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Abstract 

This paper proposes a model for obnoxious waste location-routing problem (LRP) considering 

various types of wastes and several treatment technologies. The investigated distribution network 

includes three echelons of generation nodes, treatment and disposal facilities. A multi-objective 

LRP model is developed with three objective functions minimizing the treatment and disposal 

facility undesirability, different costs related to the problem, and eventually the risk associated with 

transportation of untreated materials. An effective memetic algorithm is developed in which a tabu 

search algorithm performs the local search. Comparison of exact and meta-heuristic methods run 

times confirms that the proposed method is effective. Eventually, the developed algorithm is tested 

on a real-life case study. 

 

Keywords: obnoxious materials; location-routing problem (LRP); memetic algorithm; multi-criteria 

decision making (MCDM). 

 

1. Introduction 

Rapid industrial and technological development in recent years has increased the amount of 

generated wastes by different businesses. A significant portion of these wastes are obnoxious 

materials such as the wastes generated by dry cleaners, auto repair shops, exterminators, chemical 

manufacturers, and oil refineries. Obnoxious materials are defined as substances which threaten life 

and health of people and animals, and their environment. Explosive gases and liquids, flammable 

solids, toxic substances, corrosives, radioactively contaminated materials, nuclear wastes, and home 

wastes are examples of obnoxious and hazardous materials (HazMats). About 4 billion tons of 

HazMats are transported annually worldwide (Carotenuto et al., 2007). In 2007, 17.8% of the total 

transported materials in the US were hazardous (Androutsopoulos and Zografos, 2010). 

Transporting these materials caused 88 serious incidents resulting in 15 deaths, 35 injuries, $37.75 

million property damage in 2003 in the USA only (Erkut, 2007). 
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Hazardous wastes are categorized into different types including universal, industrial, medical, 

construction, and electronic wastes like batteries and light bulbs, organic chemical production 

wastes, used needles, asbestos tiles, and computer CPUs, respectively. Before disposing these 

wastes, special treatment technologies are utilized for changing the physical, chemical, or biological 

characteristics of them in order to minimize their danger to people and environment. Each waste 

type has to be treated with a compatible treatment technology. For instance, if computer CPUs or 

CRT monitors are incinerated, they will cause health problems.  

Due to the extensive risk of these materials, a variety of policies are devised for the purpose of 

storing, shipping, treating, and disposing of them. The policies are generally categorized into two 

groups of preventive and improving. Driver training, restricting transportation hours, special 

container specification, and special equipment are all regarded as preventive policies, while fire-

fighting measures, rescuing and evacuating the residents are classified as improving ones. For 

example, in the UK, the safety assessment federation (SAFED) program provides driver training to 

encourage safe and fuel-efficient driving through a wide range of factors (McKinnon et al., 2010). 

In addition, governments enforce regulations to ensure safe transportation of hazardous wastes. 

Prohibition of transporting hazardous wastes to town centers during restricted time of the day and 

obliging the supervisors to provide maximum safety are examples of government regulations. 

Consequently, companies may pass up the opportunity to use the routes with minimum costs, and 

choose the paths with higher costs but lower risks in order to adapt hazardous waste transportation 

laws. In other words, transportation companies try to keep costs as low as possible while 

governments insist on reducing transportation risk. Risk reduction policies, government regulations, 

and trade-off between risk and cost makes hazardous waste management problems more 

complicated. Hazardous waste management is dealing with collection, treatment, and disposal of 

waste materials in order to bring safety to the environment and health to human societies.  

Hazardous waste location-routing problems (LRP) are developed in order to make the 

management of hazardous wastes efficient. In hazardous waste LRPs, location of the facilities like 

treatment and disposal centers, and shipping routes are determined based on different factors like 

facility opening and material transportation costs, risks to the people living in the facilities’ 

proximity, safety of the paths, and governmental laws.  

Because of the nature of these problems, majority of research articles in the area focus on 

minimizing cost and risk. Since several stakeholders with various objectives are involved in such 

decisions, a three-objective hazardous waste LRP with the goal of minimizing facility undesirability 

besides the cost and risk is investigated in this paper. We also take into account different types of 

wastes and consequently different treatment technologies to make the problem more realistic. 

Considering three objective functions results in increasing the time needed for solving the model 
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drastically particularly in large-scale problems. In order to address this issue, the problem is 

decomposed into two sub-problems of location and routing with two objective functions in each. 

The outputs of location sub-problem are considered as inputs for the routing sub-problem. 

Decomposing the model also allows us to use a variety of cost and risk measures in each sub-

problem. 

Hazardous waste LRP is NP-hard since it can be reduced to an uncapacitated facility location 

problem which is itself a NP-hard problem (Alumur and Kara, 2007). That is, computational effort 

for finding the exact solution of large-scale problems increases significantly. In this paper, a 

solution method based on a combination of memetic algorithm (MA) and tabu search (TS) is 

developed in order to obtain near optimum solution in reasonable time. 

The remainder of this paper is structured as follows: In Section 2, related papers in the HazMat 

LRP literature are reviewed. Section 3 presents the problem description. The problem is formulated 

in Section 4. The solution method is proposed in Section 5. Test problems and computational results 

are presented in Section 6. In Section 7, the model is implemented on a case study in Singapore. 

Section 8 concludes the paper and provides future research suggestions. 

 

2. Literature review 

In Table 1, related papers in the literature are categorized based on characteristics of the 

investigated LRP. The last row of the table compares the contribution of this research against the 

literature. In this section, gaps in the literature are highlighted, and contribution of this research in 

filling the gaps is explained. 
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Table 1. Classifications in the literature of hazardous waste LRP research papers. 
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Zografos and 

Samara (1989) 
                   

List et al. (1991)                    

Revelle et al. 

(1991) 
                   

Stowers and 

Palekar (1993) 
                   

Jacobs and 

Warmerdam 

(1994) 

                   

Current and 

Ratick (1995) 
                   

Wyman and 

Kuby (1995)                      

Giannikos 

(1998) 
                   

Nema and 

Gupta (1999) 
                   

Nema and 

Gupta (2003) 
                   

Zhang et al. 

(2005) 
                   

Alumur and 

Kara (2007) 
                   

Caballero et al. 

(2007) 
                  

Xie et al. (2012)                    

Boyer et al. 

(2013) 
                   

Samanlioglu 

(2013) 
                    

Berglund and 

Kwon (2014) 
                   

Our suggested 

model 
                   

 

Majority of papers in the literature of hazardous waste LRP formulate problems as multi-

objective mathematical models since different criteria impact locations of facilities and routing 

decisions. Most related research papers in the literature are similar in considering the risk and cost 

as objective functions (e.g. Alumur and Kara, 2007; Xie et al., 2012; Samanlioglu, 2013; Zhao and 

Verter, 2015). In order to minimize environment-related risks and total cost, Zhao and Verter 

(2015) present a bi-objective model for the LRP. They have applied a modified weighted goal 

programming approach. Samanlioglu (2013) minimizes total costs of transporting and processing 

hazardous wastes, transportation risk which threatens people living along the routes, and site risks 

which are caused by disposal and treatment facilities. Another important criterion which is taken 

into account in some papers is distributing the risk equitably among different population centers 
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(e.g., Wyman and Kuby, 1995; Giannikos, 1998; Zhang et al., 2005). Zhang et al. (2005) develop a 

multi-objective mathematical model to minimize costs and potential risks, and to maximize risk 

equity. In this paper, besides costs and transportation risks, facility undesirability and vehicle 

utilization are minimized. 

