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ABSTRACT
Automated retinal image analysis has been emerging as an important diagnostic tool
for early detection of eye-related diseases such as glaucoma and diabetic retinopathy.
In this paper, we have presented a robust methodology for optic disc detection and
boundary segmentation, which can be seen as the preliminary step in the development
of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed
method is based on morphological operations, the circular Hough transform and
the grow-cut algorithm. The morphological operators are used to enhance the optic
disc and remove the retinal vasculature and other pathologies. The optic disc center
is approximated using the circular Hough transform, and the grow-cut algorithm is
employed to precisely segment the optic disc boundary. The method is quantitatively
evaluated on five publicly available retinal image databases DRIVE, DIARETDB1,
CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The
method achieves an optic disc detection success rate of 100% for these databases with
the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD
databases, respectively. The optic disc boundary detection achieved an average spatial
overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1%, respectively, for
these databases. This unique method has shown significant improvement over existing
methods in terms of detection and boundary extraction of the optic disc.

Subjects Ophthalmology, Radiology and Medical Imaging, Human-Computer Interaction,
Computational Science
Keywords Optic disc, Retinal image analysis, Growcut algorithm, Glaucoma detection, Image
analysis

INTRODUCTION
Digital retinal images are widely used for early detection of retinal, ophthalmic and
systemic diseases because they provide a non-invasive window to the human circularity
system and associated pathologies (Jack & Brad, 2015). Glaucoma and diabetic retinopathy
(DR) are among the major retinal diseases which are the leading cause of vision loss and
blindness in the working population (Federation, 2013). Early detection of these disease
by screening programs and subsequent treatment can prevent blindness. Computer aided
diagnostic retinal image analysis is the first step in automated screening of these diseases
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Figure 1 Important features in retinal fundus image.

in large population based studies (Fraz et al., 2015). The change in anatomical structures
in human retina, which includes retinal vasculature, optic disc (OD), optic cup and retinal
pathologies are the early diagnostic indicators of several diseases such as DR, macula edema
and glaucoma (Jack & Brad, 2015). Among these, the OD is the most important feature
because its visual aspects are central for glaucoma detection and other lesions assessment
related to DR. The important anatomical structures presented in the retinal image are
shown in Fig. 1. OD detection is preliminary step for glaucoma screening, which is globally
the second leading cause of blindness. Moreover, it helps in the detection and localization of
other retinal structures which includes the fovea, macula and estimating vascular changes
(Basit & Fraz, 2015).

Glaucoma is caused by the increase in the intraocular fluid pressure in the optic nerve
head (ONH), because of either blockage or a higher production of aqueous humor of the
eye (Jack & Brad, 2015). Glaucoma remains asymptomatic at an early stage and slowly
progress with time which ultimately leads to blindness. Medical treatment is only effective
at the early stages because the optic nerve, once damaged can’t be cured (Weinreb, Aung
& Medeiros, 2014). The early prevalence of glaucoma can be identified by localization and
segmentation of the OD and optic cup, followed by computing the cup-to-disc ratio. The
structural changes in OD furnish critical clues pertaining to glaucoma prognosis (Abramoff,
Garvin & Sonka, 2010). A computer assisted diagnosis (CAD) system is necessary for large
population based screening of glaucoma. OD localization and segmentation is the first
step towards the development of CAD. Knowing the significance such systems, several OD
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approaches have been proposed and attempted by many but it’s still an active research
area.

The OD appears as a variable sized, bright yellowish region, slightly oval in shape with
blood vessels converging towards its center. These features are mostly used for automated
OD localization. Retinal pathologies like exudates and lesions, if present, may appear like
the shape of a disc, thus may cause false detection (Basit & Fraz, 2015). In CAD, accurate
detection and segmentation of the OD is quite a challenging task because of various
factors like boundary artifacts, missing edges and poor textural contrast. The variation
in illumination conditions, luminosity and contrast during image acquisition are added
challenges (Haleem et al., 2013). Moreover, the OD boundary is not constant because of the
presence of incoming blood vessels which produce a fused boundary. Another distractor is
papillary atrophy which, if present, appears as the bright region outside the OD and thus
deforms the OD boundary (Aquino, Gegúndez-Arias & Marín, 2010).

