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Abstract—In this project, mobile connectivity and an innova-

tive approach to sensor data gathering and integration have been 

employed to automate maintenance inspection, performance mon-

itoring and ride quality measurement in vertical transportation 

systems. An Inertial Navigation System (INS) has been proposed, 

implemented and tested to track lift car movement profile. The in-

herent characteristics of vertical motion have been used to mini-

mize errors and obtain higher accuracy in the integration results. 

The measurement of a correlation between kinematic profiles con-

structed from lift-car tracking data compared to its nominal val-

ues provides key information on the lift condition at any time. A 

frequency analysis was applied to processing vibrations and noise 

data, effectively adding another dimension to the lift ride quality 

measurement. This approach enabled lift performance profiles to 

be compiled automatically and transmitted in real time, which sig-

nificantly rationalized and improved the process of maintenance 

inspection and monitoring. An advanced prototype, AdInspect, 

has been produced, with the full set of described features. Industry 

partners are currently evaluating it. 

Keywords—inertial navigation systems; measurement standards; 

sensor applications; sensor data integration; sensor fusion. 

I.  INTRODUCTION 

Sensor data applications are undergoing rapid development 
due to abundance of non-expensive micromechanical systems 
(MEMS), such as nano-scale beams used to measure 
acceleration, or vibrating petals measuring angular velocity in 
a gyroscope. They are being etched directly into silicon 
structures, next to the logical circuits, thus dramatically 
reducing production costs. 

While these rather basic motion sensors, built into popular 
smartphones and tablets, are mainly used for gaming purposes, 

the question is could they be used for broader application do-
mains, particularly in the industry-standard measurements con-
text? This study aims to answer this question.  

The proposed solution can be considered as an inertial nav-
igation system (INS)—the one that uses sensor input (accel-
erometer, possibly gyroscope) to calculate, in real time, its mo-
tion parameters such as position, velocity, acceleration and sec-
ond derivative of velocity (known as ‘jerk’). The system was 
implemented in a vertical transportation vehicle, a lift car, to 
provide key information on its performance and condition. It is 
achieved through analysing the correlation between the kine-
matic profiles constructed from lift-car tracking data compared 
to its nominal values. The frequency analysis of the vibration 
signal is used to measure the ride quality. Combined with auto-
matic light and noise measurements, as well as manually col-
lected data, this makes a hand-held mobile device a powerful 
inspection tool with a capability of producing maintenance 
evaluation reports in situ, and with the aid of mobile connectiv-
ity, transmitting data immediately to the main storage and to the 
client. The prototype, ‘AdInspect’, built on an Android plat-
form, is currently being tested by the industrial partner of this 
project, Movvéo Ltd, in a number of sites across Europe. 

II. RELATED WORK 

Smartphone sensor technology is being successfully used in 
a range of applications, such as measuring sports performance 
[1], elderly assistance [2][3], determining user's activity [4][5] 
and controlling robots [6]. In gaming, spatial input provides 
invaluable means to control the game play through the user's 
activity and gestures; the latter are also more and more often 
used in non-gaming user interfaces [7]. 

Inertial navigation systems (INS) based on cheap sensors 
built into mobile devices inherently lack in accuracy—mostly 
due to low frequency and, less importantly, noise levels. They 
are often used just to aid other navigation solutions, such as 
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GPS, wireless beacons or vision systems. However, in indoor 
environments GPS signal is also not very reliable, thus fuelling 
research in indoor INS. For example, Kourogi et al. in their clas-
sical work integrated self-contained dead-reckoning sensors 
with GPS and RFID tagged beacons to adjust for positioning 
errors [8]. A similar but more recent approach can be found in 
[9], and a good review of indoor INS solutions in [10]. Some-
times, with varied level of success, INS can provide navigation 
wherever other systems are not available or not applicable. 
R.Zhang with his team are using bio-mechanic model of human 
gait to constrain the kinematic model of the hand-held device 
by calculating length of each step [11]. Stockx, Hecht and 
Schöning provide reliable navigation data for underground rail-
way networks. They detect trains stops and use geographical 
location of stations to constrain their model [12]. Markham with 
his team are also proposing underground navigation system, in 
this case for tracking burrowing animals behaviour, but their 
solution is based on magneto-inductive (MI) localization [13]. 

