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ABSTRACT 

This paper presents a bi-objective mathematical programming model for the restricted facility 

location problem, under a congestion and pricing policy. Motivated by various applications such as 

locating server on internet mirror sites and communication networks, this research investigates 

congested systems with immobile servers and stochastic demand as M/M/m/k queues. For this 

problem, we consider two simultaneous perspectives; (1) customers who desire to limit waiting time 

for service and (2) service providers who intend to increase profits. We formulate a bi-objective 

facility location problem with two objective functions: (i) maximizing total profit of the whole 

system and (ii) minimizing the sum of waiting time in queues; the model type is mixed-integer 

nonlinear. Then, a multi-objective optimization algorithm based on vibration theory (so-called 

multi-objective vibration damping optimization (MOVDO)), is developed to solve the model. 

Moreover, the Taguchi method is also implemented, using a response metric to tune the parameters. 

The results are analyzed and compared with a non-dominated sorting genetic algorithm (NSGA-II) 

as a well-developed multi-objective evolutionary optimization algorithm. Computational results 

demonstrate the efficiency of the proposed MOVDO to solve large-scale problems. 

 

Keywords: restricted facility location; computational intelligence; multi-objective optimization; 

pricing; queuing theory. 

 

1. Introduction 

The traditional goal in facility location problems (FLPs) is to locate the facilities in the best 

locations to minimize fixed location and transportation costs. Hakimi [24], Toregas et al. [45], Love 

et al. [27], Marianov and Revelle [29], and Hodgson and Berman [26] proposed various models and 

solutions methodologies for FLPs. Farahani and Hekmatfar [17], Melo et al. [31], Farahani et al. 

[16], Boloori Arabania and Farahani [9], and Farahani et al. [18] provided more detail on FLPs and 

their solving methodologies. In addition to FLPs, several other streams of research such as queuing, 

pricing and multi-objective heuristics techniques are related to this paper which will be explained in 

detail as follows. 
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In the many real-life applications of FLPs such as gas stations and car parking, customer 

demand on arrival at facilities is heavy; these facilities are called congested [8]. Therefore, queues 

are formed in these systems; consequently, waiting time will be a key parameter in such FLPs. 

Thus, the combination of queuing theory with FLPs emerges to create queuing facility location 

problems (QFLPs) which are more realistic in some applications. Berman and Larson [3] proposed 

a nonlinear location problem with congested facilities which behaves like a M/G/1 queue. Wang et 

al. [46] presented a congested FLP to minimize aggregate traveling and waiting times. Wang et al. 

[47] presented several heuristic algorithms to solve location problems with budget limitations. 

Berman and Drezner [4] formulated a facility location problem within a M/M/m (multi-server) 

queuing framework. Syam [43] presented a nonlinear multi-server location-allocation problem to 

minimize total costs of the system. Zarrinpoor and Seifbarghy [50] developed FLPs in competitive 

environments to determine a specific percentage of the market share in the context of cost 

minimization. Hajipour and Pasandideh [21] proposed a multi-objective congested FLP which 

behaves as a M
[x]

/M/1 queuing system. Chambari et al. [11] presented two Pareto-based algorithms 

based on a genetic algorithm (GA) for a facility location model with two conflicting objectives for 

M/M/1/k queues. Pasandideh and Niaki [38] applied a GA and desirability function approach to 

solve a bi-objective facility location model with classical queues. Hajipour and Pasandideh [22] 

optimized a bi-objective congested facility location problem by an adaptive multi-objective particle 

swarm optimization. Pasandideh et al. [39] presented a multi-objective facility location model in 

which batch demands arrive on the system; they solved the problem by a multi-objective GA and 

SA (simulated annealing) algorithm. Rahmati et al. [42] presented multi-objective FLPs considering 

multiple servers at each facility. They solved the model with multi-objective Pareto-based meta-

heuristic algorithms.  

Another aspect of real-world applications is that demand nodes are mainly influenced by 

pricing strategy. Some researchers have focused on hybridizing thepricing concept with FLPs ([19, 