This paper presents a new approach for automatic detection and segmentation of the
OD based on morphological operations, circular Hough transform (CHT) (Illingworth
& Kittler, 1987) and grow-cut (GC) algorithm (Vezhnevets & Konouchine, 2005). The GC
algorithm has been widely used in many application areas of image segmentation, but
has not been applied within the framework of retinal image analysis. To the limit of our
knowledge, theGCalgorithmhas beenutilized for the first time in localizing and segmenting
the OD in retinal images. The method is evaluated on six retinal image datasets exhibiting
different morphological characteristics. Experimental evaluation shows that this method is
computationally fast in processing, robust to the variation in image contrast, illumination
and presence of pathologies; and comparable with the state-of-the-art methodologies in
terms of quantitative performance metrics.

It’s worth mentioning that this work is aimed at contributing to the development of
automatic systems for glaucoma detection that are currently under development. Although
other published solutions can be used, this work presents higher accuracy, robustness and
is tolerant to a vast variety of image characteristics, which make it suitable for integration
with a glaucoma detection system.

The organization of the paper is as follows. ‘Related Work’ presents a comprehensive
overview of the OD localization and segmentationmethodologies available in the literature.
‘The Methodology’ explains the proposed methodology in detail. The materials and
the performance metrics used to evaluate the proposed methodology are illustrated in
‘Material.’ The results and comparison with other methods are given in ‘Results.’ The
paper is concluded in ‘Discussion and Conclusion.’

RELATED WORK
A significant number of papers have been published to deal with the OD detection and
segmentation (Haleem et al., 2013). Some papers only perform OD detection while others
perform both detection and segmentation. Here we briefly discuss both of the groups.
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Methods for OD detection
Hoover & Goldbaum (2003) use vascular origin to detect the OD center. To detect the
vascular convergence point they use a fuzzy convergence and voting type algorithm.
Niemeijer, Abràmoff & Van Ginneken (2009) performed vascular segmentation and
measure the distance at specific locations with the help of a kNN regressor. The point
with lowest distance to the OD is selected as the OD center. Inspired by results from
vascular direction methods, (Youssif, Ghalwash & Ghoneim, 2008) used a matched filter
to match the direction of blood vessels around the OD area and a vessel direction map is
obtained by segmenting vessels.Mendonca et al. (2013) further improve the results by using
the entropy of vascular direction to assess the convergence point of vessels. To increase
robustness, they constrain the search for maximal entropy to the areas with high intensities.
In Lu (2011), a circular transformation is used to capture a circular shape OD and evaluate
image variation alongmultiple radial lines. Pixels withmaximumvariations are determined,
as they can be further used for OD center and boundary localization. Another methodology
based on the Radon transformation of overlapping window (Pourreza-Shahri, Tavakoli &
Kehtarnavaz, 2014) has achieved 100% success in DRIVE and 96.3% on STARE databases.

Methods for OD detection and boundary segmentation
In Welfer et al. (2010), a method based on mathematical morphology is proposed to
detect and segment the OD in images from DRIVE and DIARETDB1. This work
is extended in Welfer, Scharcanski & Marinho (2013) by incorporating a multiscale
morphologic approach. Marin et al. (2015) proposed a two step automatic thresholding
on a morphologically processed bright enhanced region to get a reduced region of interest,
followed by the application of circular Hough transformation (CHT) to get the OD center
and OD region. Seo et al. (2004) also use morphological and Canny edge detection filters
to segment and detect the OD rim.

Kande, Subbaiah & Savithri (2008) detected the OD by using maximum local variance
with 92.53% success rate and geometric active contourmodel (ACM) for OD segmentation.
In Aquino, Gegúndez-Arias & Marín (2010), a template based approach is used for OD
segmentation. They appliedmorphological and edge detection techniques followed by CHT
to approximate circular objects. Lupascu, Tegolo & Rosa (2008) used a regression method
and texture descriptors for circular OD fitting. An approach based on principal component
analysis and mathematical modelling is presented in Morales et al. (2013), which utilizes
a generalized distance function, stochastic watershed and geodesic transformations. The
result is finally approximated by a circular approximation. Walter et al. (2002) presents a
methodology based on watershed transformation and morphological processing. In Hsiao
et al. (2012), illumination correction technique was used to detect optic disc. They select
high intensity pixels as candidates for OD and among those candidate pixels they select OD
pixel as one with the highest variance. For segmentation, the supervised gradient vector flow
(SGVF) snakemodel is used. By extending the SGVF snake in each iteration, contour points
get updated and classified based on features. Statistical information and features extracted
from trained images were then used for classification. In Joshi, Sivaswamy & Krishnadas
(2011), the Chan-Vese model has been extended by introducing image information around
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a contour point. Inspired by the work proposed in Joshi, Sivaswamy & Krishnadas (2011),
the local binary fitting energy ACM Mittapalli & Kande (2016) is proposed to integrate
the local image information which includes texture color and intensity for each point of
interest. A multi-resolution sliding band filter (SBF) was used in Dashtbozorg, Mendonça
& Campilho (2015) for OD segmentation. Super-pixels are employed in Cheng et al. (2013)
such that each super-pixel is classified as OD or non-OD. It has been observed that the
confluence of vessels in the OD region affects the precision of OD segmentation methods.
However, to overcome the influence of the presence of vessels some methods try to
eliminate them from image. In this paper, we propose a new approach for automatic OD
detection and segmentation which is not influenced by the confluence of vessels in OD
area, therefore, no template or vessel map is required in advance.