Inertial dead-reckoning, which is principally a motion anal-
ysis technique, is naturally applicable for research in various 
aspects of transportation systems. Pfriem and Gauterin success-
fully used smartphones as multi-sensor platform in large vehi-
cle field operational tests (FOT)—claiming that the solution 
proved not only to be cost-effective, but also robust and accu-
rate [14]. A research has been carried on to automatically detect 
user’s mode of transport [15][16] or to apply pattern recognition 
based on dynamic time warping and data fusion to automati-
cally detect driving style [17]. 

Particularly interesting for this work were results achieved 
by Douangphachanh and Oneyama who used Android 
smartphone sensor data for road maintenance management and 
continuous monitoring. They utilised 3-axial acceleration data 
in a frequency domain, combined with velocity data, to provide 
a measurement of the road surface roughness (with a linear re-
lationship) [18]. 

INS systems are not particularly frequently used in con-
struction or lift industries. De Dominicis and his colleagues 
were using mobile devices as a multi-purpose and multi-sensor 
management tool for construction site management (mostly as-
set management), and they used INS indoors, where GPS signal 
was too weak to be usable [19]. Work presented here took in-
spiration from study on the lift ride quality published by Lors-
bach in one of the industrial specialist magazines more than 10 
years ago [20].  His work was based on using EVA-625, an in-
dustry level accelerometer system [21]. This comes with 4.5 kg 
weight, high price tag and technical specification which is quite 
comparable to sensors built into modern mobile devices. 

III. PRINCIPLES FOR THE PROPOSED INS 

Ideally  , accelerometer output should provide a reliable 3D 
acceleration vector, which might be integrated to get the 
velocity vector, or doubly integrated to find the position. Due 
to integration, results are of course relational, and initial 
conditions need to be taken into account. In practical solutions 
the accelerometer measurement comes bundled with the 
gravitational acceleration vector that must first be extracted 
from any calculations. This is often achieved by applying a 
high-pass filter, but this approach generates a lag and in effect 
it is rarely working really well—particularly if the gravity 

vector changes rapidly, for example when the device is quickly 
rotated or shaken. Much more effective approach has been 
presented by David Sachs at Google Tech Talks [22]: combined 
information from gyroscope and compass is used to determine 
which way is down; this is used to effectively compensate for 
the gravitational acceleration and achieve more precise smooth 
acceleration with no lag.  

A major challenge, inevitably present in accelerometer 
measurements, is noise. Throughout the process of integration, 
this noise tends to convert into drift, which in case of doubly 
integration is quadratic. Combined with even minor error 
margin in gravity estimation, it may lead to huge discrepancy. 
According to Sachs, noise generated by a conventional chip in 
a mid-range Android device, combined with the error margin in 
gravity reading, can generate a drift in position calculation of 
over 8 meters per second! [22] INS solutions proved to work 
well wherever velocities were low and measurement time short. 
In order to obtain more precise results fusion of all three sensory 
inputs may be required; or calibration from channels other than 
inertial, for example GPS; or compensation based on motion 
constraints, such as physical fundamentals of motion. 

Lift car motion is inherently constrained and these con-
straints can be demonstrated to be sufficient to achieve precise 
and reasonably accurate results. These constraints are that: lift 
cars are only moving in vertical direction (lateral oscillations 
may be interesting when measuring vibrations, but not for the 
kinematic profile); and that measurement always starts and 
stops while the car is motionless. 

IV. SYSTEM IMPLEMENTATION 

Raw accelerometer sensor measurement is a 3D vector and 
comes bundled with gravity, is in this solution reduced to one-
dimensional vector by projecting it onto direction of the gravity 
force. The latter is determined using the output from the gravity 
sensor, one of Android synthetic sensors—heavily processed in 
software [23]. Only a normalised gravity vector is used—this 
eliminates numerical error on its magnitude, which might oth-
erwise generate a strong drift after integration. 