Hazardous waste managers try to manage different types of wastes which usually need special 

treatment and disposal facilities. Therefore, it is reasonable to differentiate among different waste 

types in modelling LRPs. In early research efforts in this area, it is assumed there is only one type 

of hazardous waste to simplify the problem. For the first time, List et al. (1991) investigated 

different types of wastes, and consequently, different treatment technologies. Similarly, in this 

paper, simplifying assumption of single waste and technology in hazardous waste LRP is relaxed. 

Different types of hazardous wastes have to comply with vehicles used to ship them. As 

instance, solid wastes are transported in different vehicles than those used for liquid wastes. In 

addition, vehicles have different capacities which impact transportation costs. Hence, in real-world 

hazardous waste LRPs, choosing the appropriate vehicle to ship the wastes is one of the concerns of 

managers which have not been investigated in the literature so far. In this paper, different types of 

vehicles with different capacities are considered in order to model a more realistic problem. 

Demand of generation nodes and capacity of the treatment and disposal facilities are two main 

factors based on which decisions on the number of required facilities are made. In some research 

papers, like Zhang et al. (2005) and Berglund and Kwon (2014), it is assumed that the capacity of 

waste processing facilities is unlimited which is a simplifying assumption. It is appropriate to 

consider capacitated facilities in order to make the model applicable for real-world problems. In this 

paper, capacity of treatment facilities and disposal centers is limited.   

In some cases, hazardous wastes can be recycled in generation nodes and/or treatment facilities. 

This reduces the raw material and energy consumption, and amount of wastes that need to be 

disposed. In treatment facilities, besides recycling the wastes, they are treated in order to reduce 

their negative effects on people and environment. After treatment, the wastes are no longer 

hazardous. Therefore, transporting the treated wastes from treatment facilities to disposal facilities 

does not threaten the population along the routes anymore. In order to consider the difference 

between managing wastes before and after treatment, it is appropriate to take into account three 

different levels of generation nodes, treatment facilities, and disposal facilities; which is how the 

problem is defined in this paper. Majority of the research papers in the literature consider two levels 

of generation nodes and treatment/disposal facilities (e.g. Giannikos, 1998; Caballero et al., 2007; 

and Berglund and Kwon, 2014). 

In some research papers like Alumur and Kara (2007), Xie et al. (2012), Samanlioglu (2013), 

and Li et al. (2015), the applicability of the model is demonstrated by solving a real case problem. 
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Alumur and Kara (2007) implement their model in the Central Anatolian region of Turkey. Xie et 

al. (2012) justify their model by using it to solve the problem in 20 southern states of United States. 

Samanlioglu (2013) apply the model to solve the hazardous waste LRP in Marmara region of 

Turkey. Li et al. (2015) have chosen an industrial intensive district in Hebei Province in China as an 

empirical object to study their model result. We examined our model in a case study of hazardous 

waste management in Singapore.  

Considering the problem in single period context and ignoring the uncertainty of demand in 

hazardous waste LRPs is a gap in the literature. Only Jacobs and Warmerdam (1994) investigate the 

problem in multi-period context, and Berglund and Kwon (2014) is the only research paper that 

takes into account the uncertainty of demand. This gap would be addressed in future research. 

 

3. Problem Description 

In an attempt to reduce energy and raw material consumption, a part of hazardous wastes are 

recycled in generation nodes. The remainder is transported to treatment centers on different types of 

vehicles with different capacities. Using treatment technologies, a part of wastes are recycled and 

remainders are treated. Harmless residue of wastes is transported to disposal facilities. A schematic 

presentation of the process is depicted in Figure 1.  

RecyclingRecycling

ResiduesWastes

Generation 

Nodes

Treatment 

Centers

Disposal 

Sites
 

Figure 1. A schematic view of the network. 

 

In order to have a better understanding of the problem, the stages and the routes in which 

vehicles travel are shown in Figure 2 which is called a 3/R/T layer diagram. “3” is the number of 

layers; “R” means return and “T” means tour. The lines show the routes of vehicles. Difference in 

types of lines reflects different types of wastes transported by their consistent vehicles. The figure 

demonstrates that a specialized vehicle travels through generation nodes 1 to 3 and transports no 

more than one particular type of waste to the treatment center. Another vehicle does the same for 

generation nodes 4 and 5. The wastes are then processed and the remaining materials, which are not 

by any means valuable, are transported to disposal sites. Each of the disposal sites 1 to 3 is adapted 
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to bury residue of all types of hazardous wastes. As the result, vehicles transport different types of 

worthless remaining materials to disposal sites. 

It is noticeable that vehicles assigned to a specific type of waste are parked in the treatment 

center which is equipped with technology of treating that type of waste. Hence, vehicles start their 

travel from treatment centers and return to the same place. 

G1

G5

G2

DIS 1

Treatment

Center

DIS 2

DIS 3

G3 G4

 
Figure 2. The 3/R/T layer diagram of the problem. 

 

This study aims to introduce a model and a solution method for hazardous waste facility 

location and routing problem in order to manage the wastes in an efficient way with low risks. In 

this paper, the location-routing problem is formulated as a three-objective mathematical model. The 

model is broken down into two different parts: first one includes two objective functions of evenly 

distributing the facility undesirability and minimizing facility location costs; the second one aims to 

minimize transportation costs and risks. The reason of decomposing the problem into two parts is 

that since establishing obnoxious facilities often raises governmental and non-governmental 

organizations’ resistance, related decisions are so risky, and it is probable to loss a huge amount of 

money due to inaccurate decision making. Therefore, undesirability of facilities and relevant costs 

should be studied and modeled independently from other decisions in LRP like routing and its 

costs. 

Regarding location decisions, this paper attempts to select facility sites from specific potential 

locations as they cannot be established in all places due to governmental and environmental 

regulations. The capacities of treatment and disposal facilities are considered to be limited. 

As different types of wastes are studied, waste-vehicle compatibility constraints are considered 

to ensure that wastes are transported using consistent vehicles. In addition, as different treatment 

technologies are needed to process different types of wastes, waste-technology compatibility 

constraints are taken into account to guarantee that wastes are in accordance with related treatment 

technologies.  
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The opportunity to select among different types of vehicles with different capacities helps to 

transport the wastes between nodes more efficiently. Since vehicles are capacitated, the problem is 

of CVRP (Capacitated Vehicle Routing Problem) type. There is no partial delivery in the problem, 

which means demand for any product in any point is supplied by only one vehicle. It is assumed 

that waste transportation cost is independent of the waste type. Therefore, the transportation cost 

depends on the quantity of transported wastes and the tour length traveled. The problem data are 

assumed to be constant in a long period of time which makes the problem of static type. Demand in 

generation nodes is assumed to be deterministic. 

