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ABSTRACT 

Sustainable development approach demands the use of environmentally friendly materials.  

One possible way to encourage sustainable approach is via use of Portland cement (PC) 

replacement through use of permitted cement constituents in conformity with BS EN 197-1, 

to lower carbon footprint, and use of recycled aggregates as permitted within BS 8500, to 

encourage sustainability. Thus, this research study aimed to produce low carbon and 

sustainable concrete. For this aim, engineering and durability properties of equal 28-day 

design strength (40 and 50 N/mm2) concretes made with Portland-composite and composite 

cements, CEM II/B-M and CEM V/A respectively, and partially substituted coarse recycled 

(RA) and washed recycled glass sand (RGS), 25% and 15% respectively, aggregates was 

investigated. The loss of workability was found to be larger for particularly CEM V/A and 

recyled aggregate concrete (RAC) mixes. Studies of hardened concrete properties, 

comprising bulk engineering properties (compressive cube and cylinder strength, flexural 

strength, drying shrinkage) and durability (initial surface absorption) showed enhanced 

performance for CEM II/B-M and CEM V/A mixes of equivalent strength natural aggregate 

concrete mixes (NAC), except resistance to carbonation. However, the use of CEM II/B-M 

and CEM V cements in RAC mixes slightly reduced the engineering and durability properties 

compared to corresponding NAC mixes. 

 

Keywords: Carbonation, initial surface absorption, drying shrinkage, fly ash, ground 

granulated blast-furnace slag, silica fume, recycled glass sand, coarse recycled aggregate 

 

Bullet points: 

Use of CEM II/B-M and CEM V/A cements and coarse recycled aggregates and recycled 

glass sand in concrete production increased the required superplasticizer demand to 

achieve the similar consistency. 

CEM II/B-M cement recycled aggregate concrete mixes indicated either similar or slightly 

better loss of workability over time compared to corresponding CEM I cement RAC mix.  
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The partial substitution of natural coarse and fine aggregates by 25% coarse recycled and 

15% recycled glass sand aggregates reduced the compressive cube strength of concrete 

approximately by 10%. 

Recycled aggregates concrete mixes showed dramatically lower compressive cylinder 

strength results compared to conventional natural aggregate concrete mixes. 

Drying shrinkage results showed that the contribution of pozzolanic reactions for Portland-

slag and composites cement concretes takes place after 14 days. 

CEM II/B-M cement mixes indicated lower ISAT-10 values as the design strength class 

increased.  

Carbonation penetration results showed improvement as the design strength increased for 

the same cement type concrete mixes. 

 

1. INTRODUCTION 

Reducing the carbon footprint of activities and a more prudent use of natural resources 

required for concrete production is a significant concern on the grounds of sustainable 

development. The United Kingdom (UK) construction industry is one of pioneer countries to 

implement sustainability and thus aiming to encourage prudent use of natural resources, 

avoid wastage and undue over-designing, reduce use of materials and recycle materials. In 

this respect, the UK has both international, The Kyoto Protocol, and national, Climate 

Change Act, targets to reduce the greenhouse gas emissions [1].  

Current concrete practices may no longer be considered as sustainable due to PC, the most 

commonly used cement globally, is a high energy intensive material and its manufacturing 

requires consumption of raw materials such as clay, gypsum and limestone. In this regard, 

more environmentally friendly cement main constituents (CMCs) is permitted to be used in 

concrete production through the European Standard for common cements, BS EN 197-1 [2] 

to assist industry to achieve its commitments. Nevertheless, the main emphasis on available 

studies focussed on reducing the embodied CO2 (ECO2) emissions of concrete via 

substituting Portland cement (PC) with other permitted cement types in conformity with BS 

EN 197-1. Reducing the use of raw materials in the construction industry is another principle 

of producing sustainable concrete as the natural resources are running low in the world. 

Thus, Aggregate Levy has come into action by the UK government in order to prevent the 

use of natural resources and encourage the use of recycled or secondary materials. Primary 

aggregates, sand and gravel, are the most used materials in construction industry and use of 

these raw materials cause irreversible effects on the environment such as agricultural losses 

and rainforest destructions [3]. In the UK, the consumption of primary aggregates is 

assumed to be around 210 million tonnes whereas 43%, 90 million tonnes, of these are used 

in the concrete industry [4]. The use of coarse recycled aggregates (RA) in concrete is of 

significant interest due to its contribution to sustainable development by reducing demand on 

mineral extraction and minimizing landfill. RA is used in lower grade applications in 

conformity with BS EN 12620 [5] but it can also be used in higher grade applications when it 

meets and specifications of BS 8500 [6-7]. The use of recycled and secondary aggregates in 



the UK construction sector has increased over 70 million tones that account for 28%, the 

highest rate amongst European countries, three times the European average. However, the 

incorporation of recycled and secondary aggregates used in concrete accounts for 5.3% [8]. 

Use of recycled aggregates, where mostly consists of crushed concrete, are also 

encouraged in codes whereas BS 8500 allows RA to be used in designated concretes up to 

20% except where the specification permits higher proportions to be used. However, there is 

no generic requirement on the use of recycled fine aggregates.  The use of crushed recycled 

glass sand as a fine aggregate replacement in concrete reduces the overall greenhouse gas 

emissions and the use of natural aggregates, therefore, improves the sustainability 

credentials [9]. There is 1.85 million tonnes of glass cullet obtained from waste glass are 

being collected annually [10]. Having this said, the municipal recycling rate is 34% for 

container glass in the UK [11].  

Jianyong [12] stated that concrete with 30% ground granulated blast-furnace slag (GGBS) 

replacement level and the same superplasticizer (SP) content increased slump value slightly 

than Portland cement (PC) concrete. Sabet [13] reported that “ball-bearing effect” of fly ash 

(FA) concrete with FA contents of 10% and 20% increased concrete slump and therefore 

reduced the amount of SP required to reach target slump. Another study by Limbachiya [14] 

revealed that FA concretes with higher binder content reduced the workability. Gesoglu [15] 

stated that the relationship between FA and workability loss could be attributed to the 

presence of FA when used in binary and ternary cements increased viscous characteristics 

of concretes. Erdem [16] also investigated that silica fume (SF) concretes may require more 

water as the SF increases due to SF has higher surface area, which this could be 

compensated by SP utilization. Tu and Chen [17] investigated that RA with higher absorption 

capacity comparing to natural aggregates have a slight influence on the concrete workability. 

Limbachiya [18] and Taha [19] stated that use of recycled glass sand (RGS) reduced the 

workability of the concrete due to lack of fine proportion. Taha [19] also reported 

homogeneity of the concrete was reduced in the presence of RGS which could be attributed 

to sharp edges of RGS increased the friction forces in the concrete matrix and thus reduced 

the consistency.  

The use of CMCs has shown to reduce early strength of concrete but to improve long term 

mechanical performances [19-23]. However, the effect of CMCs on concrete durability is still 

ambiguous. Moreover, previous researches [24-28] have reported that the use of RA up to 

30% showed slight reduction in mechanical and durability properties of concrete. 

Researches carried out on RGS concrete mixes have showed that the use of RGS up to 

15% indicated comparable mechanical performances [29].  

Previous studies [15, 22, 30] reported FA and GGBS additive ternary blend cement 

concretes indicated lower shrinkage compared to PC concrete and other ternary blend 

concretes. Kou [31] stated that increase in the drying shrinkage was proportional to the RA 

content used. According to Limbachiya [18], the use of RGS up to 20% was observed not to 

effect drying shrinkage. 

Existing literature [26, 28, 32-33] on the use of CMC reduced carbonation resistance of 

concrete. Gönen and Yazıcıoğlu [24] investigated ternary blend (PC+FA+SF) concrete had 

lower carbonation depth which could be attributed to SF addition reduced concrete porosity. 

Jones and Dhir [34] investigated concretes made with ternary blend cements (PC-FA-

GGBS) and found that ternary blend mixes had significantly higher carbonation depths 



compared to PC concrete. There is contradicting results on the behaviour of RA on the 

concrete carbonation resistance. Previous study by Kou [31] indicated that carbonation 

resistance decreased with the increased RA content. In contrast to that, Soares [35] stated 

RA did not have significant influence on the carbonation resistance and reported slightly 

higher results compared to reference mix. Castro and de Brito [36] investigated concretes 

with RGS contents of 5%, 10% and 20% by volume had improved carbonation resistance at 

long terms (56 and 91 days) due to refinement of the pore structure of concrete with the 

introduction of RGS. 

Previous studies [20, 25, 34, 37] revealed that use of CMC reduces the porosity of concrete 

due to pozzolanic reactions provided by the CMC. Thomas and Setien [38] stated increase 

in ISAT as RA content increases. Limbachiya [18] investigated an increase in the ISAT when 

RGS content is beyond 15% which was believed to due to increase in the porous matrix. 