The magnitude of the gravity force may be better eliminated 
by integrating the acceleration signal over the whole measure-
ment period. Considering that the car is motionless at both start 
and end time, the overall gain in velocity is zero, thus the grav-
ity can be found as: 
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where �(�) and 	(�) are, respectively, accelerometer and grav-
ity sensors output signals. The acceleration value is: 

�(�) = �(�) ⋅ 	(�)
|	(�)| − � 

We found this simple sensor fusion much more practical 
than using the raw gyroscope readings—results were coherent 
and drift-free even when the device was held in hand.  

The acceleration signal is furthermore smoothened by ei-
ther low-pass or median filter (the best experimental results 
have been delivered for the latter, with median window of 0.5 



seconds). Consequently, numerical integration is applied for the 
velocity, and double integration for the position function. Euler, 
Verlet and Beeman integration methods have been tested but 
eventually the trapezoidal rule has been selected for the final 
implementation—due to simplicity and sufficiently good qual-
ity of results. Jerk requires calculation of the acceleration deriv-
ative. This process is easily affected by noise; however 
satisfactory results have been achieved with linear regression 
(least squares method) .   

V. KINEMATIC PROFILE OF A LIFT CAR RIDE: ANALYSIS 

Typical output of the measurement process—a kinematic 
profile of a single lift ride—is shown in fig. 1. The accelerom-
eter signal before any filtering is shown together with the final, 
smoothened acceleration.  

To evaluate the accuracy and quality of the profiles obtained 
in the process, they have been compared with the theoretical, 
ideal dynamic profile of a lift based on the nominal velocity, 
acceleration and jerk values for the given type and model of the 
lift. These are typical catalogue parameters widely used in ver-
tical transportation industry. An example of such comparison is 
shown in fig. 2 (this is for the same lift ride as depicted in fig. 
1). There is a good level of correlation between the ideal and 
measured profiles. Coefficient of such correlation may provide 
a valuable tool for a lift consultant conducting an inspection or 
maintenance monitoring; its interpretation, for example critical 
alarming values, need further investigation but remain out of 
the scope of this study. Particularly interesting are the results of 
the distance travelled by the car, calculated through double in-
tegration of the acceleration function. Unlike other measure-
ments, distance can be easily verified directly on site, with a 
tape measure. Results of distance measurement for 24 separate 
lift rides (4 different lifts, up and down, two different devices 
and two orientations) are presented in table I. The drift error 
obtained is typically below 2% and never exceeds 3% in case 
of one of the analysed devices, and is slightly higher in case of 
another one—still below 10% in all cases. 

VI. FREQUENCY ANALYSIS AND LIFT RIDE QUALITY 

The kinematic profile of a lift car ride may be adequate in 
terms of its correlation with the rated values, and still overall 
quality of the ride may be poor. This is because the main factor 
affecting human perception of transport quality is the level of 
vibration [20]. Goldman [24] in his classical study of human 
response to vibration identified three levels: perception, dis-
comfort and tolerance. However, the exact threshold of discom-
fort is difficult to determine. Earl Abraham, in another early 
study, stated that quality of ride, and perception of comfort, is 
in case of vertical transportation related to the vibrations be-
tween 1 and 10 Hz [25]. This looks promising in regard to mo-
bile devices sensors, for which sampling frequency is often lim-
ited to 100 Hz. However, Abraham’s study was released in 
1984, and more recent analysis indicates that a broader range of 
frequencies needs to be considered. British and international 
standards specify the minimum sampling rate for measurement 
instrumentation as 160 Hz [26][27]. Technically, this excludes 
any use of lower band measurement; but—does it? The goal of 
this study is to demonstrate that 100 Hz mobile sensors may be 
sufficient for a wide class of industry standard measurement. 

To achieve the goal, procedures defined by appropriate stand-
ards must be followed as closely as possible. Lift ride quality meas-
urement procedure is defined by BS ISO 18738-1 [26], which re-
fers to BS ISO 8041 for measuring instrumentation [27], and most 
importantly to BS ISO 2631-1 for evaluation of human exposure 
to whole-body vibration [28] (all cited British standards are based 
on their international ISO equivalents).   

 

Fig. 1.  Measured kinematic profile of a single lift ride: raw accelerometer 
signal is shown together with smoothened acceleration, velocity and distance 

profiles. Lift PL29, JG Building, Kingston University campus. 

