Author's Accepted Manuscript

Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography—mass spectrometry and their monitoring in saudi arabian drinking water with chemometric data treatment

Mohammad Rizwan Khan, Saikh Mohammad Wabaidur, Zeid Abdullah Alothman, Rosa Busquets, Mu Naushad

www.elsevier.com/locate/talanta

PII: S0039-9140(16)30103-5

DOI: http://dx.doi.org/10.1016/j.talanta.2016.02.036

Reference: TAL16354

To appear in: Talanta

Received date: 1 November 2015 Revised date: 6 February 2016 Accepted date: 16 February 2016

Cite this article as: Mohammad Rizwan Khan, Saikh Mohammad Wabaidur, Zeic Abdullah Alothman, Rosa Busquets and Mu Naushad, Method for the fas determination of bromate, nitrate and nitrite by ultra performance liquic chromatography—mass spectrometry and their monitoring in saudi arabia drinking water with chemometric data treatment, *Talanta* http://dx.doi.org/10.1016/j.talanta.2016.02.036

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

1	Method for the fast determination of bromate, nitrate and nitrite by Ultra Performance Liquid
2	Chromatography-Mass Spectrometry and their monitoring in Saudi Arabian drinking water with
3	chemometric data treatment.
4	
5	
6	
7	Mohammad Rizwan Khan ^a , Saikh Mohammad Wabaidur ^a , Zeid Abdullah Alothman ^a , Rosa
8	Busquets ^{b*} , Mu Naushad ^a
9	
10	^a Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud
11	University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
12	
13	^b School of Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, Surrey,
14	Penrhyn road , KT1 2EE, United Kingdom
15	6.0
16	
17	
18	
19	
20	
21 22	
23	
24	
25	
26	*Corresponding author:
27	Tel: 0044 2084177792; Email:R.Busquets@Kingston.ac.uk

ABSTRACT

A rapid, sensitive and precise method for the determination of bromate (BrO ₃ ⁻), nitrate (NO ₃ ⁻)
and nitrite (NO ₂ ⁻) in drinking water was developed with Ultra performance Liquid
Chromatography–Mass Spectrometry (UPLC-ESI/MS). The elution of $\mathrm{BrO_3}^-$, $\mathrm{NO_3}^-$ and $\mathrm{NO_2}^-$
was attained in less than two minutes in a reverse phase column. Quality parameters of the
method were established; run-to-run and day-to-day precisions were <3% when analysing
standards at 10 $\mu g~L^{-1}$. The limit of detection was 0.04 $\mu g~NO_2^-~L^{-1}$ and 0.03 $\mu g~L^{-1}$ for both
NO ₃ and BrO ₃ . The developed UPLC-ESI/MS method was used to quantify these anions in
metropolitan water from Saudi Arabia (Jeddah, Dammam and Riyadh areas) and commercial
bottled water (from well or unknown source) after mere filtration steps. The quantified levels of
NO ₃ were not found to pose a risk. In contrast, BrO ₃ was found above the maximum
contaminant level established by the US Environmental Protection Agency in 25 and 33% of the
bottled and metropolitan waters, respectively. NO ₂ ⁻ was found at higher concentrations than the
aforementioned limits in 70 and 92% of the bottled and metropolitan water samples,
respectively. Therefore, remediation measures or improvements in the disinfection treatments are
required. The concentrations of BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ were mapped with Principal Component
analysis (PCA), which differentiated metropolitan water from bottled water through the
concentrations of BrO ₃ ⁻ and NO ₃ ⁻ mainly. Furthermore, it was possible to discriminate between
well water; blend of well water and desalinated water; and desalinated water. The point or source
(region) was found to not be distinctive.

KEYWORDS: bromate; nitrate; nitrite; UPLC-MS; Saudi Arabia; drinking water

INTRODUCTION

Water disinfection is an important step to ensure that water can be consumed safely. Typical disinfection methods to destroy pathogens include treatment with chemical reactive agents (i.e chlorine, chlorine dioxide, chloramines, ozone, and potassium permanganate) or physical means (i.e irradiation with UV or nanofiltration) [1]. Side effect of some these treatments are the generation of disinfection by-products (DBPs) when disinfection agents react with substance already present naturally in the water to be treated. The risks to health of DBPs is considered to be low compared to the exposure to pathogens [2]. Despite that non-chemical disinfection methods would avoid DBPs, small doses of chlorine or mono-chloramine are added to water to ensure its safety after distribution [2].

Bromide, which is a majority element in seawater (i.e 67 mg/L) [3], is present in water used in the production of metropolitan drinking water in Saudi Arabia. Bromate (BrO₃⁻) is a DBP that can be generated from the ozonation of naturally occurring bromide present in such source water [2,4]. Therefore, desalinated seawater can lead to high levels of BrO₃⁻ due to remaining levels of its precursor before the oxidising treatment [5]. In a previous study carried out by the authors, BrO₃⁻ was found between 8-75 µg L⁻¹ in desalinated water [6]. BrO₃⁻ was found to be carcinogenic in animals which revealed the need to control this substance in drinking water [7]. In 1998, the International Agency of Research Cancer (IARC) listed the BrO₃⁻ in Group 2B (possibly carcinogenic to humans) [8]. Thereafter, the World Health Organization (WHO) and US Environmental Protection Agency (EPA) set up provisional guideline value and

a maximum contaminant level (MCL), respectively, at $10 \ \mu g \ BrO_3^- L^{-1}$ in drinking water [2,4,9] and the public health goal at "zero" [4].

