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Abstract  

In spite of significant improvements in micro-replication techniques, methods to fabricate 

well-defined net shape microstructures are still in a developing stage. Soft-lithography has 

the capability to manufacture complex micro- and nanostructures. Although it is considered a 

robust technique, a major limitation is related to the distortion encountered in the fabricated 

structures during the drying process. In the present work, a manufacturing technology has 

been developed that emerges the benefits of Soft-Lithography and Micro Electrical Discharge 

Machining (µ-EDM) to produce stainless steel precise micro-components for Micro-

implantable devices. The micro-parts produced by Soft-lithography were subsequently 

surface processed via µ-EDM in order to improve the surface quality. In addition to this, it 

was found that µ-EDM drastically improved the surface roughness of stainless steel micro-

components from Ra=3.4 µm to Ra =0.43 µm. 
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1. Introduction 

The development of Micro-fabrication through the past years has led to a diversity of 

miniaturized systems. Micro-Electro-Mechanical Systems (MEMS) can vary from relatively 

simple patterns to highly complex systems [1, 2]. This has been supported by the increase in 

the global market of MEMS devices. The global market for MEMS devices and production 

equipment was worth $11.7 billion in 2014. This market is expected to hit $21.9 billion by 

2020 [3]. The application of micro manufacturing technologies to biomedical engineering has 

introduced a novel generation of small devices that helped in both medical research and 

treatment. Lab on a chip and micro-implant systems allowed the reduction in power 

consumption, electronic noise and system complexity and capability.  

Materials used in these systems must be biocompatible and able to work in vivo. Popular 

examples of biocompatible materials include silicon, polymers and glass. Although metals do 

not exhibit similar advantages as silicon concerning the functional properties, they are widely 

used in MEMS fabrication. Commonly used metals include gold, nickel, aluminium, stainless 

steel, copper, chromium, titanium, tungsten, platinum, and silver [1, 4-8]. This is because 

metals exhibit high strength, which minimises the possibility of experiencing major failures. 

Therefore, they have been the main choice of hermetic seals of large biomedical implants 

such as pacemakers [9-11].  

Micro-fabrication methods used for metallic MEMS components generally have their origins 

to the conventional precision machining methods or silicon-based micro-machining. The 

methods are improved to suit the machined metal properties and the desired surface finish of 

the micro-component. X-ray Lithography is a conventional micro fabrication technique, 

which is suitable to fabricate polymeric, and silicon based materials. Another fabrication 

technique that is originated from X-ray Lithography is the LIGA process. The LIGA is an 



acronym of a German word for lithography, electroforming, and moulding. In this process, 

high aspect ratios could be achieved based on the combination of synchrotron radiation 

lithography and galvanoforming [12-18]. Laser micro-machining is a non-lithographic 

fabrication process, in which a laser beam is emitted in narrow and well-defined wavelengths 

with high power that can remove materials such as fine particles and vapour from a substrate. 

The process is capable of producing a wide range of materials micro components. However, 

it produces some problems in the micro features such as the induced stress and heat-affected 

zone. In addition, the structures produced usually have rough edges. Focus ion beam (FIB) is 

a micro-milling technique that uses an ion beam to hit the surface of the sample causing the 

sputtering of a small amount of material in the form of ions or neutral atoms.  Due to the 

removal of the material in the form of atoms or ions, the material removal rate is quite low 

[19, 20].  

Stainless steel 316L is one of the most common metals in biomedical devices. This alloy has 

excellent biocompatibility and superior mechanical properties such as high mechanical 

strength, good ductility and excellent corrosion resistance. These properties make it an 

excellent candidate for micro-medical and micro-implant applications [12]. Soft lithography 

is a robust micro fabrication technique. It provides a convenient, effective, and low-cost 

method for the formation and manufacturing of micro- and nanostructures, with a feature size 

approaching 180 nm [20]. The process starts with the fabrication of a master mould. A soft 

elastomeric mould is then fabricated with the inverse of the master mould. Afterward, the soft 

mould is filled with the material slurry. Finally, the green pattern is demolded and sintered. 