Existing standard, BS 8500, limits the use of RA to be used in structural applications and 

there is no specification regarding to the use of recycled fine aggregates in concrete 

production for structural purposes. In addition, there is little information available on the 

engineering and durability properties of concretes made with CEM II/B-M and CEM V/A 

cements and recycled coarse and fine aggregates. Thus, this study investigates engineering 

and durability properties of these concretes associated with the practical applications for the 

aim of low carbon and sustainable concrete production. 

 

2. Experimental and testing programme 

2.1. Materials  

2.1.1. Cements 

The cement types used were CEM I, CEM II/B-M and CEM V/A conforming to BS EN 197-1. 

A CEM I, 52,5N PC used for reference mix. Other cement main constituents used were 

GGBS, FA and SF and blended with PC to produce CEM II/B-M and CEM V/A cements for 

this study.  GGBS was obtained from iron-making production in the UK conforming to BS EN 

15167-1 [48]. FA and SF used were conforming to BS EN 450-1 [40] and BS 13263-1 [41] 

respectively. FA was obtained from Drax coal-fired power station in the UK. SF incorporated 

was in slurry form including 50% water and 50% silica powder. Physical properties and 

chemical composition of cement constituents used are given in Table 1. 

 

 

 

 

 

 



 

Table 1. Chemical properties of cementitious constituents 

Compound Percentage (%) 

PC FA GGBS SF 

SiO2 19.77 50.4 36.76 94.84 

Al2O3 4.90 28 13.38 - 

Fe2O3 2.33 9 0.37 - 

CaO 62.56 6 39.56 0.41 

MgO 2.64 1.50 7.33 - 

SO3 3.08 0.40 0.08 0.32 

K2O 0.66 2.50 0.54 0.88 

Na2O 0.17 0.90 0.32 0.26 

Loss on ignition 1.65 4.50 0.92 1.56 

Fineness (m2/kg) 372 280 501 22700 

Density (g/cm3) 3.14 2.28 2.92 1.4 

 

2.1.2. Aggregates 

Natural river sand and natural uncrushed Thames valley gravel were used as fine and 

coarse aggregates with maximum nominal sizes of 5 and 20 mm respectively in conformity 

with BS EN 12620. The recycled coarse aggregate and recycled washed glass sand (RGS), 

meeting the requirements of BS EN 12620, were used in RAC mixes to substitute natural 

aggregates. RA was graded 20-5 mm aggregates and observed to be irregular shaped 

compared to natural coarse aggregates. Recycled washed glass sand (RGS) with maximum 

nominal size of 5 mm was observed to be coarser than natural sand. The physical and 

mechanical properties of natural and recycled aggregates used are given in Table 2 and 

Figure 1. 

 

Table 2. Physical and mechanical properties of aggregates used 

Properties Type of aggregates 

 Natural Recycled 

 Sand Gravel Glass sand Gravel 

Physical  (BS EN 1097, part 6)     

Unit weight (g/m3) 1.61 1.49 1.35 1.37 

Percentage of voids (%) 41.7 39.9 42.3 43.2 

Apparent density (g/m3) 2.78 2.59 2.38 2.57 

Water absorption capacity (%) 0.17 1.69 0.66 2.57 

Specific gravity 2.76 2.52 2.36 2.47 

Fineness modulus 2.62 3.31 3.10 3.54 

Mechanical (BS 812, parts 110-112)     

Aggregate crushing value (% ACV) - 15.7 - 18.0 

Aggregate impact value (% AIV) - 10.7 - 6.5 
*Mechanical properties were measured on 10-14 mm test samples 



 

 

Figure 1. Particle size distribution of natural and recycled aggregates used in this study 

 

2.1.3. Admixture 

Water reducer liquid SP, ADVA 655, obtained from Grace Construction Products Limited 

based on polycarboxylate molecules was used to provide slump retention especially for 

mixes with lower w/c ratios and high early and late strength development. Its use was in 

conformity with BS EN 934-2:2009+A1:2012 [42].The dosage required was arranged during 

the optimisation of the mixes dependent upon w/c ratio and the amount and nature of 

cementitious materials used.  

 

2.1.4. Water 

Standard tap water was used during the concrete production for all mixes. In addition to 

that, de-ionised water was used to carry out ISAT for the concrete durability. 

 

2.2. Mix proportions and concrete mix design 

Conventional BRE mix design method [43] was used to produce trial mixes for a given 

design strength. Mixes were designed to achieve workability between 60-180 mm in 

conformity with BRE mix design document and S3 consistency class in accordance with BS 

EN 206-1 [44]. The 28-day cube strengths sought were 40 and 50 N/mm2. The free water 

contents of these mixes were modified according to type of the cementitious constituents 

used. To achieve equivalent 28-day cube strength as CEM I concrete, the w/c ratios and 

total cementitious contents were altered depending upon the relationship between the 
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compressive cube strength and the w/c ratios of trial mixes. Detailed summary of mix 

proportions used are given in Table 3 and Table 4. It is noteworthy to mention that SF values 

given is in slurry form, thus half of the SF used was deducted from the free water content. 

When SF used, free water/cement ratio was determined by adding free water content and 

half of the SF used and divided by cementitious content including binders but half of the SF 

used.  

The initial mix was a control mix with PC only specified as CEM I and a Portland-

composite cement mix was CEM II/B-M (65%PC/30%GGBS/5%SF). Additionally, a 

composite cement mix stated as CEM V/A (40%PC-30%GGBS-30%FA). At first, these 

cements were used to produce natural aggregate concrete (NAC) mixes. Having NAC mixes 

established, optimisation of concrete mixes was carried out to determine the replacement 

ratios of recycled aggregates, both recycled glass sand and recycled coarse aggregate, for 

the optimum strength concrete for a margin of no more than 10% strength loss compared to 

corresponding NAC mixes. The replacement ratios were determined as 25% and 15%, on 

mass basis, for RA and RGS as coarse and fine aggregates respectively for the production 

of recycled aggregate concrete (RAC) mixes. The application of both RGS and RA were 

carried out in saturated surface dry state and water content of the concrete mixes were 

compensated prior to mixing considering the water absorption capacities and moisture 

content of RA and RGS.  

 

Table 3. Mix proportions for 28-day 40 and 50 N/mm2 design strength NAC mixes 

Design 

strength 

Cements Mix proportions (kg/m
3
) Free 

water/cement 

ratio 

Water Cementitious constituents Aggregates 

PC FA GGBS SF Gravel Sand 

NA RA NS RGS 

 

40 N/mm
2 

CEM I 195 385 - - - 1120 - 645 - 0.51 

CEM II/B-M 175 210 - 95 30 1120 - 720 - 0.59 

CEM V/A 170 165 120 120 - 1135 - 650 - 0.41 

 

50 N/mm
2 

CEM I 195 460 - - - 1085 - 620 - 0.41 

CEM II/B-M 175 270 - 125 40 1085 - 660 - 0.47 

CEM V/A 170 175 130 130 - 1085 - 670 - 0.39 

 

 

Table 4. Mix proportions for 28-day 40 and 50 N/mm2 design strength RAC mixes 

Design 

strength 

Cements Mix proportions (kg/m
3
) Free 

water/cement 

ratio 

Water Cementitious constituents Aggregates 

PC FA GGBS SF Gravel Sand 

NA RA NS RGS 

 

40 N/mm
2 

CEM I 195 385 - - - 840 280 550 95 0.51 

CEM II/B-M 175 210 - 95 30 840 280 610 110 0.59 

CEM V/A 170 165 120 120 - 850 285 575 105 0.41 

 

50 N/mm
2 

CEM I 195 460 - - - 815 270 515 90 0.41 

CEM II/B-M 175 270 - 125 40 815 270 555 100 0.47 

CEM V/A 170 175 130 130 - 815 270 570 100 0.39 

 



2.3. Test procedures 

Concrete production and testing was carried out in accordance with BS EN 12350:2000 

Parts 1 and 2. After concrete production, initial slump was recorded, and then slump loss 

was examined through conducting compacting factor test with 30 minutes intervals up to 150 

minutes. Mix samples were covered under polythene sheets for 24 hours after casting under 

moist condition, prior to testing or exposure to 20 °C water curing condition in conformity 

with BS EN 12390-2. Engineering properties investigated included compressive and flexural 

strengths and drying shrinkage. 100 mm cubes were cast to investigate compressive 

strength development of concrete mixes conforming to BS EN 12390-3 [45]. Compressive 

cylinder strengths were determined through testing 150 mm diameter and 300 mm high 

cylinder specimens. Flexural strengths were obtained under four-point loading with specimen 

dimensions of 100 mm x 100 mm x 500 mm in accordance with BS EN 12390-5. Drying 

shrinkage was measured on 75 mm x 75 mm x 280 mm prism specimens. The samples 

were cured under water for the first 7 days and then stored in drying environment (22 °C and 

55% RH) in conformity with BS ISO 1920-8 [46]. Drying shrinkage values were recorded 

using stainless strain gauge pins fixed through both edges up to 112 days. In addition, initial 

surface absorption test and carbonation resistance were investigated to establish durability 

performance of concrete mixes. 3 samples were tested and averaged for different types of 

tests at given test ages. 

