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Abstract—This paper presents a novel activity class representa-
tion using a single sequence for training. The contribution of this
representation lays on the ability to train an one-shot learning
recognition system, useful in new scenarios where capturing and
labelling sequences is expensive or impractical. The method uses
a Universal Background Model of local descriptors obtained
from source databases available on-line and adapts it to a new
sequence in the target scenario through a Maximum a Posteriori
adaptation. Each activity sample is encoded in a sequence of
normalized Bag of Features and modelled by a new Hidden
Markov Model formulation, where the EM algorithm for training
is modified to deal with observations consisting in vectors in
a unit simplex. Extensive experiments in recognition have been
performed using one-shot learning over the public datasets Weiz-
mann, KTH and IXMAS. These experiments demonstrate the
discriminative properties of the representation and the validity
of application in recognition systems, achieving state-of-the-art
results.

Index Terms—Activity Recognition, Soft-assignment, HMM,
MAP Adaptation, Transfer Learning.

I. INTRODUCTION

MACHINE Learning advances in video-based human

activity recognition and the ubiquity presence of video

cameras in our daily life have inspired multiple application

areas such as search engines, indexing, surveillance, enter-

tainment and home automation. However, further research

in action recognition is required to achieve commercially

acceptable reliability.

Most of the proposed recognition approaches are trained

with large amount of labelled examples using large databases

and usually validating the method with leave-one-out or

train-test split strategies. In practice, this is reasonable for

applications with unconstrained scenarios such as searching

specific activities in movies, or indexing Internet videos, where

the training examples can be obtained relatively easy from

on-line videos. Results in large and unconstrained datasets

such as HMDB51 [1] or OlympicSports [2] are useful for

general evaluation, because their examples have been collected

from diverse sources, for instance Youtube or extracted from
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movies, but accuracy of algorithms is not yet at the level

required in many commercial applications.

Higher accuracy can be achieved in constrained scenarios

and with fixed cameras, such as the ones represented by the

Weizmann [3], KTH [4] or IXMAS [5] datasets, assuming the

availability of several labelled examples for training.

Recognizing in a fixed scenario has the advantage of

suppressing in some degree the clutter introduced by the

change of background and viewpoint and therefore higher

reliability may be achieved. Many applications, such as visual

monitoring of elderly or disabled people at home, video

surveillance or gaming, can be considered that are similarly

constrained, assuming that they were installed in a specific

environment. However, after the installation, the system should

be re-trained again as any previously collected sequences

may not be representative of the new environment. Although

the performance is constrained by the number of labelled

sequences used for training, collecting and labelling large

amount of data for the particular scenario is infeasible, as

it is laborious and may require the involvement of the user.

Little research has been done in training an activity recognition

system with limited number of labelled examples although

being an essential feature in many practical situations [6] [7]

[8] [9].

In the ideal case, only one sequence per class should be

enough for activity representation as shown in some previous

work [6]. However, it is important to mention that the descrip-

tion of an one-shot learning approach differs among papers in

the literature. In order to have a better understanding of the

meaning we classify the different approaches into two groups.

First, the Strict One-Shot learning assumes only one training

example available which is used to model a single class.

After training several models (one per available example) of

different classes separately, it is possible to combine these

models in order to train a recognition systems. Seo and Mi-

lanfar [6] proposed a nearest-neighbour classification using a

Strict One-Shot learning approach. Second, the Relaxed One-

Shot learning process uses simultaneously multiple training

examples available, assuming one per class. This relaxation

allows sharing some information among the examples in order

to model the classes or directly training a recognition system.

Methods by Yang et al. [7] and Orrite et al. [8] follow

this description as they create a vocabulary of features using

sequences of the different classes. The Relaxed approach

usually gives better results but at the expense of retraining the

system with each new inclusion and with the inconvenience of

requiring several examples from the beginning. In Rodriguez
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Fig. 1. Flow diagram of the proposed approach, highlighting in red the stages where the main novelties are introduced. Video Encoding is explained in Section
III and Activity Representation and Recognition are explained in Section IV.

et al. [9], although they initially create a vocabulary with

sequences of five classes, implying a relaxed model, they use

a Transfer Learning stage to allow the inclusion of new classes

without a retraining of the system in a hybrid approach.

In the most restricted scenario just one labelled sequence

is available and its activity class should be trained from one

example. To carry out with this restriction we propose in this

paper the transfer learning of a Universal Background Model

(UBM) [10] trained with extensive datasets available on-line,

representing the vocabulary of a BoF model, to the target

scenario where only a few labelled sequences are available,

and training a specially designed case of a Hidden Markov

Model (HMM).

A flow diagram of the proposed approach is depicted in

Figure 1. From the wide range of features extractors available

in the literature, Improved Dense Trajectories (IDT) [11]

have shown state-of-the-art performance in several challenging

datasets and so we use them in the Features Extraction stage.

The IDTs are represented by the trajectory of spatio-temporal

interest points during a window of time, the Histogram of

Oriented Gradients (HOG) and Histogram of Optical Flow

(HOF) [12] and the Motion Boundary Histograms (MBH)

[13] features in the surrounding spatio-temporal cuboid of the

trajectory. The proposed method extracts the IDTs from videos

in public datasets of human activities, considered the source

domain, and creates a UBM vocabulary modelled with a

Gaussian Mixture Model (GMM) as done in [10], representing

general, person and scenario independent features. Unlike

[10], the trained UBM represents a universe of features, and

not a universe of activities (or speakers in their case). Once

selected the target scenario, an initial labelled training video

is recorded. The corresponding IDTs are extracted from this

video and used in a twofold task. First, with the unordered

IDTs, the UBM vocabulary is transferred to the target sce-

nario using a Maximum a Posteriori (MAP) Adaptation, and

obtaining a sequence specific vocabulary. Second, the IDTs are

grouped into temporal windows where they are soft-assigned

to the adapted vocabulary, obtaining a Bag of Features (BoF)

per window. The BoF histogram is normalized so that it sums

one, equivalent to say it belongs to a unit simplex. This way,

the video is encoded as a sequence of BoF, and the activity is

then modelled with a HMM which is a well known generative

approach applied on time series.