Soft Lithography offers several advantages over traditional photolithography in the field of 

micro fabrication. The process is less sensitive to surface topography than photolithography, 

and could be used for a wide range of materials including stainless steel. The process was 

successfully used for many of chemically and physically sensitive materials such as dyes and 



biomolecules [21, 22]. Due to the potential of soft lithography, many researchers have 

utilized the technique to produce patterned structures. Schönholzer and Gauckler [23] 

proposed a process to fabricate ceramic microstructures in the range of several micrometers 

using soft lithography. They studied the influence of particle sizes on the pattern resolution of 

the ceramic component.  In another research, Kim and his colleagues [24] reported the 

possibility of the fabrication of 3D free-standing micro-components using Al and Cu micro 

and nano-powders. The authors suggested that considering some adjustments of the process 

there is an opportunity of expanding this technology for many of the metallic micro-

components. In additions, Zhigang et al. [25] fabricated monolithic alumina precision micro-

components using PDMS soft mold filled with an aqueous suspension. Recently, Kahraman 

and co-researchers Utilized a nano-sphere soft lithography technique in the manufacturing of 

planar 3D metallic nano-void substrates suitable for Surface-Enhanced Raman 

Spectroscopy (SERS) applications [26]. 

Although soft lithography is considered productive and cheap process when compared to 

many other techniques, some problems exist in applying this technique, which affect the 

properties of the resultant micro-parts. One of the important problems of Soft-lithography is 

the distortion due to the uneven drying of the slurry. Soft-lithography exhibits large and 

uneven shrinkage during drying and sintering processes and hence topographical distortions 

develop [27, 28]. In an attempt to improve the surface quality, Hassanin et al., used a slip 

casting technique in the manufacturing of the micro-parts. This helped to solve the problems 

arisen from the uneven drying of the micro-mould and significantly improved the surface 

quality of the resulting micro-component [12, 29].  

In this study, micro Electrical Discharge Machining (µ-EDM) was applied to improve the 

surface roughness and the flatness of soft-lithography products and in turn enhance their 

quality. µ-EDM is a thermo-electric process that uses electrical discharges to erode 



electrically conductive materials by a series of discrete sparks between the work-piece and 

the tool electrode, both submerged in a dielectric fluid. When the tool comes close enough 

to the workpiece, the dielectric medium that is initially non-conductive breaks down and 

becomes conductive and spark would be generated. The thermal energy released 

continuously and effectively removes the work-piece material by melting and evaporation 

[30-32]. The process is quite capable of machining intricate profiles from any electrical 

conductive material irrespective of its hardness and strength. By precisely controlling the 

amount energy released, it is possible to machine micro features on any electrically 

conductive material. It was reported that high machining accuracy of micro-components 

that are smaller than 100 μm and a surface roughness of a fraction of a micrometer could be 

achieved using µ-EDM [33, 34].   

Bigot et al. [35] performed a study on the optimization of micro EDM parameters for rough 

and fine machining. They managed to optimize the EDM machining parameters to get the 

best surface quality and the maximum material removal rate. Mustafa et al. [36] used gray 

relational analysis method to optimize the process parameters during the machining of 

Inconel 718 super alloy. They studied the influence of micro-EDM process parameters such 

as pulse on time and peak current on machining characteristic of the samples. In addition, 

Luo and Chen were able to obtain samples with surface roughness of Ra=0.04µm by 

investigating the influence of pulse electromagnetic field during finishing EDM [37]. As 

described, EDM is a well-established machining method to achieve high quality surfaces. 

However, there are no reports found in using this technology to improve the surface quality 

of micro parts fabricated using soft lithography. 