 

Fig. 2.  Comparision of measured and rated profiles for a single lift ride. Lift 

PL29, JG Building, Kingston University campus. 

TABLE I 

MEASURED DISTANCE TRAVELLED BY LIFT CARS AND ERROR 

RATED DISTANCE [M]: 18.00 

Device: HTC Nexus 9 in vertical orientation 

Lift Dir Distance Error Lift Dir Distance Error 

PL29 
� 17.92 0.44% 

PL30 
� 17.85 0.83% 

� 17.63 2.06% � 17.65 1.94% 

PL31 
� 17.89 0.61% 

PL32 
� 17.96 0.22% 

� 17.60 2.22% � 17.71 1.61% 

Device: HTC Nexus 9 in horizontal orientation 

Lift Dir Distance Error Lift Dir Distance Error 

PL29 
� 18.03 0.17% 

PL30 
� 17.86 0.78% 

� 18.07 0.39% � 17.82 1.00% 

PL31 
� 17.36 3.56% 

PL32 
� 18.18 1.00% 

� 18.12 0.67% � 17.96 0.22% 

Device: Samsung Galaxy S3 in vertical orientation 

Lift Dir Distance Error Lift Dir Distance Error 

PL29 
� 17.55 2.50% 

PL30 
� 16.22 9.89% 

� 16.21 9.94% � 16.95 5.83% 

PL31 
� 16.95 5.83% 

PL32 
� 17.11 4.94% 

� 16.94 5.89% � 17.30 3.89% 

 



In accordance with BS ISO 2631-1, the accelerometer out-
put signal has been analysed using Fast Fourier Transform 
(FFT, fig. 3). The profile is dominated by very high amplitudes 
corresponding to frequencies below 1 Hz—mostly correspond-
ing to the lift acceleration and deceleration. The standard de-
fines a filtering operation based on weightings determined in 
frequency domain. It is provided as a combination of four com-
ponent transfer functions, defined in the analogue, Laplace s-
domain [29]. The resulting function describes the magnitude 
and phase in the form of a complex function of the imaginary 
angular frequency � = �2�� (fig. 4): 

�(�) = ��(�) + ��(�) + ��(�) + ��(�) 
��(�) and ��(�) are conventional high and low pass filters are 
used to create a band-limited Butterworth characteristics. More 
interestingly, ��(�) and ��(�), which are, respectively, accel-
eration-velocity transition and upward step filters, represents 
the actual weightings, with regard to a certain application: 
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The standard specifies six different application areas; for the 
purpose of this study one of them has been selected, which is 
applicable for full-body vibrations along z-axis (vertical), 
standing or seating—marked in the standard as the Wk curve.  

The results of application of the filter are shown in fig. 5, in 
frequency domain, and in fig. 6, in time domain. The latter is 
obtained by using inverse Fourier transform (iFFT). Addition-
ally, a simple rectangle filter was applied to cut-off frequencies 
lower than 1 Hz. 

VII. SYSTEM EVALUATION 

 Tests have been performed on a variety of Android devices. 
Comparison of their basic parameters is shown in table II. An 
industry-level standard-compliant EVA-625 device [21] has 
been used as reference.  

 
Sampling frequency, according to the standard, should be 

at least 160 Hz, to allow reliable measurement of vibrations up 
to 80 Hz (500 rad/s). Most Android devices are slightly below 
this threshold, at 100 Hz (50 Hz or 314 rad/s vibrations). Some 
models provide accelerometer parameters exceeding the mini-
mum. Even if the device is rated at 100 Hz, the filtering 
weighting for the maximum frequency of about 314 rad/s is 
−16 dB, or 0.15 ratio. Therefore, high frequency vibrations that 
get cut-off are of but marginal influence. Interestingly, the sam-
pling frequency is intentionally limited in mobile devices in or-
der to increase battery life.  

Accelerometer resolution required by the standard is 0.005 
m/s2. Modern devices are usually two times less precise. In 
some cases the resolution is as low as 0.15 m/s2, these are rather 
outdated or cheaper devices and do not have to be used. It is 

Fig. 3.  Frequency analysis of acceleration ouput obtained from a mobile 
sensor during a lift car ride. 