 

2.3.1. Permeation property 

Measuring the porosity of the concrete by the rate of the water penetrating into concrete 

is one of the indicators to assess the durability of concrete. Near surface absorption of 

concrete was determined using the initial surface absorption test (ISAT), as described in BS 

1881-208 [47]. 150mm cube samples were cast and cured in 20°C water for 28 days, then 

followed by pre-conditioning through oven drying at 105 °C to constant mass prior to test. 

The contact surface area was sealed to prevent any leakage during the test while testing 

and evaluation of the volume flow is obtained by measuring the length of flow along the 

capillary tube with a known dimension. ISAT values were determined after ten minutes 

(ISAT-10) in ml/m2/second.  

The ISAT-10 value of 50 x 10-2 ml/m2/sec is mostly assumed as high whilst below 25 x 10-2 

ml/m2/sec is assumed as low [48]. Moreover, N-value which indicates rate of decay in the 

absorption with time are also provided in accordance with the ISAT values of concretes. 

 

2.3.2. Carbonation penetration 

The carbonation of penetration of concretes was assessed using 100 mm cubes that were 

cured in CU1 conditions and stored in ambient conditions for at least 14 days to air dry. The 

samples were exposed to an enriched environment of 3.5 to 4.0% CO2 concentration in a 

chamber at standard 20 °C and 60% relative humidity as described in BS 1881-210 [49]. 

The top and bottom surfaces and two opposite sides of the concrete samples were coated 

with epoxy based paint to allow CO2 to penetrate only through the sides and exposed to CO2 



in 13, 26 and 52 weeks. Samples of thicknesses of not less than 10 mm were cut with water-

cooled diamond saw and carbonation depth was measured by spraying phenolphthalein 

indicator solution (1 gr phenolphthalein indicator in a solution 70 ml ethanol and 30 ml 

demineralised water). After the indicator solution is sprayed, carbonated sections with pH 

value of less than 9.2 remains colourless whereas in the non-carbonated section, the colour 

turns pink due to its alkalinity. The carbonation depth indicated by the boundary where the 

concrete turned pink. Three or four readings from each side were recorded and averaged in 

order to determine the carbonation depth. The depths behind the coarser aggregates were 

ignored. 

 

3. Results and discussions 

 

3.1. Fresh properties 

Fresh properties of concrete mixes were established through slump test and loss of 

workability over time. Slump test of concretes was carried out immediately after the mixing. 

The slump test results are given in Table 6. These values are not an indication as concretes 

having different admixture contents were designed to achieve S3 consistency class in 

accordance with BS EN 206-1. The admixtures required to achieve the target slump values 

were 300, 1250, 2000 and 750, 1350 and 2500 ml/m3 for CEM I, CEM II/B-M and CEM V/A 

cement 40 and 50 N/mm2 design strength concrete mixes respectively. Whilst, the admixture 

contents required for target slump values for RAC mixes were 1250, 1650, 2600 and 1600, 

1900 and 3300 ml/m3 for CEM I, CEM II/B-M and CEM V cement mixes respectively. Loss of 

workability over time of equal design strength NAC and RAC mixes are also given in Figures 

2 and 3 respectively. 

In general, CEM I mixes had higher free water content and higher w/c ratios, thus required 

the lowest SP content amongst concrete mixes. This can be also due to having only PC 

presence in the cementitous system. In parallel with this, it was also observed that SP 

demand required increased with the increased the replacement level of CMC in CEM II/B-M 

and CEM V/A mixes. This is in agreement with the previous studies [15, 30, 33-34, 50]. The 

effect of w/c on SP demand was more obvious for CEM V/A mixes compared to CEM II/B-M 

mixes. In brief, RAC mixes required higher SP demand in order to achieve the desired slump 

compared to NAC mixes. This could be attributed to higher WA of both RA and RGS 

required higher water content and free water content was insufficient to cover higher WA of 

recycled aggregate as stated by Tu [26]. In addition, the reduction in consistency is believed 

to be lack of fines which required more SP. 

The results showed that compacting factor values decreased with the increasing design 

strength which is thought to be due to lower w/c ratios of 50 N/mm2 design strength 

concretes compared to 40 N/mm2 design strength concretes. This reduction is in agreement 

with the previous study by McCarthy and Dhir [51]. However, it was observed that CEM II/B-

M cement mixes indicated similar results at some point of the test. This could be due to 

better dispersion and smooth and dense surface characteristics of GGBS which absorbs 



less water over time [20]. 40 N/mm2 design strength CEM II/B-M cement NAC mixes with the 

highest w/c ratio provided similar results as corresponding CEM I concrete had higher w/c 

ratio amongst concretes. However, 50 N/mm2 design strength CEM II/B-M cement NAC mix 

showed lower performance with the same w/c ratio as CEM I concrete for NAC mixes. This 

can be attributed to extremely fine particle size of SF resulted in increased adsorption and 

thus increased water demand in order to maintain the fluidity of the concrete mix [24, 52]. 

This is in line with previous researches [24, 52] that fine particle size of SF increases 

adsorption and requires more water to maintain the fluidity of concrete. Unlike NAC mixes, 

CEM II/B-M cement RAC mix indicated higher CF values over time for 40 N/mm2
 design 

strength concretes and similar CF values for 50 N/mm2
 design strength concretes. This can 

be attributed to smooth texture of GGBS and higher SP demand, in comparison to NAC 

mixes and CEM I cement RAC mixes. This then dissipated cohesive properties of SF 

concrete by dispersing the cement and SF particles through its adsorption and electric 

repulsion mechanism which increased the fluidity of concretes as stated previously by Johari 

[20].  In contrast with CEM II/B mixes, the effect of w/c was obvious on CEM V mixes. CEM 

V/A cement NAC mixes demonstrated lower compacting factor values in comparison to CEM 

I and CEM II/B-M cement NAC mixes. This is believed to be due to higher total cementitious 

content and lower water content, thereby lower w/c ratio, of CEM V cement concretes than 

other mixes. However, advantageous smooth characteristics of GGBS were observed to be 

mitigated by the FA presence and reduced the fluidity effect of GGBS in CEM V/A cement 

mixes which is in agreement with the previous study by Thomas [53]. Similar trend as NAC 

mixes were observed for CEM V/A cement RAC mixes. 

In general, it was observed that RAC mixes had higher loss of workability in comparison to 

NAC mixes. This is believed to be higher WA of both porous RGS and RA compared to 

natural aggregates has lead to higher loss of workability due to increased water demand 

which is in agreement with previous studies [19-26]. 

 

Table 5 - Workability results for NAC mixes 

28-day 
design 

strength 
(N/mm2) 

Cement w/c ratio Free water 
content 
(kg/m3) 

SP 
(ml) 

Slump 
value (mm) 

 
 

40 

CEM I 
(100PC) 

0.51 195 300 125 

CEM II/B-M 
(65PC/30FA/5SF) 

0.59 175 1250 120 

CEM V/A 
(40PC/30GGBS/30FA) 

0.40 170 2000 150 

 
 

50 

CEM I 
(100PC) 

0.44 195 750 100 

CEM II/B-M 
(65PC/30FA/5SF) 

0.46 175 1350 100 

CEM V/A 
(40PC/30GGBS/30FA) 

0.38 170 2500 140 

 

 



 

 

Table 6 - Workability results for RAC mixes 

28-day 
design 

strength 
(N/mm2) 

Cement w/c ratio Free water 
content 
(kg/m3) 

SP 
(ml) 

Slump 
value (mm) 

 
 

40 

CEM I 
(100PC) 

0.51 195 1250 125 

CEM II/B-M 
(65PC/30FA/5SF) 

0.59 175 1650 135 

CEM V/A 
(40PC/30GGBS/30FA) 

0.40 170 2600 85 

 
 

50 

CEM I 
(100PC) 

0.44 195 1950 120 

CEM II/B-M 
(65PC/30FA/5SF) 

0.46 175 1250 120 

CEM V/A 
(40PC/30GGBS/30FA) 

0.38 170 2000 150 

 

 

   

Figure 2. Loss of workability over time of equal design strength NAC mixes 
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Figure 3. Loss of workability over time of equal design strength RAC mixes 

 

3.2. Hardened Properties 

3.2.1. Mechanical/Engineering properties 

Concrete compressive and flexural strengths are of great importance as these properties are 

utilised to specify structural concrete members within design parameters. Addition to these, 

drying shrinkage is another engineering property that could be considered as important 

parameter in structural concrete members. These properties are influenced by the type and 

proportioning of the constituents and type of the aggregates used in concrete production. 