The aim of this work is to introduce a hybrid micro fabrication technology combines both the 

design freedom and robustness of soft-lithography and the machining accuracy of µ-EDM to 

manufacture high quality micro-implants stainless steel parts. Stainless steel micro-gears 



with a pitch diameter of 2.5 mm and a minimum feature of 75 μm were first fabricated 

using soft-lithography. Then micro EDM was optimised to improve the surface roughness 

and the flatness of the components. The effect of µ-EDM parameters on the resulting 

surface roughness was also explored. 



2. Experimental  

Figure 1 illustrates the procedure to fabricate the stainless steel micro-parts using the 

proposed hybrid process. As shown in Figure 1 (a), first a master mould was manufactured. 

The master mould consisted of SU-8 micro-gears having a pitch diameter of 2.5 mm, a 

thickness of 1 mm, minimum micro-feature of 75µm and 27 teeth. The master mould was 

fabricated by pouring SU- 8 onto a 4-inch silicon wafer. The wafer was then left for 20 min 

to flatten.  

Afterward, the wafer was prebaked at 65°C for 2 h, and then at 95°C for 30 h. The coated 

wafer was then exposed to a UV light with an energy density of 2.5 J cm-2 in a Canon PLA-

501 FA UV-mask aligner. Afterwards, the post-exposure bake was carried out at 65°C for 15 

min and then at 95°C for 25 min. Finally, the exposed wafer was immersed in EC solvent 

(Chestech, UK) for 1.5 h for development Figure 2(a). The soft mould has been fabricated 

using a mixture of Sylgard 184 kit (Dow Corning, Midland, USA) with a ratio of 10:1 

between the prepolymer and curing agent (Figure 1 (b)). The mixture was poured onto the 

master mould. The PDMS mixture was de-aired in vacuum chamber to remove air bubbles 

and then was cured in an oven at 75 oC for 2 h. After cooling down, the soft mould was 

peeled off from the master mould, Figure 2(b). Details of the fabrication process of the 

master and soft moulds are presented in the literatures [8, 12, 29]. Stainless steel 316L micro 

powder was supplied from (Sandvik Osprey, UK). The particle size distribution was D10=1.1 

µm, D50=1.8 µm, and D90=3.6 µm. The chemical composition is listed in Table 1. The 

powder morphology was investigated under an SEM and is shown in Figure 2(c). As shown, 

the particles have spherical shapes with different sizes, which help forming homogeneous 

slurry and produce good density packing. 

 



 

Figure 1: Schematic diagram of the proposed hybrid soft-lithography / µ-EDM process.  

 

Figure 2: (a) SU-8 master mould, (b) PDMS soft mould, (c) the as received stainless steel powder  
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Table 1: The chemical compositions of the as received 316-L powders (Wt.%).  

As received 
powder 

Chemical composition 

Fe Cr Ni Mo Mn Others 

Percentage 68% 16.5 10.5 2.1 1.45 0.88 

 

In this experiment, a mixture of acrylic polymer: Duramax B-1000 and B-1007 (Rohm and 

Haas) were used as binders. Also, Duramax D-3005 (Rohm and Haas, PA, USA), an 

ammonium salt of acrylic homopolymer, was used for dispersing the stainless steel powders. 

0.1 g/ml Duramax D-3005 was added to distilled and mixed using an ultrasonic bath for 5 

min. The stainless steel powder was added and stirred using a mechanical stirrer before 

adding the (B-1000+B-1007) binder (with 0.75 wt.%) and re-stirring the whole mixture.  

Before use, the slurry was placed in a vacuum condition to get rid of any bubbles that could 

be entrapped during stirring. The cavities of the patterned PDMS moulds were filled up with 

the stainless steel slurry with the help aid of a vacuum to ensure the complete filling of all of 

the small features, as shown in Figure 1 (c). Finally the slurry was left to dry and the green 

component was extracted by carefully peeling off the soft PDMS moulds (Figure 1 (d)). After 

demoulding, the green micro-parts were sintered, as shown in Figure 1 (e), by being placed in 

a tube furnace which atmosphere consisted of 90% nitrogen and 10% hydrogen. The 

temperature increased gradually at a rate of 1.2°C/min until reaching about 

700°C/minsufficient temperature for the both the binder and the dispersant to decompose. 