The expectation-maximization (EM) algorithm is used to

solve the difficult task of estimating a HMM. A complication

with the EM algorithm is that there is in general no guarantee

of reaching a global optimum, and local optima can at times

be problematic, particularly with small training sets. More-

over, small training sets produce overfitting as we increase

the number of parameters to train and the usual continuous

HMM approach that incorporates GMM distributions may

lead to an unstable EM algorithm [14]. In order to obtain

a reliable system, the proposed Simplex-HMM is numerically

stable, even with a single training sequence. Besides, the soft
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assignment that leads to BoF seems more suitable than a hard

assignment for the case of scarce training data.

Testing follows a process flow similar to training. First the

IDTs are extracted and a sequence of BoFs is obtained using a

temporal sliding window. The encoded video is then evaluated,

given the HMM, as described in [15]. Maximum Likelihood

Classification is used to identify the model that fits better

the observation and therefore assign an action label. Using

the defined one-shot learning system we have obtained state-

of-the-art results in the public datasets Weizmann, KTH and

IXMAS.

The two main contributions of this paper are summarised

below:

1) We propose a new approach for video encoding based on

Transfer Learning where a UBM vocabulary is obtained

training a GMM with features from every sequence in

the source domain, and adapted to the feature space

extracted from the target scenario by a MAP adaptation

of the GMM conforming a target domain vocabulary.

2) We define a HMM constrained to a sequence of vectors

in a Simplex (Simplex-HMM), avoiding the numerical

problems produced in the HMM training with scarce

data.

The rest of the paper is divided in the following sections. In

Section II a brief review of related research is given. In Section

III the video encoding is explained, using the UBM adapted

to the target domain. Section IV describes the Simplex-HMM.

The experimental results are shown in Section V. Finally, a

discussion of the work is done in Section VI.

II. RELATED WORK

A large volume of human activity recognition research

has been performed in the last decades, mainly attempting

to address two important questions: feature extraction and

activity classification [16] [17] [18].

Many methods have been proposed for feature extraction,

ranging from global to local descriptors. Global descriptors

provide an holistic representation, while local descriptors

usually use some encoding to reach that holistic representation.

A single global descriptor encodes the activity by detecting a

region of interest (ROI) through a bounding box or a contour

where the person performs the activity. Examples of these

approaches use human silhouettes to create Motion History

Images (MHI) and Motion Energy Images(MEI) [19] [20],

track the body contours creating spatio-temporal shapes [21] or

obtain spatio-temporal volumes spanned by silhouette images

[3]. Although they encode powerfully the activity information,

they rely on accurate localization, background subtraction

or tracking, being more sensitive to viewpoint, illumination

changes, noise and occlusions. On the other side of the

spectrum, the local descriptors are computed in small spatio-

temporal volumes around interest points. Some descriptors

only encode the image appearance [22], but usually spatio-

temporal descriptors show better performance [23] [24] [12]

[25]. The most common encoding of the extracted descriptors

in a video activity is BoF representation, although recent

state-of-the-art works have improved the results using Fisher

Vectors (FV) [26]. Methods based on local descriptors are

robust to occlusion and are less dependent on viewpoint and

illumination changes. However, they are too local and the

encodings overlook important spatial and long-term temporal

information. Recent approaches have obtain state-of-the-art

results by expanding the local features to hybrid models where

the spatio-temporal interest points are tracked during some

frames obtaining a trajectory around which the descriptor is

computed [27] [11].

Once the feature vectors are extracted, the recognition

process becomes a classification problem. Several methodolo-

gies have been employed being discriminative or generative,

considering or overlooking the temporal domain. A direct

classification is performed selecting the class of the Nearest

Neighbour (NN), the class of the closest training sequence.

In order to avoid noise the k-NN methodology selects the

most common label of the k closest sequences [20] [28].

Some methods consider the temporal domain to compute the

distance, as Dynamic Time Warping (DTW) do [29] [30].

A widely used discriminative model is the Support Vector

Machine (SVM) that learns an hyperplane in feature space

that discriminates between two classes [4] [11]. SVM can

be combined with BoF or FV losing the long-term tempo-

ral information in the encoding. On the other hand, some

discriminative methods take into account this information as

Conditional Random Fields (CRF) [31] [32] and its evolution

Hidden CRF (HCRF) [33] do. The use of discriminative

methods is not suitable for a strict one-shot learning approach

as the method should be able to perform the training from a

single example, so a generative method is needed. HMM is a

generative method widely used in classification on time series

[15] [34] [35].

The usual EM training process of HMM fails when training

with a short number of examples and different strategies can be

adopted in order to minimize the problem. Previous work has

shown how a HMM modification called Fuzzy Discrete HMM

(FDHMM) exploits a soft-assignment in a discrete HMM [36],

obtaining a stable training with scarce data. Its application in

activity recognition improves the performance [8] in a relaxed

one-shot learning scenario, and the method can benefit from

a Transfer Learning process [9]. In the last few years, transfer

learning applied in human activity recognition has attracted

the interest of researchers, as reflected in recent surveys [37]

[38]. It is based in the use of external information from a

source domain that complements the limited data available in

a target domain where the recognition task is implemented.