 

3.2.1.1. Strength properties 

Compressive cube strength 

The compressive cube strength development results are given in Figures 4 and 5 for 40 and 

50 N/mm2 design strength NAC and RAC mixes respectively. It can be seen from the results 

that CEM I mixes developed higher early strength compared to CEM II/B-M and CEM V/A for 

both NAC and RAC mixes. On the contrary, CEM II/B-M and CEM V/A mixes indicated lower 

early strengths than CEM I mixes. The reduction in strength is proportional with the 

replacement level of PC. This can be attributed to higher Calcium oxide (CaO) content in PC 

composition that played significant role in the development of early strength. Replacing PC 

with CMCs resulted in lowering CaO content and thus provided lower early strength. This is 

believed to be due to lower surface area of CMCs do not contribute to strength development 
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at initial stages.  It is worth mentioning that w/c ratio did not have any influence on the early 

strength loss which is due to that concrete mixes were cast with various SP contents. This is 

in contrast with previous researches carried out by Qiang [54] and Teng [55].  

For NAC and RAC mixes, strength development between 28 and 365 days for CEM I mixes 

were observed to be lower than CEM II/B-M and CEM V/A mixes. Even though, CEM II/B-M 

and CEM V/A mixes indicated similar compressive strength at 28 days for both NAC and 

RAC mixes. In contrast with some researches [53, 56], the results showed that the 

contribution of the pozzolanic reactions due to CMCs presence took place at pre-28 days. It 

is also believed to be due to hydration of GGBS and FA is slower than PC, thus, pozzolanic 

reaction through CMCs and cement paste necessitates longer curing age in order to 

contribute to strength development. The improvement was more evident with the prolonged 

curing period. At post-28 days, CEM II/B-M and CEM V/A mixes provided either similar or 

higher strength results compared to conventional CEM I mixes except 40 N/mm2 design 

strength CEM II/B-M cement RAC mix which indicated slightly lower strengths than 40 

N/mm2 design strength CEM I cement RAC mix. This could be due to CEM II/B-M mix had 

the lowest total cementitious amongst all mixes and depletion of SF over time in concrete 

matrix [32]. However, the reduction in early strength for CEM V/A mixes was much more 

than CEM II/B-M mixes. In addition, higher strength development of CEM II/B-M in 

comparison to CEM V/A mixes at pre-28 days could also be explained by both physical and 

chemical characteristics of SF which converted CH to CSH with its extreme fineness. This in 

line with previous researches [32, 56]. Moreover, the effect of pozzolanic reaction was more 

apparent in CEM V/A mixes as comparable or slightly higher results were reported at latter 

ages. The strength development between 28 and 365 days for CEM V/A mixes was higher 

than CEM I and CEM II/B mixes for both NAC and RAC mixes. This supports the fact stated 

by Bernal and Provis [23] that higher binder content could provide higher compressive 

strength. The improvement in CMCs present mixes could be attributed to the finer 

characteristics of CMCs which resulted in the formation of a dense structure. Also, the use of 

CMCs provided extra CSH (Calcium silicate hydrate) gel by reacting with CH (Calcium 

hydroxide) that resulted in increase in the strength at post 28 days. This is in agreement with 

previous researches carried out [20, 23].  

It was observed that recycled aggregates substituon with natural aggregates with particular 

replacement levels achieved slightly reduced strengths at all ages. However, the effect of 

both RA and RGS, solely, is not obvious. The reduction in compressive strength could be 

dependant upon the several factors. Initially, the incorporation of RA with lower density leads 

to decrease concrete density and concrete strength. In addition, the use of RGS and RA 

increased the fineness modulus of the aggregates. This is thought to decrease the concrete 

density and resulted decrease in the bond strength between recycled aggregates and the 

cement paste. Also, the inclusion of RGS is believed to form a weak adhesion between the 

interface between the RGS and the cement pastes as stated previously by Kou [21] and Ling 

[57]. Strength loss could also be attributed to lack of fines due to coarser particle sizes of 

RGS which diminished the filler effect of fine aggregates and resulted in more porous matrix. 

On the other hand, insufficient water content as a result of higher WA capacity of RA is 

believed to lead to deficiency in the hydration of cement paste which reduced the 

compressive strength. In addition, strength loss can also be attributed to weaker 

characteristics of RA due to higher porosity reduced the strength of ITZ which resulted in 

reduction in concrete strength. 



 

 

 

Figure 4. Compressive cube strength development of equal design strength NAC mixes 
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Figure 5. Compressive cube strength development of equal design strength RAC mixes 

 

Compressive cylinder strength 

The relationship between cylinder and cube compressive strength (fc,cyl/fc,cube) is of current 

interest as design to BS EN 1992 is based on compressive cylinder and cube strengths is 

generally adopted for conformity evaluation and factor of 0.8 is adopted in BS EN 206. On 

the other hand, previous studies [58-59] indicated fc,cyl/fc,cube ratios of 0.58-0.94. In the light of 

this, the relationship between the compressive cylinder and cube strengths at different ages 

were evaluated. The correlation of compressive cylinder and cube strengths including 28, 56 

and 91 days are given in Figures 6(a) and 6(b) for NAC and RAC mixes respectively. Also, 

the results for fc,cyl/fc,cube ratios for NAC and RAC are given in Figures 7(a) and 7(b) and 
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Figures 8(a) and 8(b) respectively for both design strength concretes. In addition to these, 

the comparison between the NAC and RAC mixes are given in Figure 9. 

For NAC mixes, the relationship between compressive cylinder and cube strengths showed 

a strong correlation of R2=0.97 and R2=0.98 for CEM I and CEM II/B-M mixes respectively. 

CEM V/A cement NAC mixes indicated lower correlation (R2=0.94) than other NAC mixes. 

Moreover, fc,cyl/fc,cube ratios for CEM II/B-M and CEM V/A mixes were comparable to CEM I 

mixes but lower than design factor 0.8 except 40 N/mm2
 design strength CEM II/B-M mix at 

56 days. Higher fc,cyl/fc,cube ratios of CEM II/B-M mixes can be explained by the presence of 

extremely fine SF particles improved the matrix between the aggregates and the cement 

paste. Even though, fc,cyl/fc,cube ratios for NAC mixes were in the range specified by the 

previous studies [58-59]. 

The results for RAC mixes indicated remarkably lower correlation (R2=0.11) for CEM I mixes. 

40 N/mm2 design strength CEM I mix showed superior performance than other mixes which 

also reflected to higher fc,cyl/fc,cube ratios at all ages ranged over 0.6 whilst 50 N/mm2 design 

strength concretes indicated around 0.5. This lead to the low correlation for CEM I mixes. 

The fc,cyl/fc,cube ratios was found to be lower than design factor of 0.8 but within the range 

specified by the previous researches [58-59]. However, there was a strong correlation 

(R2=0.94) between compressive cylinder and cube strengths observed for CEM II/B mixes. 

For fc,cyl/fc,cube ratios, there are two different trends observed for different strength classes.  

For instance, it was observed that 40 N/mm2
 design strength CEM II/B-M mixes achieved 

lower ratios than CEM I mixes at all ages ranged between 0.48 and 0.53 which is lower than 

the range observed previously. In contrast with that, 50 N/mm2
 design strength CEM II/B-M 

mix indicated superior results at all ages compared to CEM I mix with fc,cyl/fc,cube ratios 

between 0.59 and 0.70. Nonetheless, fc,cyl/fc,cube ratios for CEM II/B mixes were lower than 

design factor 0.8 but within the range stated. CEM V mixes also showed a good correlation 

(R2=0.98) between compressive cylinder and cube strengths. Similar to relationship between 

CEM II/B-M and CEM I mixes, different trends were observed for different design strength 

concretes for CEM V mixes. Lower results were reported for 40 N/mm2 design strength 

concretes whilst slightly higher strengths were recorded for 50 N/mm2 design strength 

concretes. It can be seen from the results that fc,cyl/fc,cube ratios were significantly lower than 

design factor 0.8 and the range observed by previous research with ranging between 0.47-

0.49 and 0.48-0.50 for 40 and 50 N/mm2 design strength concrete mixes respectively. 

The use of recycled aggregates in CEM I, CEM II/B-M and CEM V/A mixes reduced the 

compressive cylinder strength dramatically in comparison to corresponding NAC mixes. This 

significant reduction could be attributed to inherent characteristics of both RA and RGS that 

lead to formation of weaker bond in the concrete interfacial transition zone (ITZ) between the 

cement paste and the aggregates. In parallel with that significant reduction in fc,cyl/fc,cube was 

observed for RAC mixes. The fc,cyl/fc,cube ratios was observed to be between 0.65 and 0.80 for 

NAC mixes whilst lower fc,cyl/fc,cube ratios were reported for RAC mixes ranging between 0.47 

and 0.62. 