THE METHODOLOGY
This work presents an OD detection and segmentation methodology which is able to detect
the OD center without using any template or prior vascular information, an extension
to our earlier work (Abdullah & Fraz, 2015). The OD appears as a yellowish structure in
retinal fundus images with shape varying from circular to slightly elliptical and has the
highest intensity value pixels. However, the presence of brightness artifacts can make the
ODmerge into the background and lose its brightness. Furthermore, the presence of several
pathological structures such as exudates may take the shape of the OD and may have the
highest intensity value. The proposed algorithm is based on morphological operations,
circular Hough transform and grow-cut algorithm. The morphological operators are used
to enhance the optic disc and remove the retinal vasculature and other pathologies. The
optic disc center is approximated using the circular Hough transform, and the grow-cut
algorithm is employed to precisely segment the optic disc boundary.

Preprocessing
The variation in image contrast, background illumination and pigmentation is normalized
by applying pre-processing operations to the retinal images.

The green channel of an RGB image gives maximum contrast between exudates and
the neighboring regions (Fraz et al., 2012a). Therefore, the green channel of RGB images
is processed for normalization of contrast and luminosity. A variety of algorithms for
contrast and luminosity normalization in retinal images are available in the literature, and
these methodologies are either based on subtracting the estimated background from the
original image (Fraz et al., 2014) or on dividing the later by the former (Foracchia, Grisan
& Ruggeri, 2005; Vázquez et al., 2013). However, our earlier work (Fraz et al., 2014) shows
that the results of both methods are similar with no appreciable advantage of one over the
other.We have used the subtractivemethod as it has been reported in our earlier work (Fraz
et al., 2014). The background pixel intensities are estimated and the difference between
the estimated background and the green channel is computed to produce the normalized
image. The background of the retinal image, denoted as ‘‘Ibg’’ is estimated by applying
a filtering operation with an arithmetic mean kernel. The size of the filter kernel is not a
critical parameter as long as it is large enough to ensure the blurred image contains no
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Figure 2 Processing steps for OD detection. (A) RGB retinal image (B) Green Channel image (C) Pre-
processed green channel image (D) Blood vessel removed image (E) Circular approximation of optic disc
by CHT (F) Detected OD center.

visible structures such as optic disc, exudates or blood vessels. In this work, we have used
an 89 × 89 pixel kernel. The difference between the estimated background ‘‘Ibg’’ and the
morphologically opened image ‘‘Iopen’’ is calculated on pixel basis. Thus, the background
normalized image ‘‘Inorm’’ is obtained using:

Inorm(x,y)= Iopen(x,y)− Ibg(x,y). (1)

Due to different illumination conditions in the acquisition process, there may be significant
intensity variations between images. These intensity variations make it difficult to use the
best possible technique for all of the images, thus shade corrections were necessary and
have been applied. A global linear transformation function is applied to modify the pixel
intensities.

ISC(x,y)=


0 if Inorm(x,y)< 0
1 if Inorm(x,y)> 1
Iadjusted(x,y) otherwise

(2)

Iadjusted(x,y)= Inorm(x,y)− IntValMaxPixels+0.5 (3)

where Isc(x,y) is the shade corrected image, Inorm(x,y) is the background normalized
image, IntValMostPixels is the intensity value representing the most number of pixels in the
normalized image Inorm(x,y). Pixels with this intensity value IntValMostPixels represent the
background (Fraz, Basit & Barman, 2012). This global transformation function normalizes
or shade corrects the image by setting the background pixels to 0.5, which can be observed
in Fig. 2C.