In [39] the authors use an inter-lingua in order to merge

data from source domains and target domain, considering

labelled data available only in the source domain, which

classifies their method as uninformed supervised (US). In

[40] a similar approach is implemented by creating a cross-

domain codebook where labelled actions from both domains

are modelled with BoF, being an informed supervised (IS)

transfer learning method. Authors in [41] create a codebook

with unlabelled data from the source domain and train the

recognition with labelled data from the target domain, being

an informed unsupervised (IU) transfer learning method. The

literature is really extensive, but most of the methods use
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similar approaches [42] [43]. The UBM vocabulary adaptation

proposed in this paper lays in the US transfer learning as the

source domain descriptors are labelled in a GMM training

process and this GMM is later adapted to unlabelled target

domain descriptors. A novelty introduced by this paper is the

Transfer Learning per sequence, and specifically the adaptation

of the UBM to as many vocabularies as labelled sequences in

the target domain.

III. VIDEO ENCODING

Following the diagram depicted in the Video Encoding

section of Figure 1, video encoding comprises two different

tasks. Firstly, a UBM is modelled by a GMM using source

videos, widely available, and afterwards, the adaptation of

this UBM-GMM takes place on the target scenario. Secondly,

as the video is encoded in a BoF taken into account a

codebook, where the temporal information of the activity is

lost, a temporal sliding window is used to recover this kind

of information.

Next, we describe the temporal activity model by a GMM

following a soft-assignment to a BoF approach. Later, we

introduce the modification of the UBM vocabulary based in

US transfer learning. Finally, we explain the motivation for

using a sliding window to code temporal information given

as a result a sequence of observations that will be used for

training a HMM.

A. Soft-assignment-BoF

Over the past several years, many methods have modelled

activities by encoding the extracted features in a single BoF,

obtaining the codebook bins through a clustering algorithm

of the training samples. Two of the most common clustering

algorithms are k-means, which creates a Voronoi Tessellation,

and GMM, optimized with an EM process. The former is

defined only by the mean while the latter encodes second order

information as includes both, the mean and the covariance and

even a weight of the cluster. The proposed encoding uses the

IDT features extracted from the activity videos and models

the features space through a GMM. The number of clusters

K can vary a lot in different approaches and empirically has

been proven that a large number, in the order of thousands, is

appropriate for BoF encoding [27], while FV allows a smaller

number of Gaussians, in the order of hundreds [11].

From each video activity, a set of IDT feature vectors

Q = {qj}, qj ∈ R
D is extracted. Using the feature vectors of

the training examples a GMM, λ = {ωi, µi,Σi}, is calculated

through an EM process. The general model of GMM supports

full covariance matrices, but diagonal covariance matrices can

satisfactorily approximate the original density modelling with

a higher order GMM and they are computationally more

efficient. Therefore, the framework uses diagonal covariance

matrices and in addition it disregards GMM weights obtaining

a simplified model λ = {µi,Σi}.
Figure 2 shows a sample evaluated in every Gaussian of

the GMM used to encode the data in a Soft-assignment-BoF.

Using the simplified GMM, λ = {µi,Σi}, the activity in a

video is encoded with a BoF where each bin value vλi
is

Fig. 2. GMM representation and Soft-assignment-BoF. Grey bars represents
the BoF while white highlighted bars represents the qj sample contribution.

calculated by proportionally adding the contributions of every

extracted feature qj to the specific Gaussian λi, as expressed

in Equation 1, where M is the number of features extracted,

and K is the number of Gaussians in the GMM.

vλi
=

1

M

M∑

j=1

p(λi|qj) =
1

M

M∑

j=1

N (qj ;µi,Σi)
∑K

k=1N (qj ;µk,Σk)
(1)

Thanks to the applied normalizations
∑K

k=1 p(λk|qj) = 1
every BoF vector belongs to the unit simplex ∆ = {vλ ∈
R

K : vλi
≥ 0 :

∑K
k=1 vλk

= 1}.
With many feature samples, the proposed soft-assignment

is unnecessary and the winner-takes-all rule usually applied in

BoF approaches is sufficient. However, the one-shot learning

objective is to obtain a representative model with only one

activity example which contains few feature samples, therefore

keeping as much information as possible, as a proper soft-

assignment does, is essential.

B. Transfer Learning with MAP adaptation

In addition to the soft-assignment-BoF designed to deal

with scarce data, another problem arises from the need of a

codebook trained with the same scarce data, clearly insufficient

using only one video activity example.

As mentioned before, although few samples are available in

the target domain, plenty of videos can be obtained on-line as

source domain from where the learning is transferred to the

target domain. Several machine learning methods have used

the approach of transfer learning from a source domain to

a target domain. Especially successful have been the speaker

verification systems based on UBM-GMM [10], although they

transferred the class model and not a vocabulary. As previ-

ous research has proven, target domain information improves

recognition system performance [44] [9].

Figure 3 represents the proposed Transfer Learning process

showing a simplified 2D GMM trained in the source domain

and adapted to the target domain. From the source domain a

large number of IDTs is randomly extracted S = {sj}, si ∈
R

D, being unlabelled data, and then used in a EM process to

train the GMM which represents the UBM, λ = {µi,Σi}. This

UBM is later MAP adapted [10] to the target domain using

only the available samples in this domain, they can be as few

as the extracted from a single sequence, Q = {qj}, qj ∈ R
D.

For Gaussian λi in the UBM, the probabilistic alignment of

the feature vectors is computed with Equation 2.
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Fig. 3. Source GMM and MAP adapted GMM

p(λi|qj) =
N (qj ;µi,Σi)

∑K
k=1N (qj ;µk,Σk)

(2)

These probabilistic alignments and the features vectors are

used to compute the sufficient statistics of the mean with

Equations 3 and 4. Weights have been disregarded so every

Gaussian has the same weight, and covariance adaptation has

been proven to be dispensable in most of the systems, so the

system keeps the original covariance matrices in every new

adapted GMM.

ni =
M∑

j=1

p(λi|qj) (3)

Ei(Q) =
1

ni

M∑

j=1

p(λi|qj)qj (4)

The sufficient statistics, computed with the target domain

training data, are used to update the UBM, estimating the new

means with Equation 5.