 

4. Problem Formulation 

In this section we formulate the problem as an optimization model that can provide a basis for the 

solution technique. First, we introduce notations used in the model and then present a closed-form 

formulation. 

 

4.1. Notations 

Main notations of the model are m/o/ w, where m is number of disposal sites, o indicates number of 

technology types, and w is the number of waste types. The notations used in the model are 

introduced as follows: 

 

Sets 

𝐺𝐸𝑁: Set of generation nodes 

𝑇𝑅: Set of potential locations for treatment centers 

𝐷𝐼𝑆: Set of potential locations for disposal centers 

𝑄: Set of treatment technologies, indexed by 𝑞 

𝑊: Set of hazardous waste types, indexed by 𝑤 

𝑉: Set of vehicle types, indexed by 𝑣 

 

Decision variables 

𝑛𝑞𝑖: A binary variable equal to 1 if treatment technology q is found at potential location i; 0 

otherwise 

𝑢𝑖: A binary variable equal to 1 if a disposal center is established at potential location i; 0, 

otherwise. 

𝑦𝑣: A binary variable equal to 1 if vehicle v is used; 0, otherwise. 

𝑡𝑤𝑞: A binary variable equal to 1 if waste w is assigned to treatment technology q; 0, otherwise. 

𝑚𝑤𝑣: A binary variable equal to 1 if waste w is shipped using vehicle v; 0, otherwise. 



9 
 

𝑥𝑖𝑗𝑣: A binary variable equal to 1 if vehicle v is used to transport wastes through link (i, j) 

𝑧𝑖: Quantity of wastes disposed at disposal center i 

 

Parameters 

Ψ: Untreated waste vehicle leasing or purchasing cost in a certain period of time 

𝛼𝑤𝑖: Recycling percentage of hazardous waste of type w in generation node i  

𝛽𝑤: Recycling percentage of hazardous waste of type w in the corresponding treatment center 

𝜆𝑞: Undesirability ratio of disposal centers to treatment center equipped with treatment technology 

q.  

𝜂: Treated waste vehicle leasing or purchasing cost in a certain period of time 

𝑐𝑖𝑗: Transportation cost between nodes i and j which is independent of quantity 

𝑑𝑖𝑗: Distance between node i and j 

𝑝𝑤𝑖: Quantity of hazardous waste w produced in generation node i 

𝑓𝑞𝑖: Fixed cost of establishing treatment technology q at potential location i 

𝑔𝑖: Fixed opening cost of a disposal center at potential location i 

𝑘𝑣: Capacity of vehicle v for hazardous wastes before treatment 

𝑙: Capacity of each vehicle for treated wastes  

𝑎𝑞𝑖: Capacity of treatment technology q in potential location i 

𝑜𝑖: Capacity of disposal center i  

𝑒𝑖: Number of people living in node i 

γ, θ: Parameters determined by decision maker 

𝑟𝑖𝑗𝑤: Risk of transporting one unit of hazardous waste w on link (i, j) 

𝑏𝑖𝑗: Full truckload cost for transporting treated wastes through shortest path from treatment center i 

to disposal center j  

ℎ(𝑆): Minimum number of vehicles needed to serve set S, S⊆GEN  

According to notations explained above, the problem can be formulated as follows: 

𝑀𝑖𝑛 𝑍1 = ∑ ∑ ∑
(𝑒𝑖𝑎𝑞𝑗𝑛𝑞𝑗)𝛾

𝑑𝑖𝑗
𝜃

𝑞∈𝑄𝑗∈𝑇𝑅𝑖∈𝐺𝐸𝑁

+ ∑ 𝜆𝑞

𝑞∈𝑄

( ∑ ∑
(𝑒𝑖𝑜𝑗𝑢𝑗)

𝛾

(𝑑𝑖𝑗)𝜃

𝑗∈𝐷𝐼𝑆𝑖∈𝐺𝐸𝑁

 )                                        (1) 

𝑀𝑖𝑛 𝑍2 =  ∑ ∑ 𝑓𝑞𝑖𝑛𝑞𝑖

𝑖∈𝑇𝑅𝑞∈𝑄

+ ∑ 𝑔𝑖𝑢𝑖

𝑖∈𝐷𝐼𝑆

+ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑣

𝑣𝑗∈𝑇𝑅𝑖∈𝐺𝐸𝑁

+ 𝛹 ∑ 𝑦𝑣

𝑣

+ ∑ ∑ ∑ 𝑏𝑖𝑗𝑛𝑞𝑖

𝑞∈𝑄𝑗∈𝐷𝐼𝑆𝑖∈𝑇𝑅

⌈
𝑧𝑗𝑢𝑗

𝑙
+ 1⌉ + 𝜂 ∑ 𝑢𝑖

𝑖∈𝐷𝐼𝑆

                                                             (2) 

𝑀𝑖𝑛 𝑍3 =  ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑣𝑟𝑖𝑗𝑤𝑚𝑤𝑣

𝑤𝑣𝑗∈𝑇𝑅𝑖∈𝐺𝐸𝑁

                                                                                               (3) 
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∑ 𝑛𝑞𝑖

𝑖∈𝑇𝑅

= 1                                                                                ∀𝑞 ∈ 𝑄                                                       (4) 

∑ 𝑡𝑤𝑞

𝑞∈𝑄

= 1                                                                                ∀𝑤 ∈ 𝑊                                                     (5) 

∑ 𝑎𝑞𝑗𝑛𝑞𝑗

𝑗∈𝑇𝑅

≥  ∑ ∑ (1 − 𝛼𝑤𝑖

𝑖∈𝐺𝐸𝑁𝑤∈𝑊

)𝑝𝑤𝑖𝑡𝑤𝑞                        ∀𝑞 ∈ 𝑄                                                       (6) 

∑ 𝑜𝑗𝑢𝑗

𝑗∈𝐷𝐼𝑆

≥ ∑((1 − 𝛽𝑤

𝑤

) ∑ (1 − 𝛼𝑤𝑖

𝑖∈𝐺𝐸𝑁

)𝑝𝑤𝑖)                                                                                     (7) 

∑ 𝑚𝑤𝑣

𝑤

= 1                                                                              ∀ 𝑣                                                               (8) 

∑ 𝑥𝑗𝑖𝑣

𝑖∈𝐺𝐸𝑁

= 𝑚𝑤𝑣𝑡𝑤𝑞𝑣𝑞𝑗                                                        ∀𝑗 ∈ 𝑇𝑅, 𝑣 ∈ 𝑉, 𝑞 ∈ 𝑄, 𝑤 ∈ 𝑊               (9) 