Abdullah et al. (2016), PeerJ, DOI 10.7717/peerj.2003 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2003


Optic disc detection
After pre-processing, theODappears as the brightest structure in the imagewith varying size
and appearance. The retinal blood vessels originate from the OD and branch out to spread
in the retinal image. A morphological closing operation with a disc shaped structuring
element is applied to the pre-processed image in order to remove the vasculature from the
image. The result is shown in Fig. 2D.

CHT, an extension of Hough transform (HT) (Hough, 1962), is for the detection of
circular objects from the image. For the detection of a circle, the HT is based on the
equation of circle, defined as

(xi−a)2+ (yi−b)2= r2 (4)

where, ‘‘(a, b)’’ represents the coordinates of the center of the circle and ‘‘r’’ denotes the
radius. In order to increase the performance of CHT we resize all images to a common
resolution and search for the bright circles with an experimented selected radius range of
29–50 pixels. To avoid false detection of OD we optimized our system by applying CHT on
each image at different sensitivity levels and among circular responses generated by CHT
we take only strong circle. Strong circles are the ones that correspond to the OD while the
rest are either exudates or misleading regions. The results of intermediary processing steps
for OD localization/detection are shown in Fig. 2.

Optic disc segmentation
In the preprocessed image, the OD area is treated as foreground (fg) and the rest of
the retinal image is considered as background (bg). The grow-cut (GC) (Vezhnevets
& Konouchine, 2005) algorithm separates the fg from bg using the von Neumann
Neighborhood principle (Tommaso & Norman, 1987) and seeded region growing. The
detected OD center is chosen as initial seed points for fg area whereas the bg seed points are
automatically chosen from rest of image. This algorithm iteratively checks each neighboring
pixel and decides its region-wise membership.

The GC algorithm use cellular automata for image modelling. Each image pixel ‘‘p’’ can
be represented by a triplet (lp, θp, Cp). Where, ‘‘lp’’ represents the class label of the pixel
‘‘p’’ to which it belongs, ‘‘θp’’ represents the ‘‘strength’’ of the pixel ‘‘p’’ which is a measure
of the certainty of the pixel ‘‘p’’ that should be labelled as ‘‘lp’’. The label of a pixel whose
‘‘strength’’ = 1 cannot be changed during the algorithm progress, whereas the pixel label
whose ‘‘strength’’ < 1 may change during algorithm execution. ‘‘Cp’’ represents the pixel
greyscale value.

At the initial stage of the algorithm, the triplet for all pixels are set as,

lp= 0,θp= 0,Cp=RGBp (5)

which means that initially all pixels have undefined labels and zero strength. The aim of the
GC algorithm in segmenting the OD is to assign a label to each pixel in the image regarding
whether it belongs to OD or to the retinal image background. To start the algorithm, we
initialized seeds by setting labels for the optic disc (+1) and non-OD (−1). Once the seeds
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Figure 3 Steps for OD boundary extraction. (A) Original RGB image with detected central point of
optic disc, (B) Foreground (optic disc area represented by small circle) selection points and background
(non-optic disc region represented by large circle) selection points (C) Result of grow-cut for boundary
segmentation, (D) Boundary approximation (in black) of grow-cut.

are initialized, the process keeps on iteratively assigning labels to each pixel in the image
until all pixels are labelled. For each pixel p and its neighbors xi (i= 1–8), quantity ‘‘g ’’ is
computed which is monotonous decreasing function where g (xi) ∈ [0, 1] such that

g (xi)=
‖Cp−Cxi‖2

max‖C‖2
. (6)

As we were using green channel of the image so ‖Cp−Cxi‖ ‖Cp−Cxi‖ is equal to
‖Ip− Ixi‖, where Ip and Ixi are the intensities of pixels p and xi respectively. max‖C‖2 is
equal to 2L - 1, where L is the bit depth of the image. Afterwards, the algorithm iteratively
compute λ(xi) for all pixels xi which don’t have label ‘‘undefined’’ such that:

λ(xi)= g (xi)θ(xi) (7)

If λ(xi)>θpλ(xi)>θp then a pixel takes the label and strength of xi otherwise it keeps its
own label and ‘‘strength.’’ The algorithm terminates when all the pixels are labeled and the
pixel label stops changing. In the end, the segmented OD boundary is approximated to an
elliptical shape by using ellipse equation which involves drawing of ellipse outline over the
segmented boundary of GC. The processing steps of OD boundary extraction are shown
in Fig. 3. The circular approximation of the OD boundary is illustrated in Fig. 4.