µ̂i = αiEi(Q) + (1− αi)µi (5)

The parameter αi (0 ≤ αi ≤ 1) is an adaptation coefficient

controlling the balance between old and new estimates that

can also be estimated through Equation 6

αi =
ni

ni + rM
(6)

where r is the controlling variable for adaptation and the rM

term assures an equal adaptation independent on the number

of IDT samples per example. After the MAP adaptation, a

new GMM is obtained per video activity, λ̂ = {µ̂i,Σi},
representing the new codebook used in the encoding.

C. Temporal Sliding Window

The former BoF video encoding loses the long-term tem-

poral information of the activity, disregarding representative

data. Therefore, a temporally windowed Soft-assignment-BoF

encoding is proposed, shown in Figure 4. The MAP adaptation

of the UBM vocabulary to the target scenario is performed

with the features extracted from the whole video, as done

Fig. 4. BoF sequence of Windowed video

before. On the other hand, every Nw frames a new BoF is

obtained, keeping the long-term temporal information in a

sequence of BoF, O = {O1, · · · , OT }. The encoding uses

IDT as descriptors which are computed through a temporal

window of length Nl, generally different to Nw. Each IDT,

qj , has associated a temporal window ∆j
l and influences

proportionally to each ∆t
w window given the Equation 7

ρjt =
|∆t

w ∩∆j
l |

Nw

(7)

Each bin value, vtλi
, associates to a specific BoF, Ot, is then

calculated using Equation 8

vtλi
=

1
∑M

j=1 ρjt

M∑

j=1

ρjtN (qj ; µ̂
t
i,Σi)

∑K
k=1N (qj ; µ̂

t
k,Σk)

(8)

Each of the Soft-assignment-BoF of the sequence belongs

to the unit Simplex.

IV. ACTIVITY REPRESENTATION AND RECOGNITION

USING SIMPLEX-HMM

Given an activity video, the proposed encoding repre-

sents the activity as a sequence of normalized BoF, O =
{O1, · · · , OT }, each one belonging to the simplex ∆ = {vλ ∈
R

K : vλi
≥ 0 :

∑K
k=1 vλk

= 1}. These observations are

R
K vectors although the real dimensionality of the space

is (K − 1). In Figure 5a, a simplex of 3 dimensions is

represented, and it can be observed that it is a triangle in

a plane, so in reality it has only 2 dimensions. The sequence

of normalized BoF can be used for training a classifier based

in HMM, suitable for modelling time sequences. The Activity

Representation and Recognition step shown in Figure 1 depicts

the flow chart of a classifier based on a modified HMM, which

is explained later in this section.

Formally, the parameters of the HMM are θ =
{N,A,B, π}. N is the number of states, i.e., S =
{S1, . . . , SN}. Each observation, Ot is the emission produced

by the hidden state zt. The set of hidden states forms a

sequence, Z = {z1, . . . , zT } where zt ∈ S. A = {aij} is

the state transition matrix where aij represents the transition

probability from state i to state j, aij = p(zt+1 = Sj |zt = Si).
π = {πi} is the initial state probability distribution where

πi = p(z1 = Si), 1 ≤ i ≤ N being Si the state

at the beginning of the time series. Finally, B represents
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Fig. 5. (a) 3-dimensional simplex representation and (b) unit sphere portion
encompassing the square root transformation of the simplex.

the observation probability distribution in every state where

bj(Ot) = p(Ot | zt = Sj). There are two main types of

HMM based on the way the parameters in B are modelled:

the discrete HMM for categorical observations, and the con-

tinuous HMM , where a Probability Density Function (PDF)

is defined per state traditionally using a GMM. As previously

mentioned, the observation space is the simplex ∆, which is a

continuous space. Therefore the model should be a continuous

HMM where the observations are vectors of real elements

whose emission probability is traditionally approximated with

a GMM per state.

In the simplex space, the emission probability can be mod-

elled for instance with a Dirichlet distribution. However, the

high dimensionality of the space causes numerical problems

[45]. To exemplify these problems, we consider the simple

case of a uniform distribution. In Equation 9 we observe

how a uniform distribution would require the PDF f(x) =
(K − 1)!, x ∈ ∆, so that the integral in the simplex is 1. So,

with a high K any PDF is numerically infeasible.

∫ 1

0

∫ 1−x1

0

. . .

∫ 1−
∑K−2

i=1
xi

0

(K − 1)!dxK−1
. . . dx2

dx1
= 1

(9)

The emission probability can be modelled in the R
K space,

where there is no variance in the perpendicular dimension

to the plane, or in a R
K−1 space obtained for instance by

performing the Aitchison’s solution to the compositional data.

However, both cases suffer for the same problem produced

when samples have a high dimensionality and their number

is limited for training. The lack of available data produces

overfitting of the parameters, and the high dimensionality

of the data intensifies the problem, so the training of any

sort of parameter related to covariance is hopeless. We have

corroborated this performance with some preliminary experi-

ments with the continuous HMM and one Gaussian per state,

obtaining numerical problems as the likelihood has always

gone to −∞.

In this paper we propose to find a stable solution in spite of

the high dimensionality. We simplify the observation model

by defining the Euclidean distance between a mean vector

and the observations, reducing the training parameters of the

B function to only the means. Thus, we apply the observation

model defined in Equation 10.

bj(Ot) = e
−ϕ

√

∑

K
k=1

(vt
λk
−mjk)2

(10)

Equation 10 shows ϕ and mjk as free parameters but, as

there are few samples in training and it is important to reduce

as much as possible the parameters to learn, we experimentally

fix the value of ϕ.

Although the function bj(Ot) is not a PDF it prevents the

numerical problems while preserving the HMM properties

thanks to the normalizations performed during the EM algo-

rithm, as shown in the Equation 13 (see below). Moreover,

the choice of the Euclidean distance in the exponential over

a Gaussian comes from the experimental observation that a

function highly peaked around data gives better results.

