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Abstract  

Purpose: A manufacturing technology using hybrid Selective Laser Melting / Hot Isostatic 

Pressing (SLM/HIP) process has been developed to produce full density net-shape 

components more rapidly and at lower cost than processing by SLM alone.  

Design/methodology/approach: Ti-6Al-4V powder was encapsulated in-situ by the 

production of as-SLMed shell prior to the HIP process. After HIPping, the SLM shell is an 

integral part of the final component. Finite element modelling (FE) based on pure plasticity 

theory of porous metal coupled with an iterative procedure has been adopted to simulate 

HIPping of the encapsulated Ti-6Al-4V powder and SLMed shell. Two demonstrator parts 

have been modelled, designed, produced and experimentally validated. Geometrical analysis 

and microstructural characterisation have been carried out to demonstrate the efficiency of 

the process. 

Findings: the FE model is in agreement with the measured data obtained and confirms that 

the design of the shell affects the resulting deformed parts. In addition, the SEM and EBSD 

of the interior and exterior parts reveal a considerably different grain structure and 

crystallographic orientation with a good bonding between the SLMed shell and HIPped 

powder. 

Originality/value: An approach to improve SLM productivity by combining it with HIP is 

developed to further innovate the advanced manufacturing field. The possibility of the hybrid 

SLS/HIP supported by FEA simulation as a net shape manufacturing process for fabrication 

of high performance parts has been demonstrated 

Keywords:  Hot Isostatic Pressing; Selective Laser Melting; Finite element modelling; 
Powder Consolidation  



1. Introduction 

SLM is one of the additive manufacturing technologies (AM) that can produce 3D 

components with almost no geometrical restrictions. The build rate during the melting 

process is a function of layer thickness, laser process parameters and laser scanned area. A 

drawback of SLM process is its slow build rate when compared to other manufacturing 

technologies. More than 80% of the total SLM time is consumed during the laser scanning 

process when building large volume components.  Buchbinder et al. have been able to 

produce high quality aluminium alloy with high build rate using a 1kW laser beam and a 

multi-beam system (Buchbinder et al., 2011). Spiral growth manufacturing (SGM) is another 

powder bed SLM technique developed by Liverpool University to improve build 

performance (Hauser et al., 2005). The influence of laser process parameters and the build 

direction on the microstructure and the density of the SLM parts have been investigated by 

many workers.  Parts made by SLM, show microstructural and mechanical properties 

different from those found in conventionally manufactured parts (Read et al., 2015, Qiu et al., 

2015, Mumtaz and Hopkinson, 2009, Wong et al., 2007, Mumtaz and Hopkinson, 2010, 

Chantarapanich et al., 2014, Simhambhatla and Karunakaran, 2015, Li et al., 2016).  

Hot Isostatic Pressing (HIP) is one of the processes that is used as a post-processing tool to 

improve these properties (Ma et al., 2014, Khor and Gu, 1998). The process of hot isostatic 

pressing (HIP) is a popular manufacturing route used for producing parts from high 

performance powder which are difficult to machine. The shape of the consolidated powder is 

different from the original one due to the consolidation of the powder (Dong et al., 1996, 

Häggblad and Li, 1995). Shima et al. proposed a plasticity theory for porous metals (Shima 

and Oyane, 1976). In 1980, Cassenti was the first to initiate a study of modelling the HIPping 

process using an elasto-plastic large-deformation model with implicit thermal calculations 

(Cassenti, 1980). Some developments are then included in the work of Abouaf and Nohara 



(Abouaf, 1985, Khoei et al., 2013, Abouaf et al., 1982, Jinka and Lewis, 1994, Abouaf et al., 

1988). Through these developments, the constitutive equation is adapted to account for 

elasticity, visco-plasticity, and thermal effects, to model the mechanical behaviour of the 

powder. Similar FE models are also developed by Svoboda and Wikman who developed a 

finite element simulation of hot isostatic pressing using a combined material model (Wikman 

et al., 2000). The constitutive equations of this model account for both granular and 

viscoplastic behaviour. The granular plasticity model is used for the early stage of the 

consolidation and a viscoplastic model is for intermediate and later stages. Gillia et al. 

