), this hysteresis effect diminished, becoming even less than 

for P3HT (Figure 7 (a)), probably because strong adhesion within the inorganic 

network improved the electron transfer from the ITO glass to the polymer. The 

delay in observing a hysteresis effect until after many more cycles indicated 

that the electrochromic cycling lifetime was extended, and this inference was 

subsequently supported by spectroelectrochemical and switching time tests. 

 

3.7 Spectroelectrochemistry in the visible region  

The fundamental π to π* absorption for P3HT was around 2.4 eV, but it shifted 

to higher energy and the intensity diminished gradually upon increasing the 

applied voltage (Figure 8 (a)). The polaron transititon peak at 1.6 eV became 

more intense as the doping level was increased. When the P3HT was 

functionalised with 10% 3TPP, the π to π* absorption shifted to higher energy 

by 0.2 eV and the polaron absorption by 0.15 eV (Figure 8 (b)). In addition, the 

driving voltage for colour changing increased from 1.08 V to 1.18 V. This was 

probably because the bulky substitutent groups decreased the planarity of the 

conjugated polymer chains. However, the potential returned to a lower value 

after substituting by 30% 3TPP (Figure 8 (c)) and also the driving voltage 

decreased to a similar level to P3HT. This reverse trend suggested that more 

delocalised regions offered from pyrrole groups overcame the torsional effect, 



or that the attractive interaction between pyrrole units led to a more planar 

conformation. Also, the Si-O-Metal inorganic network contributing better 

adhesion caused electrons to transfer more efficiently from the polymers to 

ITO glass. 

 

 

 

3.8 Repetitive switching tests 

An examination of repetitive switching performance was used to assess both 

the colour-changing durability and the electrochromic switching time from the 

doped to the dedoped state. In Figure 9 (a), the intensity range of the repeating 

curve for P3HT decayed slowly, but the P3(TPP)4HT 10% and 30% were still 

very stable during the running time (Figure 9 (b) and (c)). This improvement 

suggested that the Si-O-Metal network extended the service life of modified 

P3HT successfully due to the strong adhesion between the electrochromic 

polymer and the ITO glass electrode. The reproducible peak for the spectra of 

the P3(TPP)4HT 10% and 30% indicated that the colour variation still persisted 

after substituting 3TPP onto the P3HT. In addition, the average switching time 

(T1/2) for P3(TPP)4HT 30% was prolonged slightly to around 0.025 s longer 

than P3HT (The T1/2 of P3HT and P3(TPP)4HT were 0.318 and 0.576 s 

respectively) but for P3(TPP)4HT, the T1/2 increased to 1.8 s. The delay of 

switching time when P3HT was combined with 3TPP resulted from the transfer 

of electrons between the conjugated polymer and the ITO being slowed by the 

Si-O-Metal network.  

 

4. CONCLUSION 



 

P3HT and 3TPP were coupled successfully by using the Suzuki-Miyaura 

reaction proved by 1H -NMR and FT-IR spectrum. An inorganic Si-O-Metal 

network was created after a sol-gel-like coupling reaction between the novel 

compound P3(TPP)4HT and ITO glass. Due to the difficulty of detecting it 

directly, the Si-O-Metal bonding was detected indirectly by FT-IR spectrometry 

in a model experiment to forming bonds between TEOS and TiO2 powder by a 

sol-gel reaction. To maintain the electrochromism, the maximum quantity of 

substituting 3TPP at position 3 of P3HT was 30 mol %. Cyclic voltammetry, 

spectroelectrochemistry and repetitive switching tests indicated that the 

modification was successful in extending the colour-changing service time of 

P3HT. The reason for this prolongation was probably that the Si-O-Metal 

network contributed to a stronger adhesion between the conjugated polymer 

and the ITO glass which caused the electron transfer to be more durable and 

efficient without being affected by the bulky substituent group.  
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Table 1. The molecular weights, solubility and of π to π* transition absorption 

for the (undoped) polymers.  

 

Average Molecular Weight Solubility Test Sample NBS 

loading 

(mol 

%) 

3TPP 

(mol%) Mn Mw Polydispersity 

π to π* 

absorption 

(nm) 

CHCl3 THF CH3OH 

P3HT 0 --- 1773 4777 2.6941 442 ++ + - 

P3Br4HT 

10% 

10 --- 2031 5598 2.4326 402 ++ ++ - 

P3Br4HT 

30% 

30 --- 2543 6758 2.6570 390 ++ ++ - 

P3Br4HT 

50% 

50 --- 2817 8347 2.9630 386 ++ ++ - 

P3Br4HT 

100% 

100 --- 4150 12249 2.9513 350 ++ ++ - 

P3(TPP)4HT 

10% 

--- 10 2061 4502 2.1835 404 ++ ++ - 

P3(TPP)4HT 

30% 

--- 30 2067 4284 2.0718 427 ++ ++ - 

P3(TPP)4HT 

100% 

--- 100 2227 6758 3.0343 448 ++ ++ + 

 



Figure 1. 1H-NMR spectra of (a) P3HT, (b) P3Br4HT 100% and (c) 

P3(TPP)4HT  100% 

 



 

Figure 2. FT-IR spectra for the series of P3Br4HT substituted by bromine to 

the extent of: (a) 0% (b) 10% (c) 30% (d) 50% (e) 100% 
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Figure 3. FT-IR spectra of P3(TPP)4HT (a) 10% (b) 30% (c) 100% 
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Figure 4. FT-IR spectra of (a) TiO2 (b) TiOSi 
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Figure 5. FT-IR spectra of (a) SiO-ITO (b) ITO 
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Figure 6. Cyclic voltammograms of P3HT, P3Br4HT 10% and P3Br4HT 30% 

(Scan rate 100 mV s-1) 
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Figure 7. Cyclic voltammograms of (a) P3HT, (b) P3(TPP)4HT 10% and (c) 

P3(TPP)4HT 30% (Scan rate = 100 mV s-1) 
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Figure 8. UV-visible spectra corresponding to electrode potentials of 0.77V, 

0.89V, 0.97V, 1.08V, 1.18V, 1.30V, 1.44V, 1.55V and 1.66V for (a) P3HT, (b) 

P3(TPP)4HT 10% and (c) P3(TPP)4HT 30% 
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Figure 9. The electrochromic light absorption response of (a) P3HT, (b) 

P3(TPP)4HT 10% and (c) P3(TPP)4HT 30%, on switching the electrode 

potential from 0.33V to 1.08V vs. Ag/AgCl. 
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