Fig. 4.  Transfer function H used to filter the acceleration (vibration) signal 

using weightings defined in frequency domain—in accordance with BS ISO 

2631-1. The diagram shows absolute values—corresponding to the signal 
magnitude gain.  

Fig. 5.  Vibration frequency spectrum after ISO 2631-1 compliant filtering. 
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important to notice that these rated values cannot be entirely 
trusted: they depend on the accelerometer range and the digital 
resolution of the internal A/D converter. The latter may be  
anything between 8 and 13 bits, but very rarely more. The actual 
accuracy of the accelerometer reading is greatly affected by the 
internal sensor noise and may be 10 or even more times worse.  

This puts Android hand-held devices well away the range 
required by the BS ISO 8041 standard. But does it rule out any 
possibility of industrially valid measurement? The standard BS 
ISO 18738-1 relies on BS ISO 8041 in terms of instrumentation, 
but also specifies which measurements should be reported in 
regard to the lift ride quality.  

Considering measurement of vibrations (which are lower 
values therefore more vulnerable to errors), the standard re-
quires reporting the maximum peak-to-peak value, and A95 
(typical) peak-to-peak level—this is the value for which 95% of 
the peak-to-peak levels, between defined boundaries, are equal 
to or less than the maximum. Typical values are unlikely to drop 
below 0.1 m/s2, but alarming level of vibrations will be at least 
10 times higher, therefore distinctly above typical noise signal. 
In many maintenance related scenarios the precise value of 
these critical vibrations is not that important: it means that a 
conventional Android device should be capable to at least detect 
the problem if one exists. Still, for a precise, standard-compliant 
measurement an industry-level instrument will be necessary. 

Considering measurement of acceleration, the standard re-
quires reporting the maximum acceleration and deceleration, and 
the A95 value defined as the acceleration derived from 5% to 

95% of maximum velocity. Typically, these acceleration values 
are at least 1 m/s2. It has been demonstrated that, even after dou-
bly integrating acceleration values—to generate the profile for 
the distance travelled—the error rate measured for a state-of-
the-art tablet did not exceed 3% (compare the table I). This is a 
good result, unless full compliance with the standard is required.  

VIII. ADINSPECT ANDROID APPLICATION 

Figure 7 shows a tablet being used by a consultant to record 
the ride data in a lift car. AdInspect, an application developed 
in collaboration between Kingston University and Movvéo Ltd 
on Android platform, is currently used by consultants to con-
duct in-situ inspections of vertical transportation systems (lifts, 
escalators and moving walks)—as a part of beta phase testing. 
Apart from the ride quality, the tool also collects other sensory 
information, such as noise and light level. As a complete in-
spection and maintenance application, AdInspect allows also 
for manual entry of a variety of records regarding various as-
pects of maintenance evaluation, surveying and safety issues. 
Once the inspection is complete, the entire data set can be sub-
mitted by a single click, wirelessly, over the Wi-Fi or 3G con-
nection, to the central storage, typically located in the company 
headquarters. Subsequently, a comprehensive, multi-page 
maintenance evaluation report is automatically generated and e-

Fig. 7.  AdInspect application: used by a consultant to measure lift ride quality 

(left) and a Ride Up screen shot (right). 

 

Fig. 6.  Raw accelerometer output and the reconstructed vibration signal after ISO 2631-1 compliant filtering. 
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TABLE II 
DEVICES USED FOR TESTING—COMPARISON OF PARAMETERS 

DEVICE RANGE 
 

[m/s2] 

RESOLUTION 
 

[m/s2] 

SAMPLING 

FREQUENCY 

[Hz] 

BS ISO 8041 requirement  0.005 160 

LG Nexus 5 39.2 0.0006** 200 

HTC Nexus 9 39.2 0.01 100 

Samsung Galaxy Tab 10.2 19.6 0.01 100 

Samsung Galaxy S3 39.2 0.15 100 

Sony Xperia  78.5 0.15 100 

EVA-625* 15 0.006 256/512 

* approved standard-compliant industry-level device [21] 

** this rating is probably wrongly provided by the OS 

 



mailed to the client. This creates a complete, ‘all-in-one’ in-
spection tool that can be installed on a small tablet and easily 
brought to the inspection site.  