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Nitrate (NO₃⁻) and nitrite (NO₂⁻) have a different origin than BrO₃⁻ in drinking water. In nature, both NO₃ and NO₂ derive from the nitrogen cycle in plants and soils; they originate from the microbial digestion of nitrogen rich sources such as plant tissues, faeces or nitrogenbased fertilisers [10-11]. Both NO₃⁻ and NO₂⁻ are highly soluble species that can consequently leach to surface and ground water [12-14]. This has detrimental effects on biodiversity as well as on human beings; for instance; it can cause eutrophication [2, 10]; methemoglobinemia disease in infants [15-18] and they have been associated with increased incidence of cancer [10]. Many environmental regulatory organizations have set the guidelines for NO₃⁻ and NO₂⁻ in drinking water. The EPA has set the Maximum Contaminant Level (MCL) for NO₃⁻ at 10 mg L⁻¹ in drinking water [4], which coincides with the standard of quality in bottled water set by the International Bottled Water Association (IBWA) [19]. In contrast the WHO and European Commission set up the guideline level at 50 mg L⁻¹ [2, 20]. For NO₂⁻, the EPA and IBWA has set the MCL and standard of quality, respectively, at 1 mg L⁻¹ in drinking water [4,19]; the current WHO guideline value is 3 mg L⁻¹ [2] but the limit in Europe is more restrictive: 0.5 mg L^{-1} [20].

Monitoring studies are necessary to know the level of exposure to BrO₃⁻, NO₃⁻ and NO₂⁻ and identify potential hotspots. Many analytical procedures have been developed to assess the levels of BrO₃⁻, NO₃⁻ and NO₂⁻ in drinking water. Ion chromatography is recognized as the method with best analytical achievability for the determination of BrO₃⁻ by WHO [2]; ion chromatography-conductivity detection method has been extensively applied for the analysis of such types of compounds in water matrices [21-22]. The low running cost of capillary zone

2. Materials and methods

2.1 Materials. All solvents and chemicals used in this study were of HPLC or analytical grade,
obtained from Merck (Darmstadt, Germany). Potassium bromate (ACS reagent, ≥99.8%), and,
sodium nitrate and sodium nitrite of ReagentPlus® grade (assay purity ≥99.0%) were obtained
from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was purified by means of Milli-Q
water purification system (Millipore Corporation, Bedford, USA). Stock standard solutions of
BrO_3^- , NO_3^- and NO_2^- at concentration level 500 mg L^{-1} were prepared in ultrapure Milli-Q
water and used for further dilutions. Standard mixtures of the nitrate and nitrite were prepared by
weight. Standard solutions and water samples were filtered through a $0.22~\mu m$ PTFE syringe
filter (Macherey-Nagel Gmbh, Düren, Germany) before being injected into the UPLC system.

2.2 Sample preparation and quantitative analysis. Metropolitan water was obtained from different locations using clear glass bottles (500 mL) supplied by the Saudi Arabian nationalised company Saline Water Conversion Corporation. Bottled water (non–carbonated), from various trademarks, was purchased from hypermarket in Riyadh, Saudi Arabia. These bottled water samples had been treated with ozone. Metropolitan and bottled samples were stored in refrigerator at 4°C and analysed within two days to avoid microbial growth. Blank (ultrapure water) and quality control samples were analysed in each batch to ascertain that contamination of water samples did not arise and detection sensitivity of the target analytes was stable throughout the analysis. The quantification was carried out by external calibration in triplicate and the quantification of the recovery rates was carried out with standard addition method consisting of samples spiked with BrO₃⁻, NO₃⁻ and NO₂⁻ at four (50, 200, 400 and 500%) levels in addition to non-spiked samples (duplicate). Recovery rates were obtained from the slope obtained when

141	plotting the correlation between the added amount of bromate, nitrate and nitrite, and the amount
142	found.
143	
144	2.3 UPLC-ESI/MS analysis. The chromatographic analysis of $\mathrm{BrO_3}^-$, $\mathrm{NO_3}^-$ and $\mathrm{NO_2}^-$ was
145	carried out using a Waters Acquity® UPLC system (Milford USA) with an Acquity® BEH C_{18}
146	column (50 mm \times 2.1 mm i.d., 1.7 μm particle size) (Waters, Milford, USA) column. A pre-
147	column, VanGuard $^{\text{TM}}$ BEH C_{18} 1.7 μm was used to protect the analytical column during the
148	analysis. The optimal chromatographic conditions for the analysis of $\mathrm{BrO_3}^-$, $\mathrm{NO_3}^-$ and $\mathrm{NO_2}^-$ was
149	obtained using isocratic elution mode consisting of 75% methanol in water (v/v) at a flow rate of
150	$200~\mu L~min^{1}.$ The temperature of the analysis was controlled in an oven at 25 °C. The sample
151	injection volume was 5 $\mu L.$ A column with polar stationary phase Water Acquity® BEH Amide
152	column (50 mm \times 2.1 mm i.d., 1.7 μ m particle size) was also tested.
153	The detection of BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ was performed on Quattro Premier TM triple quadrupole
154	mass spectrometer (Micromass, Milford, USA) with an electrospray ionization source (Z-spray)
155	coupled with an Acquity® UPLC system. The instrument was operated in negative ionization
156	mode. The data acquisition in full scan mode (m/z 40-200) was used to select the most abundant
157	ions from each analyte. Selected Ion Recording (SIR) was applied for their detection with higher
158	sensitivity. Dwell time was 0.025 s and the total scan cycle was 1 s. Factors affecting the ion
159	transmission parameters were optimized by infusing a standard mixture of sodium nitrate,
160	potassium bromate and sodium nitrite solution at 10 mg L ⁻¹ . The optimized working parameters
161	were as follows. Cone voltage: 40; 46; 40; 38 V for m/z 46.2 (NO ₃ ⁻), m/z 62.2 (NO ₂ ⁻), m/z
162	129.0 (81BrO ₃), and m/z 127.0 (79BrO ₃), respectively. Capillary voltage 3.2 kV; source
163	temperature, 120°C; desolvation temperature, 300°C; cone gas flow rate, 60 L h ⁻¹ ; desolvation