MATERIALS
The proposed methodology is evaluated on five publicly available retinal image databases
and one local database.

DRIVE
Staal et al. (2004) is a publically available database consisting of 40 images with resolution
584 × 565 pixels. Out of these 40 images, seven are pathological, containing pigment
epithelium changes, exudates and hemorrhages.
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Figure 4 Close up view of (A) grow-cut segmentation; (B) approximation of grow-cut.

DIARETDB1
The DIARETDB1 (Kauppi et al., 2007) database comprised 89 fundus images which are
obtained with a 50◦ of FOV using a fundus camera and are in PNG format. These images
are of size 1,500 × 1,152 pixels, with 24 bits/pixel.

CHASEDB1
The CHASEDB1 (Fraz et al., 2012b) database consists of 28 images captured from a Nidek
NM 200D camera at 30◦ FOV. Images are of 1,280 × 960 pixels resolution, which are
affected by illumination artifacts and poor contrast.

DRIONS-DB
The DRIONS (Carmona et al., 2008) database consists of 110 images of 600 × 400
resolution, with 8 bits/pixel. In these 110 images, 50 images contain some sort of defect,
such as illumination artifacts, rim blurredness and papillary atrophy, which may hinder
the detection and segmentation problem.

Messidor
The Messidor (Decenciere et al., 2014) database consists of 1,200 retinal fundus images
which were captured from 3CCD color video camera on Topcon TRCNW6 non-mydriatic
retinograph, with 45◦ of FOV.

ONHSD
The ONHSD (Lowell et al., 2004) database consists of 99 fundus images of 640 × 480
resolution. Images were captured from canon CR6 45MNf camera with 45◦ of FOV.
Images were acquired from 50 patients, 19 out of which were diabetic.
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Table 1 Pixel classification.

Real→ Predicted ↓ Actual pixel ∈OD Actual pixel 6∈OD

System Predicted pixel ∈ OD TP FP
System Predicted pixel 6∈ OD FN TN

Table 2 Performance metric for OD segmentation.

Measure Description

SN TP/(TP+ FN)
SP TN/(TN+ FP)
Acc (TP+ TN)/(TP+ FP+ TN+ FN)
PPV TP/(TP+ FP)
FDR FP / (FP+ TP)

Shifa database
This database belongs to Department of Ophthalmology, Shifa International Hospital
Islamabad, Pakistan. A total of 19 images are healthy, while the rest of them have some sort
of pathological symptoms and illumination artifacts. The dataset consists of 111 fundus
images of 1,936 × 1,296 resolution, acquired with a 45◦ field of view.

Ground truths
The OD in all the images from the above mentioned databases is hand labelled by oph-
thalmic experts from the Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan
and used as ground truths. For 1,200 images in the Messidor database, we have used
the ground truths provided by Aquino, Gegúndez-Arias & Marín (2010). The quantitative
results are based on comparison of automatic segmented images with these ground truths.

Quantitative performance measures
The outcome of OD detection and the segmentation process results in the classification
of pixels belong to OD region or non-OD region. There are four possibilities for pixel
classification, illustrated in Table 1, True Positive (TP), True Negative (TN), False Positive
(FP) and false Negative (FN). The first two are the result of mutual agreement between
predicted values and actual values while the last two are the result of the wrong prediction.
TP is the case when the system predicts the pixel belongs to the OD and is actually an OD
pixel in reference to the ground truth image, while in the case of TN both the system and
actual ground truth identify a pixel as a non-OD pixel. FP is the case where the system
predicts the pixel as an OD pixel when it actually belongs to non-OD region in ground
truth, whereas, in the FN case the system predicts a pixel as a non-OD pixel when it actually
is an OD pixel.

The metrics used to evaluate the quantitative performance of the proposed methodology
are given in Table 2. We used Sensitivity (SN), Specificity (SP), Accuracy (Acc), Positive
Predicted Value (PPV), False Discovery Rate (FDR) and Overlap. The overlap metric is
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Table 3 Performance measure of OD detection.