 



 

 

Figure 6. The relationship between compressive cylinder and cube strengths of equal 

design strength a) NAC and b) RAC mixes at 28, 56 and 91 days 
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Figure 7. The ratio between compressive cylinder and cubes strengths (fcyl/fcube) of NAC 

mixes 
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Figure 8. The ratio between compressive cylinder and cubes strengths (fcyl/fcube) of RAC 

mixes 
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Figure 9. Relationship between compressive cylinder and cube strength for NAC and RAC 

mixes 

 

Flexural strength 

The results for NAC and RAC mixes are given Figures 10(a) and 10(b) and 11(a) and 11(b) 

respectively for 40 N/mm2 and 50 N/mm2 design strength classes. It was observed that CEM 

I mixes achieved higher strengths than CEM II/B and CEM V mixes at early ages. Similar to 

compressive cube strength development, it is believed that PC replacement by the CMC 

reduced the available CaO content available for CMC to react and produce CSH gel. 

Addition to that, lower early strength results of CEM II and CEM V mixes were observed to 

be compensated at other test ages (28 and 56 days) with the contribution of pozzolanic 

reactions. This is coherent with Akçaözoglu and Atiş [32] that flexural strength of concrete 

mixes was close to PC concrete at 28 days. 

There is no significant trend observed between NAC and RAC mixes. RAC mixes provided 

comparable results as NAC mixes for all cement concretes at all ages except 50 N/mm2 

design strength CEM I cement NAC mixes. Previous studies revealed [32, 53] the 

replacement levels of RA and RGS individually for the optimum performance concrete. 

However, RAC mixes made with the combination of both RA and RGS was in line with those 

specified earlier that the use of RA less than 30% and RGS up to 15% could provide 

comparable results as PC mixes. Bond strength between the cement paste and the 

aggregates is one of the factors in the determination of flexural strength. As use of RA was 

expected to reduce this bond strength, this performance of RAC mixes is believed to be due 

to adhesion between the porous and angular shaped RGS particles improved the internal 

friction, and thus increased the area of contact of interfacial bond between the cement paste 

and the aggregates. 
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Figure 10. Flexural strengths of a) 40 N/mm2 and b) 50 N/mm2 design strength NAC mixes 
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Figure 11. Flexural strengths of a) 40 N/mm2 and b) 50 N/mm2 design strength RAC mixes 

 

3.2.1.2. Drying shrinkage 

Drying shrinkage is of an important parameter from the structural design point of view for 

concrete use. Cracks which might arise due to drying shrinkage could have adverse effect 

on the concrete load bearing capacity.   

Figures 12(a) and 12(b) and 13(a) and 13(b) show the drying shrinkage development over 

time for the mixes investigated. It was observed that CEM I mixes had higher drying 

shrinkage. This reduction can be explained by CEM II/B and CEM V mixes had lower water 

contents as it is a well-known fact that water is the major contributor to the drying shrinkage. 
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In addition, autogenous shrinkage could be the reason of initially higher drying shrinkage 

values which is believed to be affected by the porosity of the concrete. However, w/c ratio 

was not seem to have effect on the shrinkage development of concrete which is in contrast 

with Qiang [54] that GGBS presence has smaller effect on the drying shrinkage of concrete 

at lower w/c ratios. From the results, it can be seen that CEM II/B and CEM V mixes showed 

either comparable or higher shrinkage values at first 14 days. This is in line with Qiang [54] 

that this higher development of GGBS incorporated concretes is due to hydration of GGBS 

takes places slowly therefore water reacts with the cement paste later than in the PC 

concrete. It is also believed that permeability influences the phenomenon of water 

evaporation. Thus as the hydration takes place due to pozzolanic reactions by the CMCs, 

denser microstructure is formed. This is more pronounced at 14 days and onwards and this 

hypothesis can be supported with compressive and flexural strength results whereas 

pozzolanic reaction was observed to contribute to strength between 7 days and 28 days for 

GGBS inclusive mixes. Unlike existing literature, drying shrinkage values showed reduction 

earlier, 21 days, than reported previously by Akçaözoğlu [32] and Qiang [54]. In addition, 

CEM II/B-M cement mixes for both design strength concretes were observed to provide 

higher shrinkage development at 7 days. Khatri [52] and Güneyisi [60] stated that inclusion 

of SF increases the fine pores in the matrix and thereby leads to water loss. This also 

supports previous studies [15, 32, 60] that the adverse affect of SF was diminished when it is 

blended with another CMC in concrete. 

In general, there is no specific trend observed between NAC and RAC mixes. However, it 

was monitored that the use of recycled aggregates prevented early shrinkage development 

for 50 N/mm2 design strength concretes which is in contrast with the previous findings [31, 

33]. Results for 40 N/mm2
 design strength RAC mixes showed noticeable increase at 21 

days and onwards. In contrast to that, 50 N/mm2
 design strength concretes indicated lower 

drying shrinkage values at all ages except CEM V/A mix at 112 days only. The inconsistency 

in drying shrinkage results could be due to water added to compensate the higher absorption 

of recycled aggregates that resulted in increase in drying shrinkage of these concretes. 

Considering the fact that the same amount of RA was used as a replacement to natural 

coarse aggregate for both design strengths, the reduction in drying shrinkage could be linked 

with the use of RGS whereas the use of RGS content was lower in mass for 50 N/mm2
 

design strength concretes. This is in agreement with the previous finding by Kou and Poon 

[21] that the use of RGS reduces drying shrinkage. 

 



 

Figure 12. Drying shrinkage values of equal design strength NAC mixes 

 

 

 
Figure 13. Drying shrinkage values of equal design strength RAC mixes 

 

3.2.2. Durability properties 

 

3.2.2.1. Initial surface absorption test 

The ISAT-10 results and N-values for developed concrete are given in Table 7. In addition, 

Figures 14 and 15 show the relationship between ISAT-10 values and 28-days compressive 

cube strength for NAC and RAC mixes respectively. ISAT-10 results indicated that CEM II 
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CEM I cement concretes for the same design strength. This may be attributed to refinement 

of pore structure of the concrete provided by the pozzolanic reactions of the additional 

cementitious constituents. It is noteworthy to mention that for the same cement type ISAT-10 

values increased as the compressive cube strength increased except CEM II/B-M cement 

concretes. Although CEM II/B cement concretes have comparable or higher w/c ratios 

compared to CEM I cement concretes, the ISAT-10 values showed significant reduction. 

This is believed to be due to finer characteristics of additional cementitious constituents 

improved the pore structure of concretes. In addition to these, CEM II/B-M composite 

cement concretes with the lowest total cementitious contents amongst developed concretes 

also indicated significantly reduced ISAT-10 values. This could be due to the presence of SF 

with its extreme fineness improved the pore structure. This phenomenon can also be 

supported by the reduction in the ISAT-10 values of CEM II/B-M cement concrete as the SF 

content increased with the increasing design strength. Apart from this, CEM V cement 

concretes also demonstrated remarkable reduction in ISAT-10 values. This is attributed to 

lower w/c ratios and higher binder contents of these concretes in comparison to CEM I 

cement concretes formed dense matrix and reduced permeability. 

It can be seen from Table 7 that the contribution of recycled aggregates with a particular 

replacement levels to BS EN 197-1 cement concretes showed slightly higher ISAT-10 values 

compared to BS EN 197-1 cement concretes made with natural aggregates. This increase is 

believed to be due to recycled aggregate incorporation lead to an increase in the porous 

matrix. For both type of aggregate concretes, similar trends were reported. As it is seen in 

figures 14 and 15, there was no relation between the w/c ratio and ISAT-10 for BS EN 197-1 

cement concretes except CEM II/B-M cement concretes which ISAT-10 values were 

observed to decrease with the increasing compressive cube strength. 

 

Table 7. ISAT-10 and N value results of equal design strength NAC mixes 

28-day design 
strength 

Cement w/c ratio 
ISAT-10 

(ml/m
2
/s) x 10

-2
 

N-value 
(10

-2
) 

40 N/mm
2
 

CEM I 0.51 42.8 57.9 
CEM II/B-M 0.55 24.0 31.9 
CEM V/A 0.40 19.7 26.1 

 
50 N/mm

2
 

CEM I 0.41 44.4 60.2 
CEM II/B-M 0.41 19.2 22.2 
CEM V/A 0.38 23.5 29.4 

 

 

Table 8. ISAT-10 and N value results of equal design strength RAC mixes 

28-day design 
strength 

Cement w/c ratio 
ISAT-10 

(ml/m
2
/s) x 10

-2
 

N-value 
(10

-2
) 

40 N/mm
2
 

CEM I 0.51 45.4 60.9 
CEM II/B-M 0.55 28.2 36.7 
CEM V/A 0.40 24.5 36.2 

 
50 N/mm

2
 

CEM I 0.41 47.7 63.9 
CEM II/B-M 0.41 20.6 25.4 
CEM V/A 0.38 29.2 40.2 

 

 

 



  

Figure 14. The relationship between ISAT-10 values and 28-day compressive cube strength 

for a) NAC and b) RAC mixes 

 

3.2.2.2. Carbonation resistance 

It can be seen from the results that the depth of carbonation is proportional to the duration of 

exposure, thus carbonation depth increased as the exposure period increased. However, 

there was no relation between carbonation depth and compressive strength of concrete. 