IX. DISCUSSION AND CONCLUSION 

Until the advent of the AdInspect prototype, the industry 
standard device for measuring lift ride quality had been instru-
ments such as EVA-625, weighing 4.5 kg. The standard [26] 
determines this minimum weight to ensure required conductiv-
ity of vibrations between the lift car floor and the measurement 
device. While EVA is still in use, it is considered not very prac-
tical by the maintenance inspectors and the industry was seek-
ing an alternative system—easy to carry and use and providing 
connectivity at all times. It is against that background that 
AdInspect was conceived as a new concept and implemented 
with a view to complementing EVA-625. 

As proposed, it is a low-cost, light-weight system, utilising 
off-the-shelf hand-held device with an innovative software so-
lution, capable to measure ride quality in situ and in real-time—
which promises to be a game-changer. Although Android hard-
ware cannot yet be considered an industry standard, obtained 
measurement results are sufficiently reliable and accurate to be 
applicable in most scenarios involving lift maintenance inspec-
tion and evaluation. 

Extrapolating the outcome of this case study, it should be 
envisaged that further development of applications that utilise 
hand-held device sensor technology can positively impact 
measurement processes in a variety of industrial contexts.  

References 

 
[1] T. McNab, D. A. James, and D. Rowlands. "iPhone sensor platforms: 

Applications to sports monitoring." Procedia Engineering 13 (2011) pp. 
507-512. 

[2] Suntiamorntut, Wannarat, Sakuna Charoenpanyasak, and J. Ruksachum. 
"An elderly assisted living system with wireless sensor networks." 
In Wireless and Mobile Networking Conference (WMNC), 4th Joint IFIP, 
IEEE, 2011, pp. 1-6. 

[3] Lee, Raymond YW, and Alison J. Carlisle. "Detection of falls using 
accelerometers and mobile phone technology." Age and ageing (2011): 
afr050. 

[4] Incel, Ozlem Durmaz, Mustafa Kose, and Cem Ersoy. "A review and 
taxonomy of activity recognition on mobile phones." BioNanoScience 3, 
no. 2, 2013, pp. 145-171. 

[5] Kwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. "Activity 
recognition using cell phone accelerometers." ACM SigKDD 
Explorations Newsletter 12, no. 2 (2011): 74-82. 

[6] Walker, Amber M., and David P. Miller. "Tele-operated robot control 
using attitude aware smartphones." In Human-Robot Interaction (HRI), 
7th ACM/IEEE International Conference, pp. 269-270. IEEE, 2012. 

[7] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, "uwave: 
Accelerometer-based personalized gesture recognition and its 
applications,"Pervasive and Mobile Computing, 2009.  

[8] M. Kourogi, N. Sakata, T. Okuma, and T. Kurata. "Indoor/outdoor 
pedestrian navigation with an embedded GPS/RFID/self-contained sensor 
system." In Advances in Artificial Reality and Tele-Existence, pp. 1310-
1321. Springer Berlin Heidelberg, 2006. 

[9] A. R. J. Ruiz, F. Seco Granja, J. C. Prieto Honorato, and J. I. Guevara 
Rosas. "Accurate pedestrian indoor navigation by tightly coupling foot-
mounted IMU and RFID measurements." IEEE Transactions 
on  Instrumentation and Measurement, 61, no. 1, pp. 178-189, 2012. 

[10] Subbu, Kalyan, Chi Zhang, Jun Luo, and Athanasios Vasilakos. "Analysis 
and status quo of smartphone-based indoor localization 
systems." Wireless Communications, IEEE 21, no. 4 (2014): 106-112. 

[11] Zhang, Rui, Amir Bannoura, F. Hoflinger, Leonhard M. Reindl, and 
Christian Schindelhauer. "Indoor localization using a smart phone." 
In Sensors Applications Symposium (SAS), IEEE, 2013, pp. 38-42. 