proposed a viscoplastic model which takes into account the strain hardening effect of the 

powder material (Gillia et al., 2007). Yuan  et al. constructed an FE model to predict the final 

dimensions of shaped part produced by HIPping Ti-6Al-4V powder (Yuan et al., 2007). They 

used the constitutive equations for plastic yield. Constitutive models that describe other 

densification mechanisms were not taken into account. This was justified based on the fact 

that more than 90% of powder density is gained within this instantaneous plastic yield 

mechanism which has relative concise formulation with fewer parameters involved. 

Furthermore, Das et al. (Das et al., 1999), combined the benefits of both selective laser 

sintering (SLS) and Hot isostatic pressing (HIP) to manufacture net shape parts. In Das et al's 

research (Das et al., 1999), they focused on the microstructural study of the parts. No work on 

the geometrical changes or parts design of the process was made. 

In this work, a shell or a skin of the metal part is built by SLM while the interior of the part is 

left in its powder form without laser scanning to speed up the manufacturing process. The 

resultant encapsulated HIP capsule is de-gassed, sealed and HIPped to achieve a full density 

part. The final shape of the HIPped sample is measured using a laser 3D scanner. The 

measurements were compared with the predicted FEA results. To ensure the structure 

integrity, the interface between the SLM shell and the interior HIPped powder has been 



characterised using SEM and EBSD is used to characterize the crystalline phases and their 

orientations of both the shell and HIPped structures. 

2. Experimental 

Gas atomised Ti-6Al-4V powder supplied by TLS Technik GmbH in the size range of 25-

50µm was used. A Concept Laser M2 Cusing SLM system which employs an Nd:YAG laser 

with a wavelength of 1075nm and a constant beam spot size of 50µm with a melt pool of 

approximately of 150µm in diameter and a maximum laser output power of 400 W and a 

maximum laser scanning speed of 7000 mm/s has been used to prepare the in-situ shelling 

demonstrator parts. The demonstrator parts shells were fabricated at a laser power of 200W 

and a laser scanning speed of 1300 mm/s. Next, the as-fabricated SLM parts filled with the 

powder during the SLM process were then inspected against leaking using helium leaking 

test. Afterwards, the developed demonstrator parts were degassed, sealed and HIPped. The 

degassing process was conducted in a vacuum at room temperature for 24 hours to remove 

entrapped gases.  Once the degassing was completed, the demonstrator parts were then crimp 

sealed under vacuum conditions and welded. In the HIP process the pressure and temperature 

loading was applied to all the free edges of the capsule elements. The heating rate is 5°C/min 

up to 920 °C and a pressure of 100MPa with a dwell time of 4 hours and then cooling down 

with rate equivalent to heating up rate. The manufacturing processes comprise shell design 

fabrication using SLM followed by realisation of the target geometry after HIPping. 

Several mechanisms are involved in powder densification however plastic collapse, which 

has relatively a concise formulation with fewer controlling parameters, account for more than 

90% of powder final density (Gillia et al., 2007). In this investigation, a modified Gurson's 

porous metal plasticity model; depicted in Equation (1); has been used which defines the 



inelastic flow of the powder as a continuum material with evolving relative density upon 

loading. 
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Where q is effective Von Mises stress, S is the deviatoric Cauchy stress tensor, P is the 

hydrostatic pressure, ρ is the relative density and q1, q2 and q3 are material parameters. 

When q1= q2= q3=1, Equation (1) reduces to the yield function (Tvergaard, 1981).When q1= 

q2= q3=0, Equation (1) reduces to the usual Von Mises stress. The elastic modulus and 

thermal conductivity are dependent on the instantaneous relative density of the powder during 

the loading cycle as shown in Equation (4) (Gillia et al., 2007) and Equation (5) (Tvergaard, 

1981) respectively. The former equation was obtained from testing cold compacted samples 

at different relative density levels. 