This was to prevent deformation during binder burn out. The green samples were held at 

700°C for one hour to ensure the complete burning out of the binder. Afterwards, the 

temperature was ramped up again to 1250°C in the sintering stage at a rate of 5°C/min and 

the samples were maintained at that temperature for 90 min before turning the furnace off and 

allowing the samples to cool inside the furnace to room temperature while maintaining the 



flow of the forming gas.   

Finally, the developed micro-parts were micro milled using a three-axis SARIX SX-200 μ-

EDM (SARIX SA, Switzerland). See Figures 1 (f) and (g). The EDM machine used is a 3-

axis machine, developed specifically for high precision and micro EDM applications, as it is 

equipped with a relaxation type generator enabling the discharge of very fine pulses 

(discharge energy down to few µJ). As combined with the CAM system, the automatic 

feeding of the electrode for the tool wear compensation in the Z-axis is also possible, thus 

allowing maximal flexibility in micro milling operations. Negative polarity was applied 

through entire cutting operation, and hydrocarbon oil was used as dielectric. In the present 

work the μ-EDM milling layer-by-layer approach has been adopted. In order to evaluate the 

performance of the μ-EDM process, surface topography of the samples has been 

characterised using an Axio CSM 700 confocal microscope from Carl Zeiss. The measures 

involved the evaluation of the overall shape and surface roughness (Ra) of the samples. 

3. Results and Discussions 

The fabricated stainless micro-parts were first inspected using SEM to characterise the 

surface topography. Figure 3 shows the green and sintered stainless steel micro-gears and 

their detailed micro features. It is clear that, the green micro-gear has a distortion, specifically 

at the edges of the teeth. This is suggested to be because the de-moulding process was done 

manually. In addition, it can be seen that there are two distinct topologies of the top and 

bottom surfaces. The bottom surface of the micro-gear, shown in Figure 3 (a) and (b), shows 

a good flatness, which is expected to be due to the good conformal between the slurry and the 

PDMS mould during drying. On the other hand, the top surface of the gear shows a convex 

profile (Figure 3 (c)). This is due to the difference in the evaporation rate between both sides. 

Obviously, the top surface, which was exposed to the air during drying, exhibited a higher 



drying rate than the bottom surface, resulting in such a distorted shape. The difference in the 

surface roughness of the top and bottom surfaces is shown in Figure 4.  It was found that, the 

measured surface roughness Ra of the top surface was 3.6 µm while it was 0.9 µm for the 

bottom surface. In addition, Figure 4(c) shows a section of the top surface where the poor 

flatness is clearly highlighted.  

 

Figure 3: Micro-gear with detailed micro feature (a) green part after drying and de-moulding from soft 
mould (b) sintered part in nitrogen/hydrogen mixture, (c) sintered part with the distorted top surface. 
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The sample has been carefully clamped in order to avoid any damage during fixturing. By 

electric touches, the top surface of the sample is aligned to the surface of machine table. The 

Erosion is performed adopting the micro milling EDM layer-by-layer and following three 

steps: 

1. Roughing phase of a depth of 0.07 mm using high energy level in order to obtain a 

planar surface of the sample. 

2. An initial finishing phase of an additional depth of 0.05 mm using the lowest energy 

level has been performed. 

3. A final finishing phase of a depth of 0.045 mm using the same lowest energy level has 

been carried out. 

The two finishing phases have been executed in order to evaluate the sample homogeneity 

and its influence on the surface roughness. Table 2 summarizes the technological parameters 

adopted and the results obtained. 