[12] Stockx, Thomas, Brent Hecht, and Johannes Schöning. "SubwayPS: 
towards smartphone positioning in underground public transportation 
systems." InProceedings of the 22nd ACM SIGSPATIAL International 
Conference on Advances in Geographic Information Systems, ACM, 
2014, pp. 93-102. 

[13] Markham, Andrew, Niki Trigoni, Stephen A. Ellwood, and David W. 
Macdonald. "Revealing the hidden lives of underground animals using 
magneto-inductive tracking." In Proc. of the 8th ACM Conference on 
Embedded Networked Sensor Systems, ACM, 2010, pp. 281-294. 

[14] Pfriem, M.; Gauterin, F. "Employing Smartphones as a Low-Cost Multi 
Sensor Platform in a Field Operational Test with Electric 
Vehicles",  System Sciences (HICSS), 2014 47th Hawaii International 
Conference on, pp: 1143 – 1152 

[15] Bedogni, Luca, Marco Di Felice, and Luciano Bononi. "By train or by 
car? Detecting the user's motion type through smartphone sensors data." 
InWireless Days (WD), IFIP, IEEE, 2012, pp. 1-6. 

[16] Hemminki, Samuli, Petteri Nurmi, and Sasu Tarkoma. "Accelerometer-
based transportation mode detection on smartphones." In Proceedings of 
the 11th ACM Conference on Embedded Networked Sensor Systems, 
ACM, 2013. 

[17] Johnson, Derick, and Mohan M. Trivedi. "Driving style recognition using 
a smartphone as a sensor platform." In Intelligent Transportation Systems 
(ITSC), 2011 14th International IEEE Conference on, IEEE, 2011, pp. 
1609-1615. 

[18] Douangphachanh, Viengnam, and Hiroyuki Oneyama. "Formulation of a 
simple model to estimate road surface roughness condition from Android 
smartphone sensors." In Intelligent Sensors, Sensor Networks and 
Information Processing (ISSNIP), 2014 IEEE Ninth International 
Conference on, pp. 1-6. IEEE, 2014. 

[19] De Dominicis, C. M., A. Depari, A. Flammini, Stefano Rinaldi, and 
Emiliano Sisinni. "Smartphone based localization solution for 
construction site management." In Sensors Applications Symposium 
(SAS), 2013 IEEE, 2013, pp. 43-48. 

[20] G. P. Lorsbach. "Analysis of elevator ride quality, vibration." Elevator 
World 51, no. 6 (2003): 108. 

[21] “EVA-625. Ride Quality Measurement & Analysis for the Elevator / 
Escalator Industry”. Physical Measurement Technologies, Inc. Website 
accessed 3/7/15 http://www.pmtvib.com/index.php?option=com_content 
&task=view&id=12&Itemid=30 

[22] D. Sachs, “Sensor Fusion on Android Devices: a Revolution in Motion 
Processing”, Google Tech Talk, 2 Aug 2010, accessed at 
http://ios.codeinterior.com/sensor-fusion-on-android-devices-a-
revolution-in-motion-processing/ or http://bit.ly/fusion2010  

[23] G. Milette, A. Stroud, “Inferring information from physical sensors” in: 
“Professional Android Sensor Programming”. John Willey & Sons 2012. 

[24] D. E. Goldman, “A review of subjective responses to vibratory motion of 
the human body inthe frequency range 1 to 70 cycles per second”, Naval 
Medical Research Institute Report No. 1. 1948. 

[25] E. Abraham, “Performance Criteria: Car Ride Quality.” Elevator World, 
April 1984. 

[26] Measurement of ride quality. Part 1: Lifts (elevators). London: British 
Standard Institution, 2012, BS ISO 18738-1:2012.  

[27] Human response to vibration – Measuring instrumentation. London: 
British Standard Institution, 2009, BS EN ISO 8041:2005 incorporating 
corrigendum November 2007. 

[28] Mechanical vibration and shock – Evaluation of human exposure to 
whole-body vibration. Part 1: General Requirements. London: British 
Standard Institution, 2011, BN ISO 2631-1:1997. 

[29] A. N. Rimell, N. J. Mansfield. "Design of digital filters for frequency 
weightings required for risk assessments of workers exposed to 
vibration." Industrial Health 45, no. 4 (2007): 512-519.

 