∑ 𝑥𝑖𝑗𝑣

𝑖∈𝐺𝐸𝑁

= 𝑚𝑤𝑣𝑡𝑤𝑞𝑣𝑞𝑗                                                         ∀𝑗 ∈ 𝑇𝑅, 𝑣 ∈ 𝑉, 𝑞 ∈ 𝑄, 𝑤 ∈ 𝑊             (10) 

∑ ∑ 𝑥𝑖𝑗𝑣𝑚𝑤𝑣

𝑣

= 1

𝑖∈𝐺𝐸𝑁∪𝑇𝑅

                                                    ∀𝑖 ≠ 𝑗, 𝑗 ∈ 𝐺𝐸𝑁, 𝑤 ∈ 𝑊                        (11) 

∑ ∑ 𝑥𝑖𝑗𝑣𝑚𝑤𝑣

𝑣

= 1

𝑗∈𝐺𝐸𝑁∪𝑇𝑅

                                                   ∀𝑖 ≠ 𝑗, 𝑖 ∈ 𝐺𝐸𝑁, 𝑤 ∈ 𝑊                         (12) 

∑ 𝑥𝑖𝑗𝑣

𝑗∈𝐺𝐸𝑁∪𝑇𝑅

= ∑ 𝑥𝑗𝑘𝑣

𝑘∈𝐺𝐸𝑁∪𝑇𝑅

                                            ∀𝑗 ∈ 𝐺𝐸𝑁, 𝑣 ∈ 𝑉                                     (13) 

𝑦𝑣 ≥  𝑥𝑖𝑗𝑣                                          ∀ 𝑣, (𝑖, 𝑗) ∈ {(𝐺𝐸𝑁, 𝐺𝐸𝑁), (𝐺𝐸𝑁, 𝑇𝑅), (𝑇𝑅, 𝐺𝐸𝑁)}                (14) 

𝑚𝑤𝑣 ( ∑ 𝑝𝑤𝑖

𝑖∈𝐺𝐸𝑁

∑ 𝑥𝑖𝑗𝑣

𝑗∈𝐺𝐸𝑁∪𝑇𝑅

) ≤ 𝑘𝑣                                 ∀ 𝑣, 𝑤                                                        (15) 

∑ 𝑧𝑗𝑢𝑗

𝑗∈𝐷𝐼𝑆

=  ∑((1 − 𝛽𝑤) ∑ (1 − 𝛼𝑤𝑖)𝑝𝑤𝑖)

𝑖∈𝐺𝐸𝑁𝑤

                                                                                  (16) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑣

𝑣𝑗𝑖

≥ 𝑡(𝑆)                                                           ∀ 𝑆 ⊆ 𝐺𝐸𝑁, 𝑆 ≠ ∅                                  (17) 

𝑧𝑗 ≤ 𝑀𝑢𝑗                                                                                    ∀ 𝑗 ∈ 𝐷𝐼𝑆                                                   (18) 

𝑧𝑖 ≥ 0                                                                                        ∀ 𝑖 ∈ 𝐷𝐼𝑆                                                    (19) 

𝑛𝑞𝑖, 𝑢𝑖 , 𝑦𝑣, 𝑡𝑤𝑞 , 𝑚𝑤𝑣, 𝑥𝑖𝑗𝑣 ∈ {0,1}                                         ∀𝑖, 𝑗, 𝑞, 𝑤, 𝑣                                                (20) 

 

Objective function (1) minimizes the sum of treatment and disposal centers’ undesirability 

throughout the region. Undesirability of a facility to a specific node is an increasing function of the 

population living in the node and the facility size, and a decreasing function of the distance between 

the node and the facility. The value of γ and θ should be determined by decision makers based on 
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the characteristics of their problem. It is clear that if γ increases the undesirability grows, and 

increasing θ means reducing undesirability. For example, regarding the population, if the number of 

children and old people in a population is a big number, the decision maker should assign a greater 

value to parameter γ. θ should be determined according to the characteristics of the hazardous 

material. For example the influence radius of a material is different than that of the others. The 

decision maker should choose a higher value for θ if the influence radius of the material is small. 

Undesirability of a disposal centre could be considered more or less than that of a treatment centre. 

After treating the materials in treatment centers, the residues are normally less hazardous compared 

to the materials before treatment. 𝜆𝑞 determines the fraction of risk remained after treatment. 

Hence, the value of 𝜆𝑞 depends on the material and the treatment technology. The terms of 

objective function (2) correspond to location costs of treatment and disposal facilities, 

transportation costs of untreated wastes, cost of leasing the vehicles used for transporting untreated 

waste, transportation costs of residue wastes after treatments, and cost of leasing the vehicles used 

for transporting residue wastes, respectively. Objective function (3) minimizes the risk of 

transporting untreated wastes. It should be noted that residue wastes after treatment do not impose 

any risk on people and environment.  

Constraints (4) ensure that each type of treatment technology is available in only one treatment 

center. According to constraints (5), each waste type is consistent with only one treatment 

technology. Constraints (6) state that total capacity of settled treatment centers is greater than the 

demand of generation nodes after subtracting the amount of recycled wastes. Constraints (7), 

similarly, represent the capacity constraints for disposal facilities. Constraints (8) enforce that each 

waste type is transported using a specific vehicle type. As it is mentioned in Section 3, vehicles’ 

parking lot is located in treatment centers. Constraints (9) show that the vehicle assigned to a 

specific waste type starts its route from the treatment center which is equipped with technology for 

treating that type of waste. Constraints (10) enforce that the end point of a vehicle’s route is the 

related treatment center. Constraints (11) and (12) guarantee that only one corresponding vehicle to 

each waste type enters and leaves a generation node. Constraints (13) stipulate that each vehicle 

which enters a generation node leaves it. According to constraints (14), variable 𝑌𝑣 is 1 if vehicle v 

is used on at least one link. Constraints (15) enforce capacity limitations for vehicles. Constraint 

(16) guarantees that total amount of residue wastes after treatment are disposed in disposal centers. 