164	gas flow rate, 600 L h ⁻¹ . Nitrogen (99.99% purity), produced with a Peak Scientific nitrogen
165	generator model NM30LA (Inchinann, United Kingdom), was used as cone gas. Argon (99.99%
166	purity), obtained from Speciality Gas Centre (Jeddah, Saudi Arabia), was used as collision gas.
167	The primary vacuum for the mass spectrometer was provided with an Oerlikon rotary pump,
168	model SOGEVAC SV40 BI (Paris, France). The data acquisition and processing were performed
169	using MassLynx V4.1 software.
170	Quality parameters of the optimised UPLC-MS method were assessed. Linearity was measured
171	between 0.1 and 1000 $\mu g \cdot L^{-1}$; limits of detection (LOD) were established at a signal-to-noise
172	ratio of 3; Run-to-run precision was estimated from six replicate injections of a mixture of
173	BrO_3^- , NO_3^- and NO_2^- standard at $0.05~\mu g \cdot mL^{-1}$ in the same day, and day–to–day precision was
174	measured from six replicate injections of the same standard along three consecutive days.
175	
176	2.4 Chemometric analysis.
177	The Unscrambler® X version 10.3 (CAMO Software AS., Norway) was used to build a Principal
178	Components Analyses (PCA) model from the concentration of BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ in
179	metropolitan and bottled waters. In order to give the same weight to every value (BrO ₃ ⁻ was
180	found at $\mu g \cdot L^{-1}$ level in contrast with the other two analytes, which were present at levels of
181	mg·L ⁻¹), BrO ₃ concentrations were given a weight of 1000 times higher than its quantified
182	values. Validation of PCA models relied on the leave-one-out cross-validation, in which each
183	particular sample was predicted by using the remaining samples as standards for building the

185

184

calibration model.

3. Results and discussion

3.1 Optimisation of UPLC conditions. The separation of BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ with reverse
phase columns (C ₈ , C ₁₈) was challenging because the interaction of the 3 anions with the
stationary phase was weak and very similar among them. Their behaviour was dominated by
their net negative charge, which becomes stabilised by solvation in the mobile phase. Higher
level of retention was intended when using Hydrophilic Interaction Chromatography (HILIC)
with amide groups in the stationary phase. Mobile phase compositions, constituted with
methanol/acetonitrile in water at different proportions (0-100%), were tested at flow rate
between 100 and 500 $\mu L \text{ min}^{-1}$. The addition of formic acid (0.1 – 1%) in the mobile phase was
also investigated as a way to shield the charge of the analytes or displace the equilibria towards
nitrous acid (case of NO ₂ ⁻) and achieve higher retention for the neutral species. All the
conditions studied lead to very limited or no separation among BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ . The
HILIC column (with mobile phase methanol: water 50:50, v/v) made possible to achieve slightly
higher retention for nitrite and nitrate (retention time 0.80 and 0.82 min, respectively), however
the symmetry factor of the peaks led to limited peak height and sensitivity and for that reason
that column was discarded. In terms of retention and separation in reversed phase
chromatography, the percentage of organic solvent in the mobile phase did not cause a great
effect on the retention of NO ₃ ⁻ and NO ₂ ⁻ . BrO ₃ ⁻ presented the lowest retention of the three and
its signal was affected by the composition of the mobile phase. In a previous work, a mobile
phase of water with 0.1% formic acid in water, at 200 μL min ⁻¹ , led to a retention time of 0.4
min. Despite that the added acid reduced peak tailing, the peak asymmetry factor for $\mathrm{BrO_3}^-$
(measured at 10% of the peak height) was 1.1 [6]. In this work, a mobile phase of 75% methanol
in water, in absence of formic acid, led to higher retention (0.7 minute) and improved peak

symmetry (tailing factor: 1.0) at 200 μL min ⁻¹ , being the dead volume 0.1 min at these
conditions. Peak symmetry and separation from the dead volume was poorer with a C ₈ column
when compared to a C_{18} . The latter, an Acquity $^{\circledR}$ BEH C_{18} column with dimension 50 mm \times 2.1
mm i.d., 1.7 μ m particle size, with a mobile phase consisting of methanol/water (75:25, v/v) in
isocratic elution at flow rate 200 $\mu L \ min^{-1}$, was adopted as the optimal conditions which lead to
the chromatogram shown in Figure 1. The chromatographic peaks from the analytes were not
resolved but their co-elution was not found to affect their detection. Acetonitrile was not found
advantageous with respect to the results achieved with methanol. Comparatively, low flow rates,
which favoured ionic evaporation and efficient desolvation in the electrospray ionization source,
were found to be advantageous for the analysis of the anions. At 200 μL min ⁻¹ , chromatographic
peaks presented peak width that could be defined with a minimum of 15 scan points and analysis
time of just 1 min.