Considering that each vtλk
is an element in a histogram

and represents the frequency of a specific feature model, it

is possible to appreciate a drawback in the direct use of the

Euclidean distance. Considering two normalized histograms of

the same dimensionality, A = {ai} and B = {bi}, 1 ≤ i ≤ N

and
∑N

i=1 ai =
∑N

i=1 bi = 1, if aj = 1, so ai = 0, ∀i 6= j,

and bj = 0, then the dissimilarity between A and B should

be maximum independent on the values of bi, ∀i 6= j, and

then the distance from A to B should remain constant for

all values of bi, ∀i 6= j. In Figure 5a this distance would

be represented by the distance from point a to any point in

segment bc, which is not constant and the middle point of the

segment is closer to a than the edges, being more significant

with high dimensionality. To tackle this drawback, we propose

to replace the Euclidean distance with the Hellinger distance,

which is equivalent to transforming the points in the simplex

to a portion of a hypersphere of unit radius by applying the

square root of the vector element (vtλk
→

√
vtλk

), as shown

in Figure 5b. However, for the sake of simplicity we do not

impose the condition that
∑K

k=1 mjk = 1 in the optimization

process. For the sake of clarity the transformed
√
vλk

is not

mentioned in the following equations because the formulation

is equivalent to using vλk
, just changing one for the other and

then the formulation is valid in both cases.

Given on, or several training observations, the HMM pa-

rameters can be estimated using the Maximum Likelihood

through a Baum-Welch algorithm. This iterative estimation is

obtained by maximizing the Baum’s auxiliary function Q(θ̂, θ)
[15] [46].

Q(θ̂, θ) =
∑

Z

p(Z|O, θ) ln p(O, Z|θ̂) (11)

Defining γt(i) = p(zt = Si|O, θ) and ξt(i, j) = p(zt =
Si, zt+1 = Sj |O, θ), the function Q can be expressed as:

Q(θ̂, θ) =
N∑

j=1

γ1(j) lnπj +
T−1∑

t=1

N∑

i=1

N∑

j=1

ξt(i, j) ln aij+

T∑

t=1

N∑

j=1

γt(j) ln(bj(Ot)) (12)

The EM algorithm followed requires a modification in the

M step to optimize the function with respect to the proposed

bj(Ot), which prevents from the problems arisen with scarce

data. This special case is presented below.
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E-step: This step implies the calculation of functions ξt(i, j)
and γt(i). They are calculated with the standard equations for

a general observation model bj(Ot):

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

ΣN
i=1Σ

N
j=1αt(i)aijbj(Ot+1)βt+1(j)

(13)

where αt(i) = p(O, zt = Si|θ) and βt(j) = p(O|θ, zt =
Sj) are auxiliary probabilities calculated by the forward and

backward algorithms [15]. Equation 13 is computed using the

proposed bj(Ot+1).

Finally, γt(i) is obtained with Equation 14.

γt(i) =
N∑

j=1

ξt(i, j) (14)

M-step: This process calculates the π̂i, âij and m̂jk that

maximize Q(θ̂, θ). The optimizations of π̂i, âij and m̂jk

are obtained by maximizing Equation 12. In our method the

optimizations of π̂i, âij are the same as in the traditional

method but m̂jk should be computed differently as its term

changes in the mentioned equation. Therefore, Equation 15

has to be maximized with respect to mjk:

∑

t

∑

j

γt(j) ln(bj(Ot)) =

∑

t

∑

j

γt(j)


−ϕ

√√√√
K∑

k=1

(vtλk
−mjk)2


 (15)

By setting ∂
∂mjk

= 0, the following equation is obtained:

ϕ

T∑

t=1

γt(j)
(vtλk

−mjk)√∑K
k′=1 (v

t
λk′
−mjk′)2

= 0 (16)

Since mjk does not depend on t and γt(j) are treated as

constants in the M-step once computed in the E-step, equation

17 can be easily derived:

mjk =

∑T
t=1 γt(j)

vtλk√∑K
k′=1 (v

t
λk′
−mjk′)2

∑T
t=1 γt(j)

1√∑K
k′=1 (v

t
λk′
−mjk′)2

(17)

Then, since mjk is on the left and on the right side, the

equation is solved by a fixed point iteration, obtaining m̂jk

when convergence is achieved.

Each Simplex-HMM trained with a single video has a

specific GMM computed with the MAP adaptation, so the

Simplex-HMM model is defined by Γ(A,B, π, µ̂i,Σi). As

each training sequence is modelled with a Simplex-HMM the

inclusion of new training sequences implies a linear increment

on the storage space and the required computational power for

testing.

Fig. 6. Target Domain Datasets: Weizmann (1st row), KTH (2nd row) and
IXMAS (3rd row)

V. EXPERIMENTS AND RESULTS

A. Datasets

This paper focuses on human activity recognition applied

on constrained scenarios, where videos are obtained by fixed

viewpoint cameras. The proposed algorithm is trained using

human motion information from external video sources using

MAP adaptation, as described in Section III-B. Our method

is evaluated using several datasets that accomplish the source

and target domain constraints. We have selected three source

domain datasets that include a high variability in unconstrained

video clips that simulate the easily obtainable ones from the

Internet. On the other hand, we have selected three popular

datasets in the human activity recognition field as target

domain where the videos are recoded from fixed cameras.

Additionally, a dataset with unconstrained video recording

has been selected as target dataset in order to evaluate the

performance of the algorithm in general purpose applications.

Source Domain Datasets Three public and extensive

datasets, HMDB51 [1], OlympicSprots [2] and Virat Release

2.0 [47], are used as source domain. They include a high vari-

ability of movements in several locations. The three datasets

combined have 79 different activity classes extracted form

Youtube, movies or surveillance cameras in 7878 video clips.