Constraints (17) are sub-tour elimination constraints associated with the problem called Capacity 

Cut Constraints (CCC). Constraints (18) ensure that residue wastes are disposed in a disposal centre 

only if it is established. Constraints (19) and (20) identify types of the variables. 
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5. Solution Method 

5.1. Decomposing the Model 

As it is shown in the previous section, the model contains 3 objective functions. To solve the model, 

we divide it into two bi-objective models using MODM method. The solution technique is thus 

hierarchical including one location problem and one routing problem. The results of solving the first 

model are considered as parameters in second one. In doing so, the location and routing problems 

can be solved and modified separately. Two bi-objective models are as follows: 

𝑀𝑖𝑛 𝑍1 = ∑ ∑ ∑
(𝑒𝑖𝑎𝑞𝑗𝑛𝑞𝑗)𝛾

𝑑𝑖𝑗
𝜃

𝑞∈𝑄𝑗∈𝑇𝑅𝑖∈𝐺𝐸𝑁

+ ∑ 𝜆𝑞

𝑞∈𝑄

( ∑ ∑
(𝑒𝑖𝑜𝑗𝑢𝑗)

𝛾

(𝑑𝑖𝑗)𝜃

𝑗∈𝐷𝐼𝑆𝑖∈𝐺𝐸𝑁

 )                                         (21) 

𝑀𝑖𝑛 𝑍2 =  ∑ ∑ 𝑓𝑞𝑖𝑛𝑞𝑖

𝑖∈𝑇𝑅𝑞∈𝑄

+ ∑ 𝑔𝑖𝑢𝑖

𝑖∈𝐷𝐼𝑆

                                                                                                      (22) 

Subject to: 

Constraints (4)-(7) 

𝑛𝑞𝑖, 𝑢𝑖 , 𝑡𝑤𝑞 ∈ {0,1}                                                                     ∀𝑖, 𝑞, 𝑤                                                      (23) 

Objective function (21) is the same as objective function (1). Objective function (22) minimizes 

location costs of treatment and disposal facilities. By solving this model, decisions regarding the 

locations of treatment and disposal facilities and assigning the technologies to established treatment 

centers, and wastes to technologies are made. The variables of the first model, 𝑛𝑞𝑖 and 𝑢𝑖, are 

considered as parameters in the second model. They are represented by 𝑛𝑞𝑖
′  and 𝑢𝑖

′ in the following 

model: 

𝑀𝑖𝑛 𝑍3 = ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑣

𝑣𝑗∈𝑇𝑅𝑖∈𝐺𝐸𝑁

+ 𝛹 ∑ 𝑦𝑣

𝑣

+ ∑ ∑ ∑ 𝑏𝑖𝑗𝑛𝑞𝑖
′

𝑞∈𝑄𝑗∈𝐷𝐼𝑆𝑖∈𝑇𝑅

⌈
𝑧𝑗𝑢𝑗

′

𝑙
+ 1⌉

+ 𝜂 ∑ 𝑢𝑖
′

𝑖∈𝐷𝐼𝑆

                                                                                                                            (24) 

𝑀𝑖𝑛 𝑍4 =  ∑ ∑ ∑ ∑ 𝑥𝑖𝑗𝑣𝑟𝑖𝑗𝑤𝑚𝑤𝑣

𝑤𝑣𝑗∈𝑇𝑅𝑖∈𝐺𝐸𝑁

                                                                                                (25) 

Subject to 

Constraints (8)-(19) 

𝑦𝑣, 𝑚𝑤𝑣, 𝑥𝑖𝑗𝑣 ∈ {0,1}                                                               ∀𝑖, 𝑗, 𝑤, 𝑣                                                      (26) 

 

Objective function (24) minimizes transportation costs, and vehicles’ leasing or purchasing costs. 

Objective function (25) is the same as objective function (3). Results of this model determine 

routing and vehicle utilization decisions, and the amount of wastes disposed in each disposal center.  
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5.2. Solution Technique 

It is a common practice in the literature to use Sequential Methods, Iterative Methods, and Nested 

Methods to attack LRPs (Tuzun and Burke, 1999). Min et al. (1998) and Balakrishnan et al. (1987) 

believe that sequential methods are preferred for problems with considerable fixed cost of facilities 

and small number of vehicles from computational perspective. 

Since the LRP is NP-hard (Alumur and Kara, 2007), using heuristic methods to solve the large-

scale problems is more efficient in terms of computational efforts. As it is shown in Table 2, we 

categorize 78 research papers in the scope of location-routing into 6 groups based on their solution 

methods.  

Table 2. Classification of solution methods. 

Exact Heuristics Meta-heuristics 
Combination of 

meta-heuristics 

Combination of 

heuristics and 

meta-heuristics 

Combination of 

exact and 

heuristics 

Zografos and Samara 

(1989) 

Nagy and Salhi 

(1996) 

Tuzun and Burke 

(1999) 

Melechovskys et al. 

(2005) 
Wu et al. (2002) Prodhon (2007) 

List et al. (1991) 
Murty and Djang 

(1998) 
Lin et al. (2002) Liu and Lin (2005) 

Ozyurt and Aksen 

(2005) 

Androutsopoulos 

and Zografos (2012) 

Revelle et al. (1991) Chan et al. (2001) Lee et al. (2003) 
Bouhafs et al. 

(2006) 
Prins et al. (2007) 

Bronfman et al. 

(2015) 
Stowers and Palekar 

(1993) 
Liu and Lee (2003) Sambola et al. (2005) 

Caballero et al. 

(2007) 
Prodhon (2007) Li et al. (2015) 

Jacobs and 

Warmerdam (1994) 

Cappanera et al. 

(2003) 
Prins (2006) 

Lin and Kwok 

(2006) 
Klibi (2008)  

Current and Ratick 

(1995) 

Wasner and Zapfel 

(2004) 

Prodhon and Prins 

(2008) 

Bouhafs et al. 

(2008) 

Duhamel et al. 

(2010) 
 

Wyman and Kuby 

(1995) 

Chan and Baker 

(2005) 
Marinakis (2008) 

Doerner et al. 

(2007) 
Moccia et al. (2012)  

Giannikos (1998) Zhang et al. (2005) 
Schwardt and Fischer 

(2008) 
Dalfard et al. (2013) 

  
Nema and Gupta 

(1999) 
Barreto et al. (2007) 

Schittekat and 

Sörensen (2009) 
   

Nema and Gupta 

(2003) 
Sambola et al. (2007) Yu et al. (2010)    

Ambrosino and 

Scutella (2005) 

Salhi and Nagy 

(2007) 
Derigs et al. (2010)    

alumur and Kara 

(2007) 

Androutsopoulos and 

Zografos (2010) 

Pradhananga et al. 

(2010) 
  

 

Aksen et al. (2008) Mendoza et al. (2011) 
Nguyen et al. 

(2012a) 
  

 

Contardo (2007) 
Karaoglan et al. 

(2012) 

Nguyen et al. 

(2012b) 
  

 

Lopes (2008) Willmer et al. (2013) Derbel et al. (2012)   
 

Akca (2008)  
Ting and Chen 

(2013) 
  

 

Akca et al. (2009)  Escobar et al. (2013)  
  

Rieck and 

Zimmermann (2010) 
 

Berglund and Kwon 

(2014)    

Baldacci et al. (2011)  
Assadipour et al. 

(2015)    
Belenguer et al. 

(2011) 
  

   

Li and Leung (2011)   
   

Xie et al. (2012)   
   

Boyer et al. (2013)      

Samanlioglu (2013)   
   

Berglund and Kwon 

(2014) 
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Most research papers, that solve the model to optimality, like List et al. (1991), Stowers and 

Palekar (1993), Current and Ratick (1995), and Wyman and Kuby (1995) exploit optimization 

software like GAMS and LINDO; and CPLEX as the solver. However, it is not efficient to use 

optimization software for solving real-life large scale problems. In order to tackle this issue, meta-

heuristic methods like Tabu search, simulated annealing, ant colony, particle swarm, genetic 

algorithm, memetic algorithm, variable neighborhood search, and neural network are used to solve 

location-routing models.  