Table 2: The technological parameters adopted in μ-EDM machining 

Operation  - ROUGHING 
PHASE 

FIRST 
FINISHING 

SECOND 
FINISHING  

Regime - ROUGHING 
(long pulses) 

FINE FINISHING 
(short pulses) 

FINE FINISHING  
(short pulses) 

Electrode Polarity pos/neg neg neg neg 
Width [μs] 6.6 2 2 

Frequency [kHz] 90 180 180 
Current [index] 80 100 100 

Maximum current 
peak value 

[A] 30 1.15 1.15 

Voltage [V] 150 90 90 
Gain [index] 1000 230 230 
Gap [index] 60 74 74 

Energy [index] 365 13 13 
Tool Electrode Type - Rod Rod Rod 

Tool Electrode 
Material 

- Tungsten 
carbide 

Tungsten carbide Tungsten carbide 

Tool Electrode 
Diameter  

[mm] 0.4 0.4 0.4 

Layer Thickness [mm] 0.0015 0.0009 0.0009 
Total Depth of 

Machining 
[mm] 0.07 0.05 0.045 

Eroded Volume [mm3] 0.5537 0.3967 0.2901 
Machining Time [s] 895 3994 4217 

 



The surface roughness analysis has been performed adopting a low pass filter of 0.0025 mm 

and a high pass filter of 0.8mm. Since the samples dimensions, the analysis consider a line 

length of 2mm, shorter than the minimal length of 4mm prescribed by the international 

standard. Since the samples dimensions did not permit to apply the international standard 

measurement of Ra, qualitative measures of this index are reported. The measurements were 

repeated after finishing the machining process. During the machining, a depth error control 

was carried out 40 times in order to have a better tool wear compensation.  

 

 

Figure 4: The as-fabricated stainless steel micro-parts (sintered), (a) Confocal acquisition of the 
bottom surface, (b) Confocal acquisition of the top surface, (c) section of the top surface. 
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The following cross-section profiles have been taken for the same part along a circle centered 

with the gear, see Figure 5. Figure 5 (a) shows the profile of the sample fabricated using soft 

lithography, while the Figure 5 (b) shows the same profile after the finishing operation by 

micro-EDM. By comparing the two profiles, it is evident the improvement in the flatness of 

the samples after using the optimized micro EDM process. 

 

Figure 5: Cross section profiles of (a) The as-fabricated stainless steel micro-part (sintered), (b) The 
micro machined samples after the second finishing process.  

 

A comparison of the surface topography of the micro-gears fabricated by soft lithography 

after being machined using μ-EDM operation is shown in Figure 6. The resulting surfaces 

after the roughing, first and second finishing processes are shown in Figures 6 (a), (b) and (c), 

respectively. The micro machining results indicated a significant improvement of the  surface 

quality of the micro-gears via the application of μ-EDM. Surface roughness Ra of the top and 

bottom surfaces of the micro-gears has been improved from 3.4 and 0.9 µm , respectively, to 
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0.43 µm, for both surfaces, after the finishing operation. Using the finishing operations with 

low energy and a small layer thickness of 0.05 mm has been demonstrated to significantly 

improve the surface quality.  

 

 

Figure 6: Confocal acquisition images of the top surface after, (a) Roughing regime, (b) First finishing 
regime, (c) Second finishing regime 

 
 
4. Conclusions 

This research was carried out to cover the gap in producing high precision micro-components 

using soft lithography. It was aimed to develop stainless steel micro-implantable parts using 

hybrid soft-lithography/ µ-EDM process. Using soft lithography as one of the micro 

fabrication techniques, stainless steel 316L micro-parts were fabricated. Surface roughness of 

the as fabricated stainless steel micro-components has been significantly improved from 

Ra=3.4 µm to Ra =0.43 µm using a µ-EDM milling technique. In addition, the cross section 

profiles of the samples show that the flatness of the samples has been enhanced using the 

optimized micro EDM process. It was also found that, when the material is electro-

conductive, μ-EDM process is a good choice for improving surface roughness and to machine 

sharp micro-features. In order to combine the two technologies, the definition of a common 

reference system for aligning the features produced by different process is required.  
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