Thus, CEM I cement concretes achieved better resistance to carbonation compared to CEM 

II/B and CEM V cement concretes. Moreover, it was observed that lower the w/c ratio, the 

better carbonation resistance observed for different design strength concretes made with the 

same cement.  

On the other hand, the content of calcium hydroxide (CH) and carbon dioxide penetration 

rate are the two key factors controlling concrete carbonation rate. Therefore, the reduction in 

resistance to carbonation of CEM II/B and CEM V cement concretes could be attributed to 

replacing PC with additional cementitious constituents reduced CH content available in the 

pore structure due to its consumption by the pozzolanic reaction in cementitious system. 

This can also be clearly seen from the results that difference between the control and CEM II 

cement mixes was less comparing to CEM V cement concretes as FA had lower CaO 

content comparing to GGBS. Moreover, GGBS is more active additional cementitious 

constituent compared to FA, therefore early activation of pozzolanic reaction leads to lower 

CH content and provide denser matrix concretes. 

Similar trend as BS EN 197-1 cement concrete was observed for RAC mixes whereas CEM 

II/B and CEM V cement concretes indicated higher carbonation depths than CEM I cement 

concretes as expected. However, CEM V/A cement 50 N/mm2 design strength concrete 

showed comparable carbonation values which could also be attributed to pore refinement of 

concrete matrix due to higher binder content. For both aggregate type concretes, 

carbonation depth increased as the period of exposure increased. It can also be seen that 

10

20

30

40

50

30 40 50 60

IS
A

T
-1

0
 (

m
l/

m
2
/s

e
c

) 
x

 1
0

-2
 

 

Compressive cube strength (N/mm2) 

10

20

30

40

50

30 40 50 60

Compressive cube strength (N/mm2) 

CEM I

CEM II/B-M

CEM V/A

a) b) 



RAC mixes performed higher carbonation depths in comparison to NAC mixes. However, it 

is thought that the use presence of additional cementitious constituents could have the same 

affect on both concretes due to both concretes had the same total cementitious contents and 

compositions. Also, it is important to point out that in some cases recycled aggregates 

coming from construction demolition resides may already carbonated, as this may influence 

such performance. As RGS and NF aggregates had quite similar water absorption, this 

increase in carbonation depth could be due to higher water absorption of RA compared to 

NC. Considering carbonation of concrete takes place at a relative humidity of about 40% to 

70%, the higher water absorption of RA is believed to result in lower moisture content for 

recycled aggregates concretes. Thus, it caused more porous concrete matrix which CO2 

penetrated further compared to NAC mixes. Moreover, there is a strong relation observed 

between the carbonation depth and loss of workability. 

 

 

Figure 15. Carbonation penetration of equal design strength NAC mixes design strength 

NAC mixes 
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Figure 16. Carbonation penetration of equal design strength RAC mixes design strength 

NAC mixes 

 

Table 9. The relationship between 365 days compressive cube strength and carbonation 

depths at the end of exposure period for NAC mixes 

Cement Design strength Compressive cube 
strength (N/mm2) 

Carbonation depth 
(mm) 

CEM I 40 N/mm2 53 11 

50 N/mm2 64 9 

CEM II/B-M 40 N/mm2 54.5 13 

50 N/mm2 67 10.75 

CEM V/A 40 N/mm2 56.5 15 

50 N/mm2 66 13 

 

Table 10. The relationship between 365 days compressive cube strength and carbonation 

depths at the end of exposure period for RAC mixes 

Cement Design strength Compressive cube 
strength (N/mm2) 

Carbonation depth 
(mm) 

CEM I 40 N/mm2 48 13 

50 N/mm2 56 11.5 

CEM II/B-M 40 N/mm2 49.5 22 

50 N/mm2 58 15.5 

CEM V/A 40 N/mm2 53.5 16.5 

50 N/mm2 62.5 12.5 
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4. Practical implications 

In the aim of using more environmentally friendly cement types through reducing PC level 

and use of other permitted cementitious constituents level is not is not a practical approach 

as the use of CMC at higher replacement levels can affect the workability of concrete if not 

appropriate amount of SP used. Due to reduced free water content of CEM II/B and CEM V 

mixes based on the binder used in accordance with the guidance of BRE mix design 

document, it is necessary to use SP to improve the fresh properties of concrete. The study 

has also shown that use of recycled aggregates in environmentally friendly concrete 

production could affect the workability of the concrete unless the convenient amount of SP is 

used due to higher WA of recycled aggregates. It was observed that CEM II/B-M 

(65PC/30GGBS/5SF) cement could be a practical approach to use in production of 

sustainable concrete from the fresh properties point of view. It is important to point out that 

other alternative technologies are also available for increasing recycled aggregates for more 

sustainable construction [61-63].  

It was observed that compressive cylinder strength results indicated that the use of 40 

N/mm2 design strength CEM II/B-M (65PC/30GGBS/5SF) cement concretes may be used in 

structural members under compression. In contrast to that, the use of recycled aggregates in 

CEM II/B-M and CEM V/A cement concrete is not practically applicable to use for cylindrical 

concrete members such as spiral columns. Similar to compressive strength performances, 

CEM II/B and CEM V cement RAC mixes could be practically be used in concrete beam 

members if early strength is not of a concern and supported with appropriate scaffolding until 

the pozzolanic reaction takes place to compensate early strength loss. On the other hand, 

the use of CEM II/B and CEM V cements in NAC and CEM II/B-M and CEM V/A cement in 

RAC production is not a practical approach as far as fast track construction is concerned. 

This may require the longer period for formwork to be removed due to lower early strength 

development of designed concrete mixes or otherwise, developed concretes may be used 

for non-load bearing applications where early strength is not of a concern. Considering CEM 

II/B and CEM V cement NAC mixes had higher strength developments, these concretes can 

be practically applicable if cured adequately until pozzolanic reactions take place. However, 

the use of recycled aggregates in CEM II/B-M and CEM V/A mixes may potentially be used if 

loss of strength margin is kept within ±10%. Moreover, the use of CEM II/B and CEM V 

cement in concrete production has a potential to use in structural concrete construction with 

reduced drying shrinkage which could prevent cracking formation in comparison to CEM I 

cement concretes. 

The near surface concrete is affected by the compaction of fresh concrete and results in the 

movement of the cement paste and aggregates while concrete surface happens to be 

heterogeneous. For this reason, near surface concrete have different permeation 

characteristics than the internal part of the concrete. Therefore, the ISA is one of the 

important parameters in the determination of durability of concrete. It was observed that the 

use of CEM II/B and CEM V cement in concrete production has a strong potential to use to 

produce more durable concretes. In addition, the use of recycled aggregates in CEM II/B-M 

and CEM V/A mixes may also be a practical approach from the durability point of view. 

Consequently, the use of CEM II/B-M and CEM V/A cements in RAC mixes as defined in this 

research have a potential to be used in concrete where concrete surface is exposed to 

hazardous chemicals that might lead to deterioration of concrete structure such as 



carbonation, chloride ingress and sulphate attack. The carbonation of concrete was 

influenced by the use of CEM II/B and CEM V cements and recycled aggregates. However, 

resistance to carbonation was observed to be related with the loss of workability over time. 

Briefly, the use of CEM II/B and CEM V cements in NAC and RAC mixes could potentially 

lead to corrosion of reinforcing bars in structural concrete members due to reduced alkalinity. 

The corrosion may then reduce the load bearing capacity of concrete. The effect of both 

CEM II/B and CEM V cements and recycled aggregates on concrete carbonation is not to be 

disregarded. Therefore, the loss of workability over time should be reduced by increasing SP 

content to reduce concrete porosity in order to be practically applicable. In parallel with this, 

appropriate handling and adequate curing of concrete also to be paid attention if used in the 

structural concrete members. The use of CEM II/B and CEM V cements in NAC and RAC 

mixes may be a practical approach if higher cover to reinforcement is used. In addition, CEM 

II/B and CEM V cements if used with recycled aggregates, may require a slightly higher 

cover to reinforcement compared to CEM II/B and CEM V cement NAC mixes. 

 

5. Conclusions 

Technical information regarding to the fresh and hardened (engineering and durability) 

performances of concretes made with Portland-slag and composites cements and recycled 

aggregates was observed in this study. The main conclusions identified are stated below: 

 

 The study has shown that use of cement main constituents increased SP demand 

required to achieve the same design consistency class. The increment in SP demand 

has become dramatic as the replacement level of CMC increased. In addition, SP 

demand increased as the design strength increased. RAC mixes required higher SP 

dosage for the desired workability class due to higher WA capacities of recycled 

aggregates.  