3.2 Optimisation of the MS conditions and UPLC-MS quality parameters.

The electrospray (ESI) ionization conditions related with desolvation, ionic evaporation and transmission of the analyte ions were investigated: cone voltage (10–100 V), capillary voltage (2.0–4.5 kV), source temperature (80-150 °C), desolvation temperature (250–450 °C) and desolvation gas (300–700 L h⁻¹). The ESI/MS parameters that offered the best sensitivity are provided in section 2.1. Temperatures and source gases in the higher range were found to provide higher sensitivity because these favoured ionic evaporation. However, the high percentage of organic solvent in the mobile phase (75%) and relative low flow rate prevented needing extreme settings for optimal sensitivity.

The relationship between the concentration of the analytes and their response was assessed across the
range 0.1-1000 $\mu g \ L^{-1}$ and was found to be lineal; calibration curves with $r^2 < 0.999$ were obtained
in all cases and t correlation test confirmed the correlation (P 0.05). The working range was
limited to 0.1-100 $\mu g \ L^{-1}$ given that the concentrations of the analytes were expected in that
range. Quality parameters obtained under optimal conditions are given in Table 1. The
instrumental limit of detection (S/N=3) for NO_2^- was 0.04 $\mu g~L^{-1}$ and for NO_3^- and BO_3^- was
$0.03~\mu g~L^{-1}$. Run-to-run and day-to-day precisions were <3% (n = 6) for the three anions when
analyzing a standard mixture solutions at 10 $\mu g \; L^{-1}$. The sensitivity achieved for NO_3^- did not
decrease when compared to its individual analysis with UPLC-MS [24]. It improved previous
LC-MS method using reversed phase chromatography where LODs for nitrate and nitrite were 1
$\mu g \; L^{-1}$ and 12 $\mu g \; L^{-1}$ [25], respectively. The sensitivity of the developed method was, however,
about 10 times poorer than a non-routine method recently developed based on spectroscopic
detection assisted by graphene oxide modified with amino groups and gold nanoparticles [26].
Furthermore, the detection of bromate improved by 10 times previous results with UPLC-MS
[6]. This improvement can be attributed to better ionic evaporation achieved with the higher
proportion of organic solvent in the mobile phase. The sensitivity reached was also superior to
the levels achieved with completely different approaches: ionic chromatography-conductivity
detection; liquid chromatography-inductively coupled plasma/ mass spectrometry detection;
capillary electrophoresis and mass spectrometry detection by 2-25 times [27-29]. An analysis
time of just 1.5 minutes for BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ , without need of column preconditioning due
to isocratic conditions, made the optimised method as one the fastest and most sensitive methods
available to the best of our knowledge.

254	3.3 Determination of $\mathrm{BrO_3}^-$, $\mathrm{NO_3}^-$ and $\mathrm{NO_2}^-$ in bottled and metropolitan samples from Saudi
255	Arabia.
256	Reporting the concentration of the potentially hazardous anions in drinking water is important to
257	identify improvements needed in the production of drinking water. A total of 32 samples of
258	different origin from the Kingdom of Saudi Arabia were analysed by external calibration and
259	standard addition. High recovery rates (94-99%) were found for the 3 analytes in both
260	metropolitan and bottled waters (Table 2 and 3), which indicates that ion suppression in the ESI
261	or losses in the filtration step were marginal. Therefore, external calibration is an appropriate
262	way to carry out the quantification.
263	In metropolitan water, the concentration range found for BrO_3^- was 5.83-13.45 $\mu g\ L^{-1}$; for
264	NO_2^- , 0.83-1.57 mg L^{-1} ; and for NO_3^- , 1.65-4.61 NO_3^- (quantification shown in Table 2). The
265	higher levels of BrO ₃ ⁻ were found in desalinated water which had not been blended with well
266	water. This is because well water may dilute the species (Br) that would subsequently be
267	oxidised to BrO ₃ ⁻ . In contrast, desalinated water contained among the lowest levels NO ₃ ⁻ and
268	NO ₂ ⁻ compared to well water, which may have received higher level of leachates from the
269	degradation of nitrogen rich sources.
270	Among the relatively low number of metropolitan water samples analysed and given in Table 2,
271	33% contained BrO_3^- levels above the 10 $\mu g\ L^{-1}$ target by the WHO, US EPA and Gulf
272	standards for metropolitan water in Saudi Arabia (P 0.05) [4,30]. In previous works >70% of a
273	limited number of samples analysed were higher than the 10 $\mu g \; L^{-1}$ [6, 28]. In contrast, the levels
274	of NO_3^- were all below the EPA limit of 10 mg L^{-1} (P 0.05) [4]. However, 92% of the samples
275	had NO_2 levels above the EPA MCL for NO_2 (1 mg L^{-1} , P 0.05) [4] despite all of them
276	complying with the Gulf standards (3 mg/L NO ₂ ⁻)[30].