Target Domain Datasets The Weizmann dataset [3] is

composed by 93 low-resolution (180 x 144, 50 fps) video

sequences showing nine different people, each performing 10

natural activities: bend, jumping-jack, jump-forward-on-two-

legs, jump-in-place-on-two-legs, run, gallop-side-ways, skip,

walk, wave-one-hand and wave-two-hands. The IXMAS

dataset [5] is composed by 5 camera viewpoints (390 x 291,

23 fps) of 11 actors performing 3 times each of the 13

activities included: check-watch, cross-arms, scratch-head, sit-

down, get-up, turn-around, walk, wave, punch, kick, point,

pick-up and throw. The KTH dataset [4] has been captured

in 4 different scenarios where static cameras have recorded,

at low-resolution (160 x 120, 25 fps), 25 subjects performing

several times six types of activities: walking, jogging, running,

boxing, hand-waving and hand-clapping. Frame examples of

these datasets are shown in Figure 6. Finally, we have selected

the UCF11 dataset [48] composed by unconstrained video

clips of 11 categories obtained from YouTube.

All videos are processed by means of the state-of-the-art
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IDT1 extractor. From the IDTs extracted from the Source Do-

main datasets, 100000 are randomly selected and used for the

GMM training, obtaining 5000 Gaussians, which represent the

UBM vocabulary. Below we detail the performed experiments

using two approaches: Strict One-shot learning and Relaxed

One-shot learning.

B. Strict One-shot learning

Considering the proposed activity representation, there are

two possible ways of modelling an activity. First, the simplest

and fastest method uses the original UBM trained with the

source datasets, which is represented by a GMM λ = {µi,Σi}.
A Simplex-HMM (SHMM) is then trained per example ob-

taining the model Γ(A,B, π, µi,Σi) where µi and Σi is

shared in all models. We define the Simplex-HMM as an

ergodic two-state model and set ϕ = 1.5, as experiments

shown that the performance is rather insensitive when ϕ

is in the range (1, 2). The second approach, on the other

hand, adapts the UBM vocabulary to an improved GMM per

example using the explained MAP adaptation. In [10] they

suggest the insensitivity of the method to the parameter r that

we experimentally corroborate, selecting finally r = 0.014,

where only the mean is modified. Again, a Simplex-HMM

is trained per activity example, but each activity model is

represented in the adapted UBM vocabulary, which implies

different GMM means per example as specific information

and only Σi is shared among models, Γ̂(A,B, π, µ̂i,Σi). This

second approach is called MAP+SHMM in the experiments.

In addition to the previous representations, a special instance

of the SHMM approach is performed in Weizmann dataset in

order to validate the proposed algorithms. If the source dataset

used to train the UBM is the whole target domain, including

both, train and test examples, then the obtained UBM is the

optimal that can be reached with the method configuration, so

this special case is considered the UBM ground truth and is

labelled with the name Opt+SHMM in the experiments. It is

worth noting that in a real world application this is infeasible

and the Opt+SHMM configuration is only used to represent

the experimental ceiling of our methodology.

We perform the following initialization for the EM algo-

rithm used in the Simplex-HMM with 2 states: π1 = 1
and π2 = 0, the transition matrix is randomly initialized,

and finally the initial mean vectors, m1 and m2, are the

observations closest to times T−1
4 + 1 and

3(T−1)
4 + 1 of the

training sequence.

The experiments in this section are conducted as follows.

Using one-subject-out model, num training sequences per class

are randomly selected from the remaining subjects. The value

of num goes from 1 to the maximum available sequences. The

result per subject are the average of 100 runs, and the final

result is the average of all subjects.

Figure 7 shows on the left a graph with the performance

of the method proposed in this paper using the three activity

representations described previously. It is worth noting the

Opt+SHMM results because they justify the suitability of the

1IDT descriptor code can be downloaded in
http://lear.inrialpes.fr/people/wang/download/improved trajectory release.tar.gz

selected activity representation, i.e. the IDT features encoded

in a sequence of BoFs which trains a Simplex-HMM. The

results are impressive with only one sequence of each class, as

it reaches a 91.8%, and when using the 8 sequences available it

almost reaches the 100%, which is comparable to the state-of-

the-art results. However, as explained before, this is only possi-

ble if the feature space is properly modelled with a GMM, and

in this case we have used information from the whole dataset.

We can conclude from this result that a proper feature space

representation becomes an important objective to be achieved.

Thus, we have trained a UBM vocabulary, represented with a

GMM of IDTs, obtained from a set of videos as diverse as

possible (using the three source domain datasets). Applying

the SHMM configuration with the GMM trained with three

source datasets, the method performance falls significantly

against the Opt+SHMM configuration, although it still obtains

a satisfactory 80.11% using only one sequence per class.

Finally,the results are improved by adapting the GMM to the

scenario, but as each model uses a single example available,

the MAP adaptation has to be performed to this limited

available data using the MAP+SHMM configuration. Figure 7

demonstrates how this adaptation improves the results during

all the series, which implies that the adaptation to the target

scenario improves the features representation. On the right of

Figure 7, the Confusion Matrix of the MAP+SHMM method

using only one sequence for training is depicted. From all the

classes the greatest confusion is produced among activities that

involve subject displacement (jump, run, side, skip), caused

by the model giving more importance to the displacement

information than the limbs movements. Some works as the

one in [3] incorporates a preprocessing that compensates the

displacement, but because of the use of background subtraction

and its complications in some scenarios we have opted to avoid

it.