The existing studies suggest that tabu search (TS) algorithm may be an appropriate method to 

solve the problem. Since TS is an improving algorithm, and the main factor affecting the optimal 

solution while using improving algorithms is the initial solution, genetic algorithm (GA) can be 

applied in order to generate initial solution to be fed to TS. 

While classical genetic algorithm is often claimed to be deficient in terms of sufficient search 

intensification, memetic algorithm (MA) takes advantage of capability of efficient heuristics by 

combining domain knowledge and population-based search approaches like GA (Pishvaee et al., 

2009, and Shen et al., 2015). MA has been widely used in optimization problems such as 

distribution problems (Boudia and Prins, 2009), timing problem (Moghaddam et al., 2009), and etc. 

As the result, the method used here will be an MA in which TS algorithm does the local search. We 

generate the initial solution using GA, and then apply TS to improve the solution. TS uses the 

current best solution as an initial solution to be improved using curve-fitting with respect to 

population property of a set of generated solutions. 

 

5.3. Chromosome Representation 

Location Model: If N is the number of potential locations for disposal facilities and K is the number 

of treatment technologies, the chromosome length is N+K. In Figure 3, T indicates the location of 

corresponding treatment technology Q.  

 

1 2 3 … N-1 N 𝑄1 … 𝑄𝑘 

0 1 0 … 1 0 T(a) … T(f) 
Figure 3. Location chromosome representations. 

 

 

Routing Model: An arbitrary solution for routing model is shown in Figure 4. It is considered that 

the number of waste types is 2 and the number of customers is 12. Each waste type is collected 

using the corresponding vehicle through 3 trips.  
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Figure 4. An arbitrary routing solution. 

 

Figure 5 shows the chromosome representation of this solution. The numbers inside the boxes are 

customers’ ids and the ones above the boxes indicate the sequence based on which the vehicle visits 

the customers.  

 

1 2 3 4 5 6 7 

2 1 6 5 𝑄1   

       

7 4 𝑄1     

       

3 8 9 11 12 10 𝑄1 

       

6 3 7 𝑄2    

       

8 5 1 2 𝑄2   

       

11 9 12 10 4 𝑄2  
Figure 5. Routing chromosome representations. 

 

5.4. Memetic Algorithm 

The steps of memetic algorithm are as follows: 
 

Step 1: Initiation. 

Generate chromosomes randomly. 

If the chromosome is a feasible solution, 

Collect chromosomes to obtain defined population 

Step 2: Evaluation 

Calculate the value of two objective functions. 

Calculate the fitness value. 

Step 3: Selection 

Select four parents using roulette wheel method of selection from current population. 

Step 4: Operators 

 Apply crossover operator on selected parents to generate offspring.  

Apply mutation operator on selected parents to generate offspring. 

Calculate the fitness value. 

Step 5: Local search 

Waste Type 1 

2 1 6 5   

      

7 4     

      

3 8 9 11 12 10 

 

Waste Type 2 

6 3 7   

     

8 5 1 2  

     

11 9 12 10 4 
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Apply TS algorithm for generated offspring. 

Calculate the value of two objective functions. 

Calculate the fitness value. 

Choose the best offspring according to fitness value and remove the other offspring. 

Put the current solution (chromosome) into new population. 

Step 6: Termination 

If the evolution loops replicate invariable times, stop the run, if not, go to step 3. 

 

It is worthwhile to mention that we use roulette wheel method for generating the parents in step 

3. It means that there is randomness in selecting the offspring. In addition, in the local search, we 

first apply TS algorithm, then we choose the best offspring. Hence, we do not necessarily select 

super genes or super chromosomes. 

   

6. Computational results 

In this section, 10 sample problems are developed in order to show the applicability of the model. In 

developing the sample problems, parameters assumed in PRODHON sample problems are applied. 

These parameters include location coordinates of the nodes; number of customers; number of 

potential locations for treatment facilities; demand nodes for waste type 1; maximum capacity of 

treatment facilities; fixed opening cost of treatment facilities; maximum capacity of vehicles; and 

cost of using vehicles for transporting hazardous wastes. Other parameters which are shown in 

Table 3are randomly generated. Table 4 indicates general specifications and size of the test 

problems. 

 
Table 3. Data used in the test problems. 

Parameter Range (uniform) 
Η Half capacity of vehicle for HazMat in Prodhon tests 

αi [0,0.1] 

Β [0-0.5] 

Λ [0-10] 

Di [10-20] [1-10] 

Gi [100000-500000] 

L Double capacity of vehicle for HazMat in Prodhon 

tests 

Oi [200-1000] 

Pi [50-100] 

q,r {1,2,3} 

Rij [0-100][0-50][ 10-30] 
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Table 4. Size of the test problems. 

Vehicle 

capacity 

No. of 

waste type 

No. of potential 

treatment centres 

No. of potential 

disposal centres 

No. of 

Customer 

Problem 

No. 

70 1 3 3 5 1 

70 2 5 5 10 2 

70 2 5 5 20 3 

70 2 5 5 20 4 

150 2 5 5 20 5 

70 3 5 5 20 6 

70 4 5 5 20 7 

70 2 5 10 50 8 

70 2 5 10 100 9 

70 2 20 10 200 10 

 

For solving a n-objective model, fitness function incorporates the objective functions as follows: 

𝑀𝑎𝑥 𝑍(𝑥) = ∑ 𝛤𝑖𝑍𝑖(𝑥)

𝑝

𝑖=1

                                                                                                                               (27) 

Subject to: 

𝑥 ∈ 𝐹𝑑                                                                                                                                                                  (28) 

 

𝛤𝑖, which is a non-negative number, is the corresponding weight of i
th

 objective function. The 

weights are chosen based on the priority of objective functions. The new objective function for 

location and routing bi-objective models is as follows: 

𝑍𝑁𝑒𝑤 = 𝛤 (
𝑍1

𝑍1
∗ ) + (1 − 𝛤) (

𝑍2

𝑍2
∗)                                                                                                                (29) 

Where Z1 and Z2 are first and second objective functions and Z* denotes the optimal objective 

value obtained from solving single-objective model. 

Due to the significant negative effects of transporting hazardous wastes and people’s sensitivity 

to it, it is supposed that decreasing risk has higher priority than cost. Hence a greater weight is 

assigned to risk and undesirability. In this study, we assume that weight of the risk and 

undesirability is 0.6, and weight of the cost is 0.4. 