Among the bottled water samples, 25% presented higher BrO ₃ concentration than the WHO and
EPA targets (P 0.05) [2,4]; all the samples were below the MCL for NO_3^- [4]; and 70% where
above the EPA limit for NO_2^- (P 0.05) [4] or entirely over the Gulf standards for bottled water
$(0.2 \text{ mg L}^{-1}\text{NO}_2^{-})$ [31]. Previous work carried out in Saudi Arabia showed a broad range of
concentration for these compounds: 8% [32]; 17% [6]; and 60 % of the samples had higher
BrO ₃ ⁻ [28] than the EPA MCL. The levels of NO ₂ ⁻ detected in this research are about two time
the highest level of nitrite detected (0.38 mg L^{-1}) in a recent comprenhensive study which
monitored 145 wells in Makkah City [33] and also contrasts with the low detection rate of NO_2^-
in the assessmnet of 571 European bottled mineral waters ($<$ 8% had levels above 0.01 mg L^{-1})
[34]. Another important difference with these European samples is that whereas 37% of the
samples had $NO_3^- > 2.6 \text{ mg L}^{-1}$ [34], only 15% of the samples in our equivalent study (Table 3)
reached such high level. Oxidation conditions prior bottling water and ammonia-related levels
before oxidation can be the origin of such differences. Our data shows that NO ₃ ⁻ is at non
problematic levels; this is in agreement with other recent studies in Saudi Arabia found that all
the samples tested were below the EPA goal [24] while others showed that it is still of concern
since 20% of the samples presented higher NO_3^- than the EPA limits [32]. A study where 388
wells of 6 regions of the Kingdom of Saudi Arabia were investigated, much higher
concentrations of nitrate were found: 8% of the wells had $NO_3^- > 45$ mg L^{-1} [35]. Our study
shows both NO ₂ ⁻ and BrO ₃ ⁻ are problematic in both metropolitan and bottled water. The levels
of these toxicants in bottled water are especially relevant because this type of water is typically
used to prepare infant formulas. Remediation measures to decrease Br and nitrogenated
compounds in water sources; optimising the disinfection conditions currently applied and
selecting those (concentration, pH, duration) that would make possible effective disinfection,

300	reducing the formation of BrO_3^- and increase the oxidation of NO_2^- to NO_3^- (keeping both
301	below the regulated levels); or blending types of water to lower the levels of these potential
302	toxicants are recommendable.
303	
304	3.4 Mapping bottle and metropolitan waters with PCA model built from BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻
305	levels in samples from Saudi Arabia.
306	A PCA model was built from the quantified BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ levels in metropolitan and
307	bottled water samples given in Tables 2 and 3. The data was represented using axis, PC, which
308	better explain the variation among the data. The scores plot (Figure 2), which classifies the
309	samples based on the concentration of the anions, revealed patterns that were related with the
310	sample characteristics. The samples were mainly distributed along PC1 (which explains 77%) of
311	the variation. Metropolitan water appeared distributed mainly in the first 2 quarters of the plot,
312	whereas bottled water appeared mainly in the second half of the plot. However, there were some
313	bottled water samples appearing in the region where metropolitan water predominated. It could
314	be hypothesised that these bottled samples contained metropolitan water.
315	Figure 3 shows the distribution of the variables (loading plot). When correlating the scores plot
316	(Figure 2) with the loading plot (Figure 3), it can be observed that BrO ₃ ⁻ , which is located at one
317	extreme of PC1, was the variable causing the main differentiation among samples along PC1. In
318	contrast, NO ₃ is the variable responsible for the distribution of the samples along PC2.
319	Therefore metropolitan samples were mainly described by the levels of BrO ₃ ⁻ (which is in
320	agreement with higher level of this ion in desalinated water. Bottled water (mainly from well
321	water and thus with input of nitrogenated species from organic matter degradation) appeared
322	mostly distributed along PC2. A more detailed PC model giving details of the type of water and

its origin is shown in Figure 4. Metropolitan water from the same geographical region were not
grouped, however those samples from desalinated water were distinctively separated from
samples containing both desalinated water and well water, and from well water only, along PC1.
Bottled water samples number 12, 13,16 and 20 did not have their origin in their label.
According to our model, these samples could be bottled metropolitan water. The bottled water
samples number 2, 4 and 6 appeared in the interface between metropolitan water and bottled well
water. These appeared labelled as well water, however their levels of $\mathrm{BrO_3}^-$ (>8 $\mu g \ L^{-1}$) were in
the higher range of their type (Table 3). Based on the position of these samples in the PCA
model, it could be hypothesized that these bottled water samples could contain a blend of well
water and desalinated water.

4. Conclusions

- The UPLC-ESI/MS method developed for the determination of BrO₃⁻, NO₃⁻ and NO₂⁻, with an analysis time of just 1.5 min; high sensitivity 0.03-0.04 μg/L; high precision (<3%) and recoveries (>94%) is advantageous for monitoring drinking water.
- The analysis of BrO₃⁻, NO₃⁻ and NO₂⁻ in 20 bottled water samples and in 12 metropolitan water samples from different sites in the Kingdom of Saudi Arabia showed that the levels of BrO₃⁻ and NO₂⁻ were in many cases above recommended levels. Specifically, the concentration of BrO₃⁻ was found higher than the US EPA MCL in 25 and 33% of the bottled and metropolitan waters, respectively. The levels of NO₂⁻ were higher than the US EPA MCL in 70 and 92% of the bottled and metropolitan water samples,

respectively, and all samples were below the EPA limits for NO₃⁻. These results indicate

346	that remediation measures/disinfection conditions need to be further optimised with view
347	to the DBPs generated.
348	• A PCA model using BrO ₃ ⁻ , NO ₃ ⁻ and NO ₂ ⁻ concentrations showed capacity to
349	discriminate between desalinated water; well water; and desalinated water blended with
350	well water in Saudi Arabia. The level of bromate was the main variable making possible
351	the distinction among drinking water samples. NO ₃ ⁻ had less influence in mapping the
352	samples and mainly described the bottled drinking waters. The geographical sampling
353	site was not useful to classify the metropolitan drinking water samples.
354	
355	ACKNOWLEDGEMENTS. The authors would like to extend their sincere appreciation to the
356	Deanship of Scientific Research at King Saud University for funding this work through the
357	Research Group Nº RG-1437-004.
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	