Figure 8 shows the performance of our proposed method

on KTH dataset, only including results for SHMM and

MAP+SHMM representations. In this case there are up to

70 examples for training, and as the graph shows there is a

constant gap between SHMM and MAP+SHMM almost inde-

pendent on the training examples, which clearly demonstrates

the improvement obtained using the proposed adaptation to the

scenario. Attending to the Confusion Matrix we can observe

the same phenomenon produced in Weizmann dataset, the

classes with displacement (walk, jog, run) are mainly confused

among them. Additionally, we observe in this dataset how

the “static” classes (boxing, wave, clap) are confused as well

among them. Unlike Weizmann, the “static” activities in KTH

are all described by the movement of the subject arms, which

results to the difficulty to distinguish them.

Finally, we repeat the experiments using the IXMAS dataset

but avoiding the point and throw activities as suggested in

[5] and Figure 9 shows these results. It is worth noting

that IXMAS dataset is recorded simultaneously with 5 fixed

cameras each one with different viewpoint. We conduct the

experiment separately per camera and the shown results is the

average of these experiments. Due to the free subject position

in the scenario some activities, like check-watch, cross-arms

but also others, are occluded by the subject body in some
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cameras generating a worse performance in comparison to the

other datasets. However, we ratify the suitability of the MAP

Adaptation in the graph. The Confusion Matrix highlights two

phenomena: First, the walk activity is always right but several

other activities are confused with it, which indicates a bias in

that model that could be compensated but potential solution is

beyond the scope of this paper. Second, there are four activities

(check-watch, cross-arms, scratch-head and wave) that are

mainly confused among them. The lower amount of movement

in these activities contributes to a higher dependence in the

camera viewpoint and therefore their confusion.

As the experiments in IXMAS have been performed per

camera we can evaluate them separately. The results of each

camera accuracy is shown in Table I using only one example

per training class or using the maximum of 27. In addition

to the MAP+SHMM improvement, we can highlight that this

improvement is more significant in camera 5, which is a zenith

camera. The viewpoint of this camera is rarely used and then

the movements are worse represented in the UBM. Thus, the

MAP Adaptation produces a greater impact.

We have found only one paper covering the Strict One-

shot learning paradigm [6], although indirectly. They propose

a sequence representation based in their defined local space-

time descriptors. Afterwards, computing a distance among

sequences they select the class of the closest one, being a Strict

One-shot learning as the representation do not need informa-

tion of other sequences. The experimental results are presented

by two graphs, one for Weizmann and other for KTH, that

show the performance obtained using only one sequence per

class in the training. In Table II we compare our results

with this work, extracting their results approximately from

the graphs, showing clearly how our approach improves the

previous results significantly in the two comparable datasets.

In IXMAS we compare with [9], where silhouettes ware used

as descriptors. In that work, only camera1 was used, starting

with 5 sequences and not only one, although they studied

the performance including new classes, which approximates

the method to Strict One-shot learning. The proposed method

clearly overcame their results using the five cameras (camera5

gives the worst results), and learning from the first sequence.

Moreover, in Section II we have mentioned FDHMM [36]

which is able to train a stable HMM from a single sequence

of vectors in a unit simplex, as our proposal does. However, the

histogram distribution is not considered and therefore it fails

in the experiments as shown in Table II where we conduct the

FDHMM experiments with and without the MAP adaptation.

After proving the suitability of the method for constrained

scenarios, we evaluate the Strict One-shot learning in the

unconstrained dataset UCF11. We randomly chose 1, 10, 20,

30, 40 and 50 video-clips of each class for training and we

test the rest. The average of 50 runs is the result shown in

Table III. This experiment is comparable to the results found

in [7]. Initially, when choosing 1 sequence for training, we

compare SHMM with MAP-SHMM, obtaining similar results

(30.67% and 30.83% respectively). As sequences belong to

unconstrained scenarios the UBM adaptation does not improve

the accuracy and we discard it. On the other hand, we verify

how our approach has a good performance compared with [7].

C. Relaxed One-shot learning

As the literature is scarce in One-shot learning methods for

human activity recognition, we add a new experiment using the

Relaxed One-shot learning methodology. In this experiment

we select the video examples of one subject, and from them

only one example per class. These examples are used for

training one Simplex-HMM per class, and all the other subjects

are used in testing. The Relaxed One-shot learning allows us

to apply the MAP adaptation to the features extracted from

all the training examples, which implies a better adaptation

in comparison to the previous experiments. Moreover, the

GMM is now shared among the Simplex-HMMs as in the

SHMM method. However, this process has some constraints

in comparison to the Strict methodology as a sequence per

class is necessary from the beginning, which initially can be

expensive to obtain, and implies a less flexible addition of new

examples and classes.

Table IV shows the results in Relaxed One-shot learning

using our method in comparison with some results found in the

literature. In [7], spatio-temporal sub-actions based on optical

flow are defined and modelled from all the sequences available

for training. In [8], the descriptors are Motion History Images

(MHI) [19] based on silhouettes computed in a fixed temporal

window. MHIs from all the sequences in training are used

to model the feature space. Both methods are outperformed,

demonstrating the suitability of the proposed method. Again,

it is shown the improvement achieved by the use of the MAP

Adaptation to the scenario. The improvement of these results

compared to the Strict methodology happens not only because

of the adaptation, as the SHMM method does not benefit from

it, but also because every Simplex-HMM uses the same actor,

and therefore the difference is not on the actor features but

only on the activity.

In Figures (7, 8 and 9) we have shown the evolution

of the method performance while increasing the number of

labelled examples. However, when many training sequences

are available the MAP Adaptation to each sequence is not

optimal as there is enough information for training a specific

GMM. Therefore, using a leave-one-person-out cross vali-

dation methodology we have carried out a new experiment.

Obtaining a GMM per person with the examples of the

remaining subjects, making unnecessary any adaptation, we

have trained a SHMM per example, keeping unchanged the

rest of the system. We call this new experiment OneOut-

SHMM. Our method achieves almost state-of-the-art results

in Weizmann and KTH, being the gap of Weizmann caused

by only one sequence misclassified. However, in IXMAS we

obtain worse results, probably partially caused by a naive

fusion of cameras, we have selected the class of the HMM

producing the highest likelihood among all cameras. These

results show how the method, although performing reasonably

well with several training data, it is not the best suited for this

task.