Test problems are solved using LINGO version 14.00 on a Dell, LATITUDE D630, Intel(R) 

Core 2 DUO 2 GHz computer with 2 GB RAM. Besides solving the problems to optimality, they 

are solved using MA, and the results are shown in Table 5. Figure 6 demonstrates run times of both 

exact and heuristic methods when cost is the only objective function. Figure 7 shows the run times 

in case that risk is the only objective function. Figure 8 indicates the run times of those two methods 

in case that both cost and risk are considered as objective functions. 
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Table 5. Computational results. 
N

o
. 

p
ro

b
le

m
 

Objective function 

Location Problem (Bi-Objective model with Z1 and Z2 as objective functions) 
Routing Problem (Bi-Objective model with Z3 and Z4 as 

objective functions) 

LINGO MA Error (%) LINGO MA Error (%) 

Z1 Z2 Time Z1 Z2 Time Z1 Z2 Z3 Z4 time Z3 Z4 time Z3 Z4 

1 

First objective function 1.41E+07 287263 0 1.41E+07 287263 0 0 0 5051 90 300 5053 90 174 0.03 0 

Second objective function 2.82E+07 231516 0 2.82E+07 231516 0 0 0 5219 66 350 5217 66 4 0.03 0 

Both objective 1.48E+07 251328 0 1.48E+07 251328 0 0 0 5079 94 279 5081 94 1 0.03 0 

2 

First objective function 4.54E+08 333863 0 4.54E+08 333863 0 0 0 
   

10317 752 426 
  

Second objective function 4.45E+08 345199 8 4.45E+08 345199 0 0 0 
   

11215 121 116 
  

Both objective 4.45E+08 345100 3 4.45E+08 345100 0 0 0 
   

10845 211 80 
  

3 

First objective function 3.51E+10 321768 0 3.51E+10 321768 0 0 0 
   

16625 1974 129 
  

Second objective function 3.42E+10 427215 6 3.42E+10 427215 0 0 0 
   

20418 135 2135.64 
  

Both objective 3.51E+10 321778 2 3.51E+10 321778 0 0 0 
   

17477 259 110.646 
  

4 

First objective function 1.37E+10 125519 1 1.37E+10 125519 0 0 0 
   

16572 1762 972 
  

Second objective function 5.37E+09 148298 5 5.37E+09 148298 0 0 0 
   

20106 152 988 
  

Both objective 5.48E+09 140874 2 5.48E+09 140874 1 0 0 
   

17646 365 24 
  

5 

First objective function 1.37E+10 125519 1 1.37E+10 125519 0 0 0 
   

8558 1421 973 
  

Second objective function 5.37E+09 148298 5 5.37E+09 148298 0 0 0 
   

12365 144 988 
  

Both objective 5.48E+09 140874 2 5.48E+09 140874 1 0 0 
   

9627 318 38 
  

6 

First objective function 1.09E+10 213762 1 1.09E+10 213762 1 0 0 
   

27893 4160 1484 
  

Second objective function 9.12E+09 231641 8 9.12E+09 231641 1 0 0 
   

32676 346 1585 
  

Both objective 9.23E+09 224217 5 9.23E+09 224217 2 0 0 
   

29248 905 241 
  

7 

First objective function 3.86E+10 234837 1 3.86E+10 234837 2 0 0 
   

33294 5078 2040 
  

Second objective function 1.78E+10 259022 11 1.78E+10 259022 2 0 0 
   

39245 663 2117 
  

Both objective 1.78E+10 249022 2 1.78E+10 249022 2 0 0 
   

37086 1202 1759 
  

8 

First objective function 1.89E+10 331154 3 1.89E+10 331154 0 0 0 
   

35876 7577 1708 
  

Second objective function 1.06E+10 477625 255 1.06E+10 477625 0 0 0 
   

57542 360 2192 
  

Both objective 1.13E+10 391038 13 1.13E+10 391038 0 0 0 
   

42909 1443 807 
  

9 

First objective function 6.45E+09 290714 0 6.45E+09 291714 0 0 0 
   

67657 16806 220 
  

Second objective function 2.26E+09 464323 855 2.26E+09 464323 1 0 0 
   

76943 5643 3 
  

Both objective 2.32E+09 429052 136 2.32E+09 429152 1 0 0 
   

7266 72497 264 
  

10 

First objective function    6.79E+05 6.59E+16 1      132836 15057 194   

Second objective function    2.94E+16 1.02E+06 1      246382 697 52898   

Both objective    3.49E+16 7.61E+05 1      140245 11453 195   
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Figure 6. Run times of exact and heuristic methods in case that cost is the only objective function. 
 

 
Figure 7. Run times of exact and heuristic methods in case that risk is the only objective function. 

 

 
Figure 8. Run times of exact and heuristic methods in case that both cost and risk are objective functions. 

 

 

7. Case Study 

In this section we describe structure of HazMat management system in Singapore. Handling 

HazMat shipments in Singapore, which includes transportation planning, routing and scheduling in 

order to reduce threat to life and property in the event of fire or explosion, is in the charge of the 

Singapore Civil Defence Force (SCDF). SCDF has specified approved transport routes in detail. 

Figure 9 illustrates a general overview of feasible routes for HazMat in Singapore. 
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Figure 9. Singapore map approved for HazMat bulk transportation (http://www.scdf.gov.sg). 

 

7.1. The Transportation Network 

We have considered Meng et al. (2005) network in Singapore. Meng et al. (2005) consider three 

types of roads including express way, primary and secondary road. Since their data are out-dated we 

have checked these roads. Several roads have been changed and promoted. However, since we are 

testing a problem in which types of roads are not playing a key role; we have not focused on it.  

 

Figure 10. HazMat transportation network in Singapore. 
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7.2. Population and Garbage Generation 

Singapore is divided into 28 separate districts. In this case study, we have considered 22 more 

important districts with respect to population, area and all information we have. Singaporeans live 

in three kinds of homes: Land, HDB and condominium. At least 80% of Singaporeans live in HDBs 

and we know that more than 91% of them are owner (this means in this part we will have more 

stable and reliable data that will not change too much in near future); on the other hand we have 

very precise information about HDBs. (visited in 02.07.2012: 

http://www.hdb.gov.sg/fi10/fi10221p.nsf/Attachment/UN_Public_Service_Award_2008/$file/Hom

e+Ownership+Programme.html). Thus we can focus on HDBs and justify our predictions with 

adding 20% to this kind of data. 

In Table 6, the basic data we are using are shown. National statistical authority is responsible 

for disseminating official statistics on Singapore. Singapore has more than 4.8 million habitant and 

63.2% of them are working. We have assumed that 40% of these working people leave their 

districts to the other districts to reach their working place (http://www.singstat.gov.sg/). This 

information is useful for the first period when all people are staying at home before going to their 

work place. 

 

Table 6. Calculated populations in different districts of Singapore based on the types of homes they are living in. 