369	
370	
371	
372	
373	
374	REFERENCES
375	[1] M. W. Le Chevallier, Au. Kwok-Keung, Inactivation (disinfection) process, in: M. W. Le
376	Chevallier, Au. Kwok-Keung (Eds.), Water treatment and pathogen control: process
377	efficiency in achieving safe drinking water, World Health Organization titles with IWA
378	Publishing, London, UK, 2004, pp 41-65. ISBN 92 4 156255 2, ISBN 1 84339 069 8
379	[2] World Health Organization, Guidelines for drinking-water quality, forth ed., WHO
380	Switzerland, 2011. ISBN 978 92 4 154815 1.
381	[3] E. Brown, A. Colling, D. Park, J. Phillips, D. Rothery, J. Wright, Seawater: its composition,
382	properties and behavior, G. Berman editor, second ed., The Open University in Association
383	with Pergamon, Oxord, UK, 1995.
384	[4] U.S. Environmental Protection Agency (US EPA) National Primary Drinking Water
385	Regulations, EPA 816-F-09-004, 2009. Available from:
386	http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf (accessed September 2015).
387	[5] D. Kim, G. L. Amy, T. Karanil, Disinfection by-product formation during seawater
388	desalination: A review, Water Res. 81 (2015) 343-355.
389	[6] I.H. Alsohaimi, Z. A. Alothman, M.R. Khan, M.A. Abdalla, R. Busquets, A.K. Alomary,
390	Determination of bromate in drinking water by ultraperformance liquid chromatography-
391	tandem mass spectrometry, J.Sep. Sci. 35 (2012) 2538-2543.

[7] A. B. DeAngelo, M. H.George, S. R. Kilburn, T. M. Moore, D. C. Wolf, Carcinogenicity of 392 potassium bromate administered in the drinking water to male B6C3F1 mice and F344/N 393 rats, Toxicol. Pathol. 26 (1998) 587-594. 394 [8] IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 395 IARC, Lyon, France, 31 (1998) 481. 396 [9] World Health Organization, Guidelines for drinking-water quality, Vol.1. Recommendations. 397 Third ed. WHO Switzerland, 2008. ISBN 978 92 4 154761 1. 398 [10] U.S. Environmental Protection Agency (US EPA) Nitrates and nitrites. TEACH Chemical 399 400 Summary, 2006. [11] U.S. Environmental Protection Agency (US EPA), Basic Information about nitrate in 401 drinking Water. 2015. [On-line] Available from: 402 http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, Accessed September 403 2015. 404 [12] L.W. Canter, Nitrates in Groundwater, CRC Press, Boca Raton, Florida. ISBN 405 9780873715690, 1996. 406 [13] Council of the European Communities, Implementation of Council Directive 91/676/EEC 407 concerning the protection of waters against pollution caused by nitrates from agricultural 408 sources. Synthesis from year 2000 Member States reports, Luxembourg, 2002, ISBN 92-409 894-4103-8. Available http://ec.europa.eu/environment/water/water-410 from: nitrates/pdf/91 676 eec en.pdf. (accessed September 2015). 411 [14] M.K. Ji, Y.T. Ahn, M. A. Khan, R.A.I. Abou-Shanab, Y. Cho, J. Y. Choi, Y. J. Kim, H. 412

413

Song, B. H. Jeon, Removal of nitrate and ammonium ions from livestock wastewater by

414	hybrid systems composed of zero-valent iron and adsorbents, Environ. Technol. 32 (2011)
415	1851-1857.
416	[15] C.S. Bruning-Fann, J.B. Kaneene, The effects of nitrate, nitrite and N-nitroso compounds on
417	human health: a review, Vet. Hum. Toxicol. 35 (1993) 521-538.
418	[16] A.A. Avery, Infantile methemoglobinemia: re-examining the role of drinking water nitrates.
419	EHP107 (1999) 583–586.
420	[17] J. Sanchez-Echaniz, J. Benito-Fernandez, S. Mintegui-Raso, Methemoglobinemia and
421	consumption of vegetables in infants. Pediatrics 107(2001) 1024-1028.
422	[18] D. M. Klurfeld, Nitrite and Nitrate in Cancer in: N.S., Bryan, J. Loscalzo (Eds.), Nitrite and
423	nitrate in human health and disease, Springer, Humana Press, New York, 2011, pp 263-
424	278.
425	[19] IBWA, International Bottled Water Association 2015. Bottled water code of Practice.
426	IBWA Code of Practice Monitoring Requirements. Appendix 2, Alexandria. [on-line]
427	Available
428	from:http://www.bottledwater.org/public/IBWA%20MODEL%20CODE%202015%20Rev
429	%2002%202015.pdf. (Accessed September 2015)
430	[20] Council of the European Communities, Directive of the European Parliament and of the
431	Council on the Quality of Water Intended for Human Consumption (98/83/EC), 1998.
432	[21] US EPA, Methods for the Determination of Inorganic Substances in Environmental
433	Samples, EPA/600/R-93/100, Cincinnati, US, 1993.
434	[22] US EPA, Methods for the Determination of Organic and Inorganic Compounds in Drinking
435	Water, Volume 1,EPA/815-R-00-014, Cincinnati, US, 2000.