Datasets Images OD detected ODmissed Accuracy

DRIVE 40 40 0 100%
DIARETDB1 89 89 0 100%
CHASE_DB1 28 28 0 100%
DRIONS-DB 110 109 1 99.09%
Messidor 1,200 1,191 9 99.25%
Shifa 111 111 0 100%
ONHSD 90 90 0 100%

defined in (8).

Overlap=
Area(ground truth ∩ predicted)
Area (ground truth ∪ predicted)

. (8)

Moreover, we have used the DICE similarity index to measure the similarity between the
segmented optic disc and the ground truth. The DICE index is a measurement of spatial
overlap used widely for comparing segmentation results, with a value ranging from 0 to 1.
The DICE coefficient can be defined as two times the volume of the intersection between
two segmentations divided by the sum of the volumes of the two segmentations, which is
represented in (9).

DICE=
2∗Area(ground truth ∩ predicted)
Area(ground truth)+Area(predicted)

(9)

RESULTS
Optic disc detection
The optic disc detection method achieved 100% success rate in DRIVE, DIARETDB1,
CHASE_DB1 and Shifa databases, it achieved 99.09% in DRIONS-DB and 99.25% in the
Messidor database. Table 3 shows the accuracy of this method for the detection of OD. The
comparison of accuracy in localizing OD have been made with other methods reported in
literature in Table 4.

Figure 5 shows the results of the OD detection in the DRIVE, DIARETDB1, Shifa,
CHASE_DB1 and DRIONS-DB databases. The OD detection method can correctly detect
the OD center even in the presence of exudates and other pathologies. Accurate detection
of the optic nerve head facilitates the segmentation algorithm to extract the boundary with
high precision.

Optic disc segmentation
The pixel-wise quantitative performance metrics (which are defined in Table 2) are
calculated for OD segmentation, based on the comparison of automatic segmented images
with the ground truth reference images and are illustrated in Table 5. The methodology is
quantitatively evaluated by using an array of performance metrics, which to the limit of
our knowledge has not been previously used for evaluating OD segmentation algorithms.
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Table 4 OD localization accuracy comparison with other methods.

Authors Database Accuracy

Youssif, Ghalwash & Ghoneim (2008) DRIVE 98.8%
Niemeijer, Abràmoff & Van Ginneken (2009) Local database 99.4%
Aquino, Gegúndez-Arias & Marín (2010) Messidor 99%

DRIVE 100%
Welfer et al. (2010)

DIARETDB1 97.75%
Lu (2011) Messidor 98.77%
Zubair, Yamin & Khan (2013) Messidor 98.65%

DRIVE 100%
Mahfouz & Fahmy (2010)

DIARETDB1 97.8%
Yu et al. (2012) Messidor 99%
Saleh et al. (2014) DRIVE 100%

DRIVE 100%
DIARETDB1 99.88%Yu, Ma & Li (2015)

Messidor 99.67%
Proposed method DRIVE 100%

DIARETDB1 100%
CHASEDB1 100%
DRIONS-DB 99.09%
Messidor 99.25%
ONHSD 100%

Figure 5 OD detection results. Sorting of images in rows is according to the following order DRIVE, DI-
ARETDB1, Messidore, Shifa, CHASE_DB1 and DRIONS-DB.

The comparison of the proposedmethod has beenmade with other availablemethods on
the basis of average sensitivity, specificity, accuracy, DICE score, overlap, positive predictive
value and the time taken to process a single image, as illustrated inTable 6. Results shows that
the proposed method provides promising results as compared to other OD segmentation
techniques in the literature. The comparison with other methods is made with respect to
DRIVE and DIARETDB1, DROINS-DB, Messidor and ONHSD retinal image datasets.
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Table 5 Performance measures of OD segmentation.

Performance measure DRIVE DIARETDB1 CHASE-DB1 Shifa DRIONS-DB Messidor ONHSD

Acc 0.9672 0.9772 0.9579 0.9793 0.9549 0.9989 0.9967
SP 0.9966 0.9984 0.9971 0.9991 0.9966 0.9995 0.9992
SN 0.8187 0.8510 0.8313 0.8015 0.8508 0.8954 0.8857
PPV 0.8728 0.9263 0.9261 0.9493 0.9966 0.9794 0.9619
FDR 0.1271 0.0737 0.0738 0.0506 0.0810 0.020 0.038
DICE 0.8720 0.8910 0.9050 0.8763 0.9102 0.9339 0.9197
Overlap 78.6% 85.1% 83.2% 80.1% 85.1% 87.93% 86.1%
Hausdorff 0.2514 0.1915 0.3174 0.2434 0.2578 0.1627 0.2245

Figure 6 Examples of segmentation. Images in each row belong to separate databases as per order,
DIARETDB1, Shifa, CHASE_DB1, and DRIONS-DB. Grow-cut segmentation is represented by a green
boundary and its final approximation is represented by a black circle.