VI. CONCLUSION

The human activity representation proposed in this paper

has been proved suitable in activity recognition in fixed-

background constrained scenarios with very few available
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TABLE I
ACCURACY USING STRICT ONE-SHOT LEARNING IN EACH OF THE IXMAS CAMERAS USING 1 AND 27 EXAMPLES FOR TRAINING.

camera1 camera2 camera3 camera4 camera5

1 27 1 27 1 27 1 27 1 27

SHMM 45.7 73.6 44.5 71.5 43.1 69.7 48.5 69.7 30.6 50.6

MAP+SHMM 48.3 78.5 45.8 76.1 44.7 71.5 50 74.8 34 61.2

TABLE II
STRICT ONE-SHOT LEARNING WITH ONE EXAMPLE PER CLASS.

Weizmann KTH IXMAS

FDHMM [36] 68.17% 67.16% 25.36%

MAP+FDHMM [36] 69.61% 67.6% 33.7%

SHMM 80.11% 67.53% 42.47%

MAP+SHMM 81.88% 70.39% 44.58%

Seo and Milanfar [6] 75% 65% -

Rodriguez et al. [9] - - 35%∗

∗Not directly comparable as they use only one camera and 5 initial
sequences, which is less restrictive.
(-) Lack of results in the referenced papers.

TABLE III
STRICT ONE-SHOT LEARNING FOR UCF11 DATASET. RESULTS FOR OUR

APPROACH COMPARED WITH [7].

1 10 20 30 40 50

SHMM 30.7% 59.2% 69% 75% 79.2% 82%

Yang et al. [7] 19.3% 31.3% 39.2% 46.3% 50% 51%

training examples. The introduced Simplex-HMM facilitates

the modelling of an activity using limited amount of data, as

few as one example per class, thanks to the reduction of pa-

rameters to train, exploiting the proposed Simplex constraints

of the samples. In the Weizmann experiments we have seen

how these representation obtains great results if the feature

space is properly modelled with a GMM.

In order to obtain the best representation of the feature space

TABLE IV
RELAXED ONE-SHOT LEARNING WITH ONE EXAMPLE PER CLASS.

RESULTS OF OUR APPROACH AND TWO STATE-OF-THE-ART METHODS.

Weizmann KTH IXMAS

SHMM 84.18% 76.65% 52.84%

MAP+SHMM 87.12% 80.21% 56.43%

Yang et al. [7] 80% - -

Orrite et al. [8] 81.1% - -

(-) Lack of results in the referenced papers.

TABLE V
ACCURACY OF THE PROPOSED METHOD WITH SEVERAL TRAINING

EXAMPLES, IN COMPARISON WITH STATE-OF-THE-ART RESULTS.

Weizmann KTH IXMAS

OneOut+SHMM 98.9% 94.2% 82.5%

Liu et al. [49] 100% 94.8% 95.5%

using a GMM, but taking into account the limited data avail-

able in the target scenario, we propose an adaptation of a UBM

trained in source datasets. We have proved how an adaptation

of the UBM to the target domain information modelled only

with one example in the target scenario improves the results

obtained using directly the original UBM. The results obtained

in the Transfer Learning stage demonstrate the value of the

proposed method adopted, but also that there is still scope of

improvement in future work.

It is worth noting that the proposed algorithm assumes

a limited number of available labelled sequences from the

target dataset. However, the more labelled sequences, the

more storage space and computational power is required for

inferring sequences. Therefore, in cases where more data is

available, other existing algorithms may be more practical and

effective as shown in the experiments.

Also, it is worth noting the shortage of relevant work in the

literature existing in One-shot learning for human activities.

Especially in the Strict One-shot learning paradigm very little

work has been done, and our point of view is that it is the

most appropriate in many real life applications, thanks to its

flexibility including new examples and classes. Although the

human activity recognition community is tending to focus

in large unconstrained datasets, more research in this field

can accelerate the installation of recognition systems in new

scenarios.
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[27] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories

and motion boundary descriptors for action recognition,” International

Journal of Computer Vision (IJCV), vol. 103, pp. 60–79, 2013.
[28] D. Batra, T. Chen, and R. Sukthankar, “Space-time shapelets for action

recognition,” in Motion and video Computing, 2008. WMVC 2008. IEEE

Workshop on, Jan 2008, pp. 1–6.
[29] A. Veeraraghavan, A. Roy-Chowdhury, and R. Chellappa, “Matching

shape sequences in video with applications in human movement analy-
sis,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 27, no. 12, pp. 1896–1909, Dec 2005.

[30] B. Yao and S.-C. Zhu, “Learning deformable action templates from
cluttered videos,” in Computer Vision, 2009 IEEE 12th International

Conference on, Sept 2009, pp. 1507–1514.
[31] C. Sminchisescu, A. Kanaujia, and D. Metaxas, “Conditional models

for contextual human motion recognition,” Comput. Vis. Image

Underst., vol. 104, no. 2, pp. 210–220, Nov. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.cviu.2006.07.014

[32] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” in Proceedings of the Eighteenth International Conference on

Machine Learning, ser. ICML ’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, pp. 282–289. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645530.655813

[33] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Darrell,
“Hidden conditional random fields,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1848–1852, 2007.
[34] X. Feng and P. Perona, “Human action recognition by sequence of

movelet codewords,” in 3D Data Processing Visualization and Trans-

mission, 2002. Proceedings. First International Symposium on, 2002,
pp. 717–721.

[35] W.-L. Lu and J. Little, “Simultaneous tracking and action recognition
using the pca-hog descriptor,” in Computer and Robot Vision, 2006. The

3rd Canadian Conference on, June 2006, pp. 6–6.
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