- 436 [23] M.B. Amran, M.D. Lakkis, F. Lagarde, M. J. F. Leroy, J. F. Lopez-Sanchez, G. Rauret,
- Separation of bromide, bromate, iodide, iodate, nitrite, nitrate and selenite anions by
- capillary zone electrophoresis, Fresenius J Anal Chem. 345 (1993) 420-423.
- 439 [24] M. R. Khan, Z. A.Alothman, M.A. Khan, R. Busquets, I H. Alsohaimi, An ultra
- performance liquid chromatography-electrospray ionization-mass spectrometry method for
- the rapid analysis of nitrate in drinking water, Anal. Methods 5 (2013) 1225-1230.
- 442 [25] Y. Li, J.S. Whitaker, C.L. McCarty, Reversed-phase liquid chromatography/electrospray
- ionization/mass spectrometry with isotope dilution for the analysis of nitrate and nitrite in
- 444 wàter, J. Chromatogr. A 1218 (2011) 476–483.
- 445 [26] W. Ren, S. Mura, J.M.K. Irudayaraj, Modified graphene oxide sensors for ultra-sensitive
- detection of nitrate ions in water. Talanta 143 (2015) 234–239.
- 447 [27] W. Lawal, J. Gandhi, C. Zhang, Direct injection, simple and robust analysis of trace-level
- bromate and bromide in drinking water by IC with suppressed conductivity detection, J.
- 449 Chromatogr. Sci. 48 (2010) 537–543.
- 450 [28] A. A. Othman, S. A. Al-Ansi, M. A. Al-Tufail, Determination of Bromate in Bottled
- Drinking Water from Saudi Arabian Markets by HPLC/ICP-MS, Anal. Lett. 43 (2010)
- 452 886–891.
- 453 [29] S. Zhang, Y. Shao, J. Liu, I.A. Aksay, Y. Lin, Graphene–polypyrrole nanocomposite as
- a highly efficient and low cost electrically switched ion exchanger for removing ClO₄
- from wastewater. ACS Appl. Mater. Interfaces 3 (2011) 3633–3637.
- 456 [30] Gulf Cooperation Council GSO 149, Unbottled drinking water, 1-12, 2008.
- 457 [31] Gulf Cooperation Council GSO 1025, Bottled Drinking Water, 1-10, 2008.

458	[32] A.M. Al-Omran., S.E. El-Maghraby, A.A. Aly, M.I. Al-Wabel, Z.A.Al-Asmari, M.E.
459	Nadeem, Quality assessment of various bottled waters marketed, Environ Monit Assess.
460	185 (2013) 51-59.
461	[33] N.H. Khdary, A.E. Gasim, M.E. Muriani, A.A. Alshehrie, Modeling Distribution of
462	Selective Ions in Urban and Rural Areas Using Geographical Information System, J. Water
463	Resour. Prot. 7 (2015) 516–529.
464	[34] D. Bertoldi, L. Bontempo, R. Larcher, G. Nicolini, S. Voerkelius, G.D. Lorenz, H.
465	Ueckermann, H. Froeschl, M.J. Baxter, J. Hoogewerff, P. Brereton, Survey of the chemical
466	composition of 571 European bottled mineral waters, J. Food Compos. Anal. 24 (2011)
467	376–385.
468	[35] M.N.A. El-Din, I.M. Madany, A. Al-Tayaran, A.H. Al-Jubair, A. Gomaa, Quality of water
469	from some wells in Saudi Arabia, Water, air soil Pollut. 66 (1993) 135–143.
470	
471	Figure captions
472	
473	Figure 1. UPLC-ESI/MS chromatograms and spectra of NO ₂ ⁻ , BrO ₃ ⁻ , NO ₃ ⁻ in bottled water
474	(sample n°1 in Table 3). The chromatographic conditions were isocratic (75% methanol in water
475	(v/v)) at a flow rate of 200 μ L min ⁻¹ , 25 °C. The column used was an Acquity® BEH C ₁₈ (50 mm
476	× 2.1 mm i.d., 1.7 μm particle size).
477	
478	Figure 2. PCA scores plot obtained from metropolitan and bottled waters as a function of BrO ₃ ,
479	NO ₃ and NO ₂ concentrations.
480	J 2
481 482	Figure 3. PCA loading plot showing the contribution of the variables in the model.

484	Figure 4. Scores plot showing the distribution of metropolitan and bottled water samples. The
485	metropolitan water sampling site and type of water (desalinated; well; blend of well and
486	desalinated water; and unknown (?)) appear indicated in the sample name. The number in
487	brackets corresponds to the sample number listed in Tables 2 and 3. The region of the plot
488	comprising metropolitan water samples has been circled. A zoom into closely distributed samples
489	is provided.
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	ceoiled mainuscillot
500	
501	
502	
503	
504	
505	
506	
507	
508	

Table 1. Quality parameters obtained with the optimised UPLC-ESI/MS method.

510	
511	

			Run-to-run	Day-to-day
Analyte	LOD	LOQ	precision	precision
Allaryte	$(\mu g L^{-1})$	$(\mu g L^{-1})$	(n=6),	(n=6),
			RSD (%)	RSD (%)
NO_3^-	0.030	0.092	1.3	2.6
NO_2^-	0.039	0.12	1.5	2.9
$^{81}\mathrm{BrO_{3}}^{-}$	0.029	0.092	1.4	2.7
$^{79}\mathrm{BrO_3}^-$	0.040	0.12	1.6	3.1

Table 2. Concentrations of NO₂⁻, NO₃⁻ and ⁸¹BrO₃⁻ in metropolitan water samples and recoveries (R) obtained in their determination with UPLC-ESI/MS