District Longitude Latitude 
Total area 

(Hectares) 
Population 

# of employee 

population 

# of employee 

leaving district 

Ang Mo Kio 1.37173 103.847641 638 233255 147417 58967 

Bedok 1.324658 103.932381 937 311260 196716 78686 

Bishan 1.350397 103.848755 690 113771 71903 28761 

Bukit Batok 1.35002 103.749268 802 174970 110581 44232 

Bukit Merah 1.282653 103.818726 858 243007 153580 61432 

Bukit Panjang 1.380058 103.76432 489 178773 112985 45194 

CBD 1.285723 103.843801 - 43962.5 27784 11113 

Choa Chu Kang 1.385104 103.74501 583 240838 152209 60883 

Clementi 1.314352 103.765236 408 119835 75735.72 30294 

Geylang 1.320613 103.886932 678 149670 94591 37836 

Hougang 1.372581 103.893654 1276 274824 173689 69475 

Jurong East 1.324076 103.739896 384 125525 79332 31732 

Jurong West 1.339681 103.706795 987 401753 253908 101563 

Kallang 1.300682 103.874405 799 160639 101524 40609 

Pasir Ris 1.372442 103.949547 601 175276 110775 44309 

Punggol 1.398487 103.907924 957 109165 68992 27596 

Queenstown 1.29883 103.804001 667 138506 87536 35014 

Sembawang 1.448197 103.819485 708 112392 71032 28412 

Sengkang 1.389308 103.899536 1055 268668 169798 67919 

Serangoon 1.353446 103.872384 737 121648 76882 30752 

Tampines 1.352481 103.944611 1200 355551 224708 89883 

Toa Payoh 1.331461 103.849503 463 177833 112390 44956 

Woodlands 1.436046 103.786057 1198 346486 218979 87591 

Yishun 1.429725 103.835907 810 257313 162622 65048 

 

 

http://www.hdb.gov.sg/fi10/fi10221p.nsf/Attachment/UN_Public_Service_Award_2008/$file/Home+Ownership+Programme.html
http://www.hdb.gov.sg/fi10/fi10221p.nsf/Attachment/UN_Public_Service_Award_2008/$file/Home+Ownership+Programme.html
http://www.singstat.gov.sg/
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7.3. Hazardous Waste Types 

For HazMat shipments usually a 3-PL company has to apply for SCDF and ask for permission 

about the time and the route of shipment. SCDF will investigate the application with respect to the 

shipment specifications including HazMat class type, amount of it and also requested time span and 

will make the final decision. 

SCDF has divided the approved HazMat class types into two main groups as follows:  

 Petroleum (including Class 0, 1, 2 and three with respect to flash point) 

 Flammable Materials (Flammable Materials listed in the Second Schedule of the Fire Safety 

(Petroleum and Flammable Materials) Regulations 2005. These are numbered 237 types. 

The common licensable products which for them license application are needed can be found in 

SCDF website: 

(http://www.scdf.gov.sg/Building_Professionals/Fire_Safety_Licensing_and_Enforcement/Petroleu

m_Storage_Tpt.html) 

 

7.4. HazMat Risks 

In this case study we have considered the two major groups as the HazMat class types. Therefore, 

we have two HazMat types: petroleum and flammable materials. For the first group (petroleum) we 

have considered the worst case (the lowest flash point). Therefore, we set its evacuation distance 

equal to 1600 meters (Verter and Kara, 2008). For the second group (flammable materials) the 

impact zone is 800 meters in all directions (Meng et al., 2005); i.e. total population exposed for the 

class-1 HazMat is four time bigger than that for class-2 HazMat. 

 

7.5. Results and insights 

In order to solve a real world problem, we use data of the Singapore case study, and adjust them to 

fit the model. To solve the problem, 3 nodes are added to the network as potential locations for 

treatment centers. In addition, 2 nodes of the network are considered as potential locations for 

disposal centers. Based on the results, the disposal center, and treatment centers Q1 and Q2 are 

established in nodes 22, 25, and 24, respectively. 

According to the results, undesirability of the network grows significantly by increasing types 

of wastes, particularly when considering cost as the only objective function. However, it does not 

have a major effect on treatment and disposal facilities location costs. Similarly, transportation costs 

and vehicles leasing or purchasing costs do not change significantly. Moreover, changing number of 

customers results in a huge boost in undesirability. We infer from the results that both cost and risk 

increase as predicted, but the increasing rate of undesirability is much more than that of cost and 

risk. It is worth mentioning that the increase in risk is more than cost. 

http://www.scdf.gov.sg/Building_Professionals/Fire_Safety_Licensing_and_Enforcement/Petroleum_Storage_Tpt.html
http://www.scdf.gov.sg/Building_Professionals/Fire_Safety_Licensing_and_Enforcement/Petroleum_Storage_Tpt.html
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In order to investigate the impact of vehicle capacity on results, it is doubled while other 

parameters are constant. We observe that transportation costs decrease by half while risk diminishes 

by a small amount, however, undesirability and other costs do not change. It can be deduced that 

changing the capacity of fleet or vehicles is an operational strategy throughout the network. 

 

8. Conclusions and Future Research 

We proposed a three-objective model for hazardous waste location-routing problem. The proposed 

model is decomposed into two models and solved separately; location problem and routing 

problem. The results of the location model are considered as parameters in the routing model. The 

developed formulation in this paper makes the LRP capable of being solved for location and routing 

problems separately. Accordingly, it is solvable for any risk and cost measures of location and 

routing problems independently. 

Most problems solved in the literature are small-sized. The largest problem ever solved is the 

one considered by Alumur and Kara (2007), with 92 generation nodes and 20 candidate sites. In this 

paper, a large-scale problem is solved containing 200 generation nodes and 30 candidate sites 

whereas the computational time was less than that of Alumur and Kara (2007). 

Some wastes such as hospital and civil wastes cannot be transported together, and they also 

need different treatment technologies. Accordingly, various types of wastes and several treatment 

technologies have been considered in this research, which is more realistic. Based on this, wastes 

are sent to treatment facilities with relevant technologies. 

Literature review reveals the lack of an effective meta-heuristic method to solve LRP problems. 

This paper presents a meta-heuristic method which is effective in terms of computational time and 

quality of the solution. A memetic algorithm is designed alongside a TS algorithm that does the 

local search. The performance of the proposed meta-heuristic method is compared with that of the 

exact method.  

One assumption in this paper is that all parameters in the problem are deterministic and there is 

no uncertainty in the problem while, in practice, parameters like costs, undesirability factor, and the 

population of the region are mostly probabilistic or even fuzzy. Using different methods such as 

iterative or nested method, other heuristic and meta-heuristic methods like SA, AC, and comparing 

the quality of solutions and computational times would be a significant contribution. 

It should be noted that inventory management has not yet attracted much attention in LRP 

problems. In this case, in addition to finding optimum locations and tours, facility inventory 

constraints must be considered in the model. Furthermore, using step functions for transportation 

costs as a function of transport weight (Ghiani et al., 2004) makes the problem more realistic. Prices 
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offered by transporters are often nonlinear and, sometimes, step function. Using this type of cost 

structure may constitute further development for this research. 
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