 

 RAC mixes required higher SP dosage for the desired workability class due to higher 

WA capacities of recycled aggregates.  

 

 The results have shown that CF values decreased with the increased design strength 

due to increased fine contents by increasing total cementitious contents and thereby 

lowering w/c ratios. CEM II/B and CEM V mixes have lead to higher loss of 

workability over time, particularly with the increased CMC, in comparison to CEM I 

mixes. However, the effect of w/c ratio on the loss of workability over time was more 

evident for CEM V mixes compared to CEM II/B mixes. RAC mixes had lower CF 

values except concretes made with CEM II/B-M cements. This may due to smooth 

characteristics of GGBS particles and use of SP dispersed cement and SF particles 

that increased fluidity and diminished the cohesiveness of the concrete mix.  

 

 Developed CEM II/B and CEM V mixes reached the design strength at 28 days 

showing the suitability of environmentally friendly concrete production by reducing 



PC content with CMC and recycled aggregates and adjusting the w/c ratio depending 

CMC used.  

 

 The use of CEM II/B and CEM V cements in concrete production reduced the 

strength at early ages (<7days) compared to PC concretes. The contribution of 

pozzolanic reactions to strength was observed to take place between 7 and 28 days. 

CEM II/B and CEM V mixes achieved higher compressive cube strengths compared 

to conventional mixes at post 28-days. The use of recycled aggregates with particular 

replacement ratios reduced the strength compared to CEM II/B-M and CEM V/A 

cement NAC mixes. However, this can be negligible as long as strengths are within 

the defined margin of 10% strength loss. In addition, compressive cylinder strength 

results for RAC mixes indicated remarkable reduction. In contrast to that, CEM II/B-M 

and CEM V/A cement RAC mixes were observed to improve concrete flexural 

strength compared to corresponding CEM II/B-M and CEM V/A cement NAC mixes. 

 

 CEM II/B and CEM V mixes resulted in higher shrinkage development at 7 days. In 

addition, CEM II/B and CEM V/A cement concrete mixes reduced drying shrinkage 

after 14 days and onwards (until 112 days) which this suggests that pozzolanic 

reaction takes place after 14 days.  While there was no apparent effect of using 

recycled aggregate on the concrete drying shrinkage. Drying shrinkage values of 

RAC mixes were higher for 40 N/mm2 design strength concretes and lower for 50 

N/mm2 than corresponding NAC mix.  

 

 The near surface absorption was affected by the type and amount of cementitious 

constituents and aggregate types used. The ISAT-10 results showed that the use of 

CEM II/B and CEM V cements reduced the concrete permeability considerably. Rate 

of decay, N-value, showed similar trend as ISAT-10 values. The use of recycled 

aggregates, RA and RGS, in RAC mixes increased concrete permeability slightly 

compared to NAC mixes. 

 

 The resistance to carbonation was influenced by the w/c ratios and the amount of 

CMC used. The use of CEM II/B and CEM V cements increased carbonation 

penetration of concrete except CEM II/B-V mixes. A relationship between w/c ratio 

and carbonation resistance was found for concretes made with the same type of 

cements. Thus, the lower w/c ratio, the better carbonation resistance was reported 

for different design strength concretes. The use of RGS is believed have no effect on 

carbonation resistance, while the use of RA increased the carbonation depth 

noticeably. 

 

 

 

 



 

Acknowledgement 

The authors would like to acknowledge Hanson UK, Elkem AS, Grace Construction Products 

Ltd. and Day Group Ltd. for providing the materials for the presented work. 

 

References 

 

1. UK Greenhouse Gas Statistics & Inventory Team, Science and Innovation Group, 

Department of Energy and Climate Change (2012) UK GREENHOUSE GAS 

EMISSIONS: PERFORMANCE AGAINST EMISSIONS REDUCTION TARGETS – 

2012 PROVISIONAL FIGURES.  

 

2. British Standard Institution. BS EN 197-1 Cement. (2011) Composition, specifications 

and conformity criteria for common cements. BSI. London. 

 

3. Greenspec (2016) Greenspec – Green Building Design, Products and Materials in 

the UK [online]. UK: Wakefield [cited 2nd July 2016]. 

<http://www.greenspec.co.uk/building-design/environmental-impacts-of-concrete/>  

 

4. Concrete construction (2012) Concrete Construction: Resources for contractors and 

specifiers including construction methods, materials and equipment. [online]. 

Washington: Hanley Wood Media. 

<http://www.concreteconstruction.net/aggregates/global-demand-for-construction-

aggregates-to-exceed-48-billion-metric-tons-in-2015.aspx>  

 

5. British Standard Institution. BS EN 12620 Aggregates for concrete (2013) BSI. 

London.  

 

6. British Standard Institution. BS 8500-1:2006+A1:2012 Concrete – Complementary 

British Standards to BS EN 206-1. (2006) Method of specifying and guidance for the 

specifier. BSI. London. 

 

7. British Standard Institution. BS 8500-2:2006+A1:2012 Concrete – Complementary 

British Standards to BS EN 206-1. (2006) Specification for constituent materials and 

concrete. BSI. London. 

 

8. Mineral Products Association (2013) Concrete Industry Sustainability Performance 

Report. UK: The Concrete Centre.  

 

9. Sustainable Concrete Forum (no date) Home Page. [online]. UK: MPA The Concrete 

Centre. [cited 3rd July 2016]. 



<http://www.sustainableconcrete.org.uk/top_nav/uk_construction_industry/aggregate

_levy.aspx>  

 

10. Mineral Products Association (no date) Mineral Products Association (MPA) – the 

trade association for the aggregates, asphalt, cement, concrete, lime, mortar and 

silica sand industries. [online]. London: Mineral Products Association. [cited 4th July 

2014]. <http://www.mineralproducts.org/prod_agg_recy01.htm>  

 

11. University of Dundee (2005) www.greenconcrete.dundee.ac.uk. [online] Scotland: 

University of Dundee. [cited 4th July 2016]. 

<http://www.greenconcrete.dundee.ac.uk/RecycledGlass.htm>  

 

12. Jianyong, L. and Yan, Y. (2001) A study on creep and drying shrinkage of high 

performance concrete. Cement and Concrete Research. 31, pp.1203-06.  

 

13. Sabet, F.A., Libre, N.A. and Shekarchi, M. (2013) Mechanical and durability 

properties of self consolidating high performance concrete incorporating natural 

zeolite, silica fume and fly ash. Construction and Building Materials. 44, pp.175–184.  

 

14. Limbachiya, M., Meddah, M.S. and Ouchagour, Y. (2012) Use of recycled concrete 

aggregate in fly-ash concrete. Construction and Building Materials. 27, pp.439-449.  

 

15. Gesoğlu M., Güneyisi, E. and Özbay, E. (2009) Properties of self-compacting 

concretes made with binary, ternary, and quaternary cementitious blends of fly ash, 

blast furnace slag, and silica fume. Construction and Building Materials. 23 (5), 

pp.1847-54.  

 

16. Erdem, T.K. and Kirca, O. (2008) Use of binary and ternary blends in high strength 

concrete. Construction and Building Materials. 22, pp.1487-1493.  

 

17. Tu, T.Y., Chen, Y.Y. and Hwang, C.L. (2006) Properties of HPC with recycled 

aggregates. Cement and Concrete Research. 36, pp.943-50.  

 

18. Limbachiya, M.C. (2009) Bulk engineering and durability properties of washed glass 

sand concrete. Construction and Building Materials. 23, pp.1078-83.  

 

19. Taha, B. and Nounu, G. (2009) Utilizing Waste Recycled Glass as Sand/Cement 

Replacement in Concrete. Journal of Materials in Civil Engineering. 21, pp.709-21. 

 

20. Megat Johari, M.A., Brooks, J.J., Kabir, S. and Rivard, P. (2011) Influence of 

supplementary cementitious on engineering properties of high strength concrete. 

Construction and Building Materials 25 (5), pp.2639–2648.  

 

21. Kou, S.C. and Poon, C.S. (2009) Properties of self-compacting concrete prepared 

with recycled glass aggregate. Cement & Concrete Composites. 31, pp.107-13.  

 



22. Kuder, K., Lehman, D., Berman, J., Hannesson, G. and Shogren, R. (2012) 

Mechanical properties of self consolidating concrete blended with high volumes of fly 

ash and slag. Construction and Building Materials 34, pp.285-95.  

 

23. Bernal, S.A., de Gutiérrez, R.M., Pedraza, A.L., Provis, J.L., Rodriguez, E.D. and 

Delvasto, S. (2011) Effect of binder content on the performance of alkali-activated 

slag concretes. Cement and Concrete Research. 41, pp.1-8.  