The OD segmentation results on these retinal datasets are illustrated in Fig. 6. It can be
observed that the proposed methodology can successfully detect and segment the OD in
the pathological images as well as in images with non-uniform illumination and uneven
background pigmentation from multiple retinal image datasets.

Robustness of methodology
The robustness of proposed methodology has been evaluated on the basis of its OD
localization and segmentation performance on (1) the noisy images, (2) the images with
illumination artefacts, and (3) the images with pathological structures. The retinal images
are corrupted with three types of noise models typically found in biomedical images
(Gaussian, Salt & Pepper, and speckle noise). It can be observed in Fig. 7, that OD is
successfully detected and segmented despite significant deterioration of the retinal images
due to the addition of noise.

The second criteria for measuring robustness is the evaluation of against illumination
which makes OD detection harder because poor illumination hide the OD in the
background, as a result of which segmentation algorithms fails to extract boundary. Figure 8
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Table 6 OD segmentation performance measures comparison with other methods.

Performance measures→

Methods↓
Sensitivity Specificity Accuracy DICE score Overlap % Predictive value Average

time per
image (in s)

DRIVE Database
Sopharak et al. (2008) 0.2104 0.9993 – – 16.88 0.9334 14.92
Walter et al. (2002) 0.4988 0.9981 – – 29.32 0.8653 219.6
Seo et al. (2004) 0.5029 0.9983 – – 31.09 0.843 7.23
Kande, Subbaiah & Savithri (2008) 0.6999 0.9888 – – 29.66 0.5218 111.7
Sta̧por et al. (2004) 0.7368 0.9920 – – 33.42 0.6198 43.00
Lupascu, Tegolo & Rosa (2008) 0.7768 0.9968 – – 30.95 0.88.14 –
Welfer, Scharcanski & Marinho (2013) 0.7357 0.9982 – – 39.40 0.8876 53.65
Basit & Fraz (2015) 0.8921 0.9921 – – 61.88 0.6930 –
Morales et al. (2013) – – 0.9903 0.8169 – 0.8544 –
Salazar-Gonzalez et al. (2014) 0.7512 0.9684 0.9412 – – – –
Proposed method 0.8188 0.9966 0.9672 0.8720 78.6 0.8728 59.2

DIARETDB1 Database
Sopharak et al. (2008) 0.4603 0.9994 – – 29.41 0.9593 74.55
Walter et al. (2002) 0.6569 0.9993 – – 36.97 0.9395 308.5
Seo et al. (2004) 0.6103 0.9987 – – 35.32 0.8878 15.63
Kande, Subbaiah & Savithri (2008) 0.8808 0.9878 – – 33.41 0.5448 120.5
Sta̧por et al. (2004) 0.8498 0.9964 – – 34.08 0.8034 59.72
Lupascu, Tegolo & Rosa (2008) 0.6848 0.9969 – – 30.95 0.8117 –
Welfer, Scharcanski & Marinho (2013) 0.6341 0.9981 – – 39.15 0.8704 57.16
Basit & Fraz (2015) 0.7347 0.9944 – – 54.69 0.7049 –
Morales et al. (2013) – – 0.9957 0.893 – 0.9224 –
Proposed method 0.851 0.9984 0.9772 0.891 85.1 0.9263 40.0

DRIONS-DB
Walter et al. (2002) – – – 0.6813 – – –
Morales et al. (2013) – – 0.9934 0.9084 – 0.9281 –
Proposed Method 0.8508 0.9966 0.9989 0.9102 85.1 0.9794 43.2

Messidor
Morales et al. (2013) – – 0.9949 0.8950 – 0.9300 –
Kumar, Pediredla & Seelamantula (2015) – – – 0.8456 – – –
Proposed method 0.8954 0.9995 0.9989 0.9339 87.93 0.9794 71.3

ONHSD
Morales et al. (2013) – – 0.9941 0.8867 – 0.9310 –
Proposed method 0.8857 0.9992 0.9967 0.9197 0.9619 65.3

shows some extreme cases of poor illumination where proposed method successfully
localize and segment the OD.