Metropoli-	Water	$\mathrm{NO_2}^-$		NO ₃		⁸¹ BrO ₃ ⁻	
tan water (samplen°)*	source	$(\operatorname{mg} L^{-1}) \pm \operatorname{SD}$	R (%)	(mg L ⁻¹) ± SD	R (%)	$(\mu g L^{-1}) \pm SD$	R (%)
Jeddah (1)	Desalinated + well water	1.37±0.04	95	4.11±0.03	95	5.83±0.03	96
Jeddah (2)	Desalinated + well water	1.41±0.04	97	4.08±0.03	97	6.35±0.02	97
Jeddah (3)	Desalinated water	1.35±0.04	96	4.35±0.03	97	9.31±0.01	97
Jeddah (4)	Desalinated water	0.89 ± 0.05	95	2.02±0.04	94	13.45±0.01	98
Dammam (5)	Desalinated + well water	1.32±0.04	98	2.41±0.04	97	8.67± 0.02	98
Dammam (6)	Desalinated + well water	1.49±0.04	95	4.61±0.03	97	9.78±0.01	97

Dammam (7)	Desalinated water	0.97 ± 0.05	95	2.14±0.04	96	12.35±0.01	94
Dammam (8)	Desalinated water	1.29±0.04	94	3.65±0.03	96	7.80±0.02	98
Riyadh (9)	Desalinated + well water	1.57±0.04	98	2.53±0.03	95	8.63 ± 0.02	96
Riyadh (10)	Desalinated + well water	1.32±0.04	95	2.45±0.03	95	10.76±0.01	95
Riyadh (11)	Desalinated + well water	1.33±0.04	96	2.53±0.03	97	7.98±0.02	98
Riyadh (12)	Desalinated water	0.83±0.05	97	1.65±0.04	96	11.54±0.01	98

^aTreated with hypochlorite disinfectant and obtained from different locations

Table 3. Concentrations of NO_2^- , NO_3^- and $^{81}BrO_3^-$ in bottled water samples and recoveries obtained in their determination with UPLC-ESI/MS

Bottled water	Water	NO ₂ (mg L	¹)	NO_3^- (mg L ⁻¹)		$\mathrm{BrO_3}^- \ (\mathrm{\mu g}\ \mathrm{L}^{-1})$	
(number)		mean± SD	R ^b (%)	mean± SD	R (%)	mean± SD	R (%)
1	Well water	1.59 ± 0.04	99	4.89 ±0.03	98	6.79 ± 0.02	99
2	Well water	0.89 ± 0.05	98	2.85 ± 0.03	97	8.41 ± 0.02	98
3	Well water	1.52 ± 0.04	96	3.96 ± 0.03	98	4.15 ± 0.03	97

b R: Recovery c SD = standard deviation (n = 3)

4	Well water	0.56 ± 0.05	98	0.97 ± 0.05	99	8.52 ± 0.02	96
5	Well water	0.58 ± 0.05	99	4.65 ± 0.03	99	2.35 ± 0.04	99
6	Well water	3.46 ± 0.02	99	6.54 ± 0.02	98	10.16 ± 0.01	98
7	Well water	3.22 ±0.03	98	9.65 ± 0.01	96	6.60 ± 0.02	99
8	Well water	1.62 ± 0.04	99	5.21 ± 0.02	99	3.60 ± 0.03	99
9	Well water	1.36 ± 0.04	98	3.45 ± 0.03	97	5.59 ± 0.03	99
10	Well water	1.45 ± 0.04	98	5.32 ± 0.03	99	7.42 ± 0.02	99
11	Well water	1.32 ± 0.04	99	3.78 ± 0.03	97	3.65 ± 0.03	99
12	_a	0.63 ± 0.05	98	0.41 ± 0.05	99	11.42 ± 0.01	98
13	_	0.72 ± 0.05	99	0.53 ± 0.05	98	11.96 ± 0.01	98
14	_	1.43 ± 0.04	99	4.22 ± 0.03	98	2.82 ± 0.04	98
15	_	2.84 ± 0.03	99	7.65 ± 0.02	99	4.02 ± 0.03	98
16	_	0.64 ± 0.05	98	1.45 ± 0.04	99	11.40 ± 0.01	99
17	_	1.42 ± 0.04	99	3.52 ± 0.03	97	3.41 ± 0.03	99
18	_	1.65 ± 0.04	99	2.65 ± 0.03	97	4.97 ± 0.03	99
19	_	0.78 ± 0.05	97	1.33 ± 0.04	99	3.42 ± 0.03	98
20	_	1.88 ± 0.44	99	2.80 ± 0.03	98	10.74 ± 0.01	98

^a Unknown source of water ^b R: Recovery

HIGHLIGHTS:

- Analysis of BrO₃⁻, NO₃⁻ and NO₂⁻ in 1.5 min by UPLC-MS
- Monitoring of BrO₃⁻, NO₃⁻ and NO₂⁻ in Saudi Arabia drinking water
 - PCA analysis discriminates among types of metropolitan and bottled water

 $^{^{}c}$ SD = standard deviation (n = 3)

Figure 1. UPLC-ESI/MS chromatograms and spectra of NO₂⁻, BrO₃⁻, NO₃⁻in bottled water (sample n°1 in Table 3). The chromatographic conditions were isocratic (75% methanol in water (v/v)) at a flow rate of 200 μL min⁻¹, 25 °C. The column used was an Acquity® BEH C₁₈ (50 mm × 2.1 mm i.d., 1.7 μm particle size).

Figure 2. PCA scores plot obtained from metropolitan and bottled waters as a function of BrO_3^- , NO_3^- and NO_2^- concentrations.

Figure 3. PCA loading plot showing the contribution of the variables in the model

Figure 4. Scores plot showing the distribution of metropolitan and bottled water samples. The metropolitan water sampling site and type of water (desalinated; well; blend of well and desalinated water; and unknown (7)) appear indicated in the sample name. The number in brackets corresponds to the sample mamber in Tables 2 and 3. The region of the plot comprising metropolitan water samples has been circled. A zoom into closely distributed samples is provided.