 

24. Gönen, T. and Yazıcıoğlu, S. (2007) The influence of mineral admixtures on the short 

and long-term performance of concrete. Building and Environment. 42 (8), pp.3080-

85.  

 

25. Park, C.K. and Noh, M.H. (2005) Rheological properties of cementitious materials 

containing mineral admixtures. Cement and Concrete Research. 35, pp.842-9.  

 

26. Sim, J. and Park, C. (2011) Compressive strength and resistance to chloride ion 

penetration and carbonation of recycled aggregate concrete with varying amount of 

fly ash and fine recycled aggregate. Waste Management. 31 (11), pp.2352-2360.  

 

27. Song, H. and Saraswathy, V. (2006) Studies on the corrosion resistance of reinforced 

steel in concrete with ground granulated blast-furnace slag – an overview. Journal of 

Hazardous Materials B138, pp.226-33.  

 

28. Abbas, A., Gholamreza, F., Isgor, O.B. and Razaqpur, A.G. (2009) Durability of 

recycled aggregate concrete designed with equivalent mortar volume method. 

Cement & Concrete Composites. 31, pp.555-63.  

 

29. Limbachiya, M., Meddah, M.S., Fotiadou, S. (2012) Performance of granulated foam 

glass concrete. Construction and Building Materials. 28, pp.759-68.  

 

30. Guneyisi, E., Gesoglu, M. and Ozbay, E. (2010) Strength and drying shrinkage 

properties of self-compacting concretes incorporating multi-system blended mineral 

admixtures. Construction and Building Materials. 24, pp.1878-1887.  

 

31. Kou, S.C. and Poon, C.S. (2012) Enhancing the durability properties of concrete 

prepared with coarse recycled aggregate. Construction and Building Materials. 35, 

pp.69-76.  

 

32. Akçaözoglu, S. and Atis, C.D. (2011) Effect of Granulated Blast Furnace Slag and fly 

ash addition on the strength properties of lightweight mortars containing waste PET 

aggregates. Construction and Building Materials. 25 (10), pp.4052–4058.  

 

33. Hui-sheng, S., Bi-wan, X. and Xiao-chen, Z. (2009) Influence of mineral admixtures 

on compressive strength, gas permeability and carbonation of high performance 

concrete. Construction and Building Materials. 29, pp.1985-1990.  

 



34. Jones, M.R., Dhir, R.K. and Magee, B.J. (1997) Concrete Containing Ternary 

Blended Binders: Resistance to Chloride Ingress and Carbonation. Cement and 

Concrete Research. 27 (6), pp.825-31.  

 

35. Soares, D., de Brito, J., Ferreira, J. and Pacheo, J. (2014) Use of recycled 

aggregates from precast concrete rejects: Mechanical and durability performance. 

Construction and Building Materials. 71, pp.263-72.  

 

36. de Castro, S. and de Brito, J. (2013) Evaluation of the durability of concrete made 

with crushed glass aggregates. Journal of Cleaner Production. 41, pp.7-14.  

 

37. Sabet, F.A., Libre, N.A. and Shekarchi, M. (2013) Mechanical and durability 

properties of self consolidating high performance concrete incorporating natural 

zeolite, silica fume and fly ash. Construction and Building Materials. 44, pp.175–184.  

 

38. Thomas, C., Setién, J., Alaejos, P. and de Juan, M.S. (2013) Durability of recycled 

aggregate concrete. Construction and Building Materials. 40, pp.1054-65.  

 

39. British Standard Institution. BS EN 15167-1 Ground granulated blast furnace slag for 

use in concrete, mortar and grout. (2006) Definitions, specifications and conformity 

criteria. BSI. London. 

 

40. British Standard Institution. BS EN 450-1 Fly ash for concrete. (2012) Definition, 

specifications and conformity criteria. BSI. London. 

 

41. British Standard Institution. BS EN 13263-1 Silica fume for concrete. (2009) 

Conformity evaluation. BSI. London. 

 

42. British Standard Institution. BS EN 934-2:2009+A1:2012 Admixtures for concrete 

mortar and grout (2009) Concrete admixtures. Definitions, requirements, conformity, 

marking and labelling. BSI. London.  

 

43. Building Research Establishment Ltd. (1997) Design of normal concrete mixes. 2nd 

ed., London: Construction Research Communications Ltd.  

 

44. British Standard Institution. BS EN 206-1 Concrete. (2013) Specification, 

performance, production and conformity. BSI. London.  

 

45. British Standard Institution. BS EN 12390-3 Testing hardened concrete (2009) 

Compressive strength test of test specimens. BSI. London.  

 

46. British Standards Institution. BS ISO 1920-8 Testing hardened concrete (2009) 

Determination of the drying shrinkage of concrete for samples prepared in the field or 

in the laboratory.  

 

47. British Standard Institution. BS 1881-208 Testing concrete (1996). 

Recommendations for the determination of the initial surface absorption of concrete. 

BSI. London.  



 

48. Nikbin, I.M., Dehestani, M., Beygi, M.H.A. and Rezvani, M. (2014) Effects of cube 

size and placement direction on compressive strength of self-consolidating concrete. 

Construction and Building Materials. 59, pp.144-150.  

 

49. British Standard Institution. BS 1881-210 Testing hardened concrete (2013) 

Determination of the potential carbonation resistance of concrete – Accelerated 

carbonation method. BSI. London.  

 

50. Borges, P.H.R., Costa, J., Milestone, N.B., Lynsdale, C.J. and Streatfield, R.E. 

(2010) Carbonation of CH and C-S-H in composite cement pastes containing high 

amounts of BFS. Cement and Concrete Research. 40, pp.284-92.  

 

51. McCarthy, M.J. and Dhir, K. (2005) Development of high volume fly ash cements for 

use in concrete construction. Fuel. 84 (11), pp.1423-32.  

 

52. Khatri, R., Sirivivatnanon, V. and Gross, W. (1995) Effect of different supplementary 

cementitious materials on mechanical properties of high performance concrete. 

Cement and Concrete Research. 25 (1), pp.209-20.  

 

53. Younsi, A., Turcry, Ph., Aït-Mokhtar, A. and Staquet, S. (2013) Accelerated 

carbonation of concrete with high content of mineral additions: Effect of interactions 

between hydration and drying. Cement and Concrete Research. 43, pp.25-33.  

 

54. Qiang, W., Peiyu, Y., Jianwei, Y. and Bo, Z. (2013) Influence of steel slag on 

mechanical properties and durability of concrete. Construction and Building 

Materials. 47, pp.1414-1420.  

 

55. Teng, S., Lim, T.Y.D. and Divsholi, B.S. (2013) Durability and mechanical properties 

of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace 

Slag. Construction and Building Materials. 40, pp.875-881.  

 

56. Elahi, A., Basheer, P.A.M., Nanukuttan, S.V., Khan, Q.U.Z. (2010) Mechanical and 

durability properties of high performance concretes containing supplementary 

cementitious materials. Construction and Building Materials. 24, pp.292-99. 

 

57. Ling, T.C., Poon, C.S. and Kou, S.C. (2012) Influence of recycled glass content and 

curing conditions on the properties of self-compacting concrete after exposure to 

elevated temperatures. Cement & Concrete Composites. 34, pp.265-72.  

 

58. Nikbin, I.M., Dehestani, M., Beygi, M.H.A. and Rezvani, M. (2014) Effects of cube 

size and placement direction on compressive strength of self-consolidating concrete. 

Construction and Building Materials. 59, pp.144-150.  

 

59. Bhanja, S. and Sengupta, B. (2002) Investigations on the compressive strength of 
silica fume concrete using statistical methods. Cement and Concrete Research. 32, 
pp.1391-94.  
 



60. Guneyisi, E., Gesoglu, M. and Ozbay, E. (2010) Strength and drying shrinkage 

properties of self-compacting concretes incorporating multi-system blended mineral 

admixtures. Construction and Building Materials. 24, pp.1878-1887.  

 

61. Yliniemi, J., Nugteren, H., Illikainen, M., Tiainen, M. Weststrate, R. & Niinimäki, J. 

(2016). Lightweight aggregates produced by granulation of peat-wood fly ash with 

alkali activator. International Journal of Mineral Processing, 149, pp.42-49. 

 

62.  Colangelo, F., Messina, F. & Cioffi, R. (2015) Recycling of MSWI fly ash by means 

of cementitious double step cold bonding pelletization: technological assessment for 

the production of lightweight artificial aggregates. Journal of Hazardous Materials. 

299, pp.181-91. 

 

63. Ferone, C., Colangelo, F., Iucolano, F., Liguori, B. & Cioffi, R. (2013) Coal 

combustion wastes reuse in low energy artificial aggregates manufacturing. 

Materials, 6(11), pp.5000-15. 

 
 
 
 

 

 

 