)9.01.0)(,1(),( 12ρρ += TETE    (4) 

)1(
2
3

1

o

o

o
seff KK

ρ

ρ
ρρ

−









−
−

=                      (5) 

Where ),1( TE is the modulus of elasticity at relative density of 1 (no porosity) and 

temperature (T), effK is the effective thermal conductivity, SK is the thermal conductivity of 

the solid, oρ is the initial relative density. 

SIMULIA Isight was used as an iterative solver that executes ABAQUS CAE and tests the 

resulting deformed geometry against the targeted one. The iteration procedure starts with 

axisymmetric FE model of guess shell geometry. The iterative solver then continues to re-



execute ABAQUS/CAE and change the shell dimensions such as R1 and R2 until the target 

dimensions of the demonstrator parts, which were first specified in Isight as an objective 

function are achieved. Figure 1 shows Axial-symmetric FE mesh for two sections 

representing the solid and hollow cylinder demonstrators while table 1 shows the R1 and R2 

iterative values. 



 
Figure 1: (a-d), Manufacturing procedure of hybrid SLM/HIP process, (c-d) Axial-symmetric FE mesh for two 
sections representing the hollow and solid cylinder demonstrators parts with the iterative variables R1 and R2 

(coloured elements represent SLM shell and grey elements represent powders) 
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Table 1: Iterative parameters  

Parts Solid cylinder demonstrator Hollow cylinder demonstrator 
Parameters R1(mm) R2(mm) R1(mm) R2(mm) 
initial value 100 50 150 20 
Minimum value 80 20 100 10 
Maximum value 200 100 300 50 

 

3. Results and Discussion 

The simulation results of the pressure distribution in the consolidated parts, as well as the 

densification during HIPping are shown in Figure 2. The maximum value of pressure 

predicted by the simulation is 142MPa, whereas the external pressure load at that time is 

100MPa. This increase in the developed pressure can be explained by the difference in the 

capsule and powder stiffness. The lowest predicted pressure is always located in the powder 

especially at thick sections. As a consequence of the variation of developed pressure, the 

relative densities in the powder configurations are also non-uniform. At this stage, the 

thermal strain effect on the densification can be observed. Large thermal gradient causes a 

thermal strain in the compacts. Hence, the surface with high temperature is deformed faster 

than the inner surface and the average relative density of the external parts is higher than the 

interior especially at regions with low capsule stiffness (high-induced pressure). With the 

progress of the temperature and pressure, the densification rate has improved significantly. 

This dramatic improvement is caused by the increasing of the applied and induced pressure. 

At the end of the HIP cycle, it can be clearly seen that the all the packed powder has been 

fully densified. 



 

Figure 2: Pressure in (Pa) and relative density (RD) distribution during HIPping progress (a) 
at the beginning of ramping stage, (b) at the middle of the pressure ramp-up stage, (c) At the 

end of the ramping stage, (d) at the end of the HIP cycle. 



A comparison between the two geometries is illustrated in Figure 3a,b. It can be clearly seen 

that the predicted simulation results of the two different geometries are in a good agreement 

with the HIPped demonstrator parts with an accuracy above 98% confirming that plastic 

deformation is responsible for the majority of the powder consolidation, during HIPping of 

Ti-6Al-4V, with the role of creep deformation being minimal. The simulation time of this 

model is quite fast as compared with other complicated models (Abouaf et al., 1982, Jinka 

and Lewis, 1994, Abouaf et al., 1988).  