Pathologies such as papillary atrophy, exudates, and lesions put a potent threat to
accurate segmentation of optic disc because some pathologies may appear in bright or
in circular shape and may result in misclassification. While others like papillary atrophy
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Figure 7 Performance in the noisy images.

Figure 8 Performance in the poor contrast and uneven illumination.

surround the OD and make it difficult to segment. Figure 9 shows the result of proposed
algorithm on pathologically affected images.

Although the algorithm works well on images where segmentation is hard, in fundus
imaging there are sometimes images which are poorly focused or have imaging artefacts
which make segmentation a difficult task. Figure 10 shows some extreme cases where the
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Figure 9 Performance in the presence of pathologies.

Figure 10 Incorrect OD segmentation in difficult cases of retinal images.

method failed to extract optic disc correctly (e.g., in the first two images the artifacts are so
strong that it almost hides OD and leaves a false detection and segmentation, while in the
third image pathologies hide the boundary of OD and leave the method to partially detect
OD).

DISCUSSION AND CONCLUSION
Optic disc segmentation is the primary step towards the development of automatic
screening systems. The accuracy of the segmentation method improves the correct
identification of pathological diseases like glaucoma. Similarly, optic disc detection is
the first step towards segmentation and accurate detection would lead to promising
segmentation results.

This paper presents a new method for automatic detection and segmentation of the OD
in retinal images. Usingmorphological operations, circular Hough transform and grow-cut
algorithm (GC). The GC algorithm has beenwidely used inmany application areas of image
segmentation, but has not been applied within the framework of retinal image analysis.
To the limit of our knowledge, the GC algorithm has been utilized for the first time
in segmenting the OD in retinal images. The method is evaluated on six retinal image
datasets exhibiting different morphological characteristics. Experimental evaluation shows
that this method is computationally fast in processing, robust to the variation in image
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contrast and illumination, works well in pathological retinal images and is comparable
with state-of-the-art methodologies in terms of quantitative performance metrics. The
methodology offers 100% OD detection rate in DRIVE, DIARETDB1, CHASE_DB1,
ONHSD, and Shifa databases, and 99.09% success rate in DRIONS-DB1. For the OD
segmentation we use the detected OD center point as the seed for the grow-cut algorithm,
which then iteratively searches for neighbors of initial seeds and expands the region based
on the label and strength of each pixel. The proposed method is able to segment the OD
with a better overlap ratio, as compared to other methods available in the literature. We
achieved 78.6%, 85.1%, 83.2%, 80.1%, 85.1%, 87.93%, and 86.1% inDRIVE, DIARETDB1,
CHASE_DB1, Shifa, DRIONS-DB1, Messidor, and ONHSD databases, respectively. The
results of the presented algorithm can be seen online at http://vision.seecs.edu.pk/od/.

OD segmentation results clearly depict the ability of proposed method to segment,
even with illumination artifacts when the OD boundary is not clear and in the presence of
pathologies like papillary atrophy, which may increase the chances of false positives. The
robustness of proposed methodology has been evaluated on the basis of its OD localization
and segmentation performance on (1) the noisy images, (2) the images with illumination
artefacts, and (3) the images with pathological structures. For evaluation purposes, the
retinal images have been corrupted with three types of noises generally found in biomedical
images: Gaussian, Salt & pepper, and Speckle noise. The methodology successfully segment
the OD despite significant deterioration of the retinal images. Moreover, the algorithms
perform well on the images with uneven illumination and the pathological structures.

The work is aimed at contributing to the development of an automatic system for glau-
coma detection that is currently under development. Although other published solutions
can be used, this work presents higher accuracy, robustness and is tolerant to a vast variety
of images which make it suitable for integration with a glaucoma detection system.

We have already developed a fully automated software system named QUARTZ (Fraz et
al., 2015), which can extract a number of quantifiablemeasures from retinal vesselmorphol-
ogy. These measures are analyzed/studied by epidemiologists and other medical/statistical
experts in order to evaluate the association of retinal vessel abnormalities with other
systemic diseases. In the future, we aim to enhance the aforementioned software system and
extend its functionality by incorporating a module for early detection of glaucoma in large
population-based screening programs. The proposed method for reliable segmentation of
OD can be seen as a first step towards the development of a glaucoma detection module.
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