 



The cross section of the Ti-6Al-4V samples containing the SLMed+HIPed shell and HIPed 

powder manufactured using SLM/HIP has been characterised and the results are shown in 

shown in Figure 3c. The images show clearly that there is no boundary or visible gap even 

after etching, which suggests that sound bonding between the HIPed powder and the shell has 

been achieved. However, the dissimilarity in microstructure between the HIPed powder and 

the shell was found to be distinct. The shell is likely to contain well developed basket-weave 

lamellar microstructure and large columnar grains whereas the as-HIPed powder exhibits a 

randomly distributed lamellar microstructure and finer equiaxed grains. The columnar grains 

in the shell show a typical length of more than 1mm and a width greater than 100µm. On the 

other hand, the as-HIPped powder has a grain size below 10µm, which is consistent with 

previous study on microstructure of Ti-6Al-4V after SLM (Qiu et al., 2013). The α laths in 

the SLM-HIPped shells are also longer than laths in the as-HIPped powder. The EBSD 

analysis results shown in Figure 3d also confirm the distinction in microstructure between 

SLM/HIPped shells and HIPped powder. The SLM/HIPped shell exhibits strong micro-

texture with α laths oriented in specified directions. Most of these are oriented along its 

length (Figure 3d).  In addition, strong texture is shown along <001> (Figure 3d), clearly 

because of the development of columnar prior β grains along SLM building direction. 

Furthermore, the HIPped powder exhibits almost no texture as shown in Figure 3d, which 

confirms that the grains in HIPped sample are randomly oriented.  The presence of dissimilar 

microstructures within the current hybrid part is believed to show significant influence on its 

deformation and mechanical properties. Inhomogeneous deformation is expected to happen 

within the hybrid part under tensile loading. Given that the SLMed+HIPed part shows much 

coarser grain structure than the simply HIPed powder, the yield strength and ultimate tensile 

strength of the SLMed+HIPed material is expected to be lower. As a result, plastic 

deformation would be preferentially concentrated on the side of SLMed+HIPed layer and 



fracture is likely to happen on this side. The HIPed powder is expected to have higher 

strength and would experience lower deformation than the SLMed+HIPed layer. In addition, 

the deformation for the HIPed powder would be relatively homogeneous when compared to 

the SLMed+HIPed layer.  

In the proposed technique, a metallic tooling is made by selective laser melting. As such, 

complex geometries and corresponding modifications in the tooling design can be easily 

handled. However, the tooling dimensions will be limited to the build envelope of 

commercial SLM machines, which is typically less than 0.5x0.5x0.5m. Additionally, if 

support structures were required while building the tooling with SLM and couldn’t be 

removed, the integrity and microstructure of the fabricated part might be affected. From 

simulation point of view, the developed model is currently limited to 2D and axisymmetric 

geometries. If a complex 3D part is required to be fabricated by this approach, the part should 

be divided first into a number of 2D sections where a FE model is built for each section and 

the same approach is followed. An assembly of the tooling design from each section will be 

an additional step.    



 

Figure 3: (a,b) A comparison between geometry obtained from the FE simulation and the 
experimental measurement; (c) microstructure of the interface, (d) EBSD micrographs 
showing microstructure at interface between SLMed+HIPed shell and HIPed powder 

 

 



4. Conclusions 

A novel approach to improve SLM productivity by combining it with HIP is developed to 

further innovate the advanced manufacturing field. The possibility of the hybrid SLS/HIP 

supported by FEA simulation as a net shape manufacturing process for fabrication of high 

performance parts has been demonstrated. FE models based on pure plasticity theory of 

porous metal have been used to simulate HIPping of Ti-6Al-4V powder.  The computational 

model used in this research can be extended to improve the design and fabrication of complex 

shaped parts made from different materials. Experimental analysis has been carried out to 

validate the FE model, study the effect of the hybrid SLM/HIP process on the microstructure 

and to evaluate the time dependent deformation of Ti-6Al-4V powder and capsule during 

HIPping. The plastic collapse model of porous metal is successfully used for shape 

prediction. The microstructure reveals good bonding between the SLM-built shell and the 

surrounding consolidated powders after being HIPed. In addition, SLMed+HIPed shells tend 

to show coarse columnar grain structure and α lamellar structure whereas the HIPed powder 

show much finer randomly oriented grains and α laths. These two microstructures are 

believed to show significant influence on the developed parts deformation and mechanical 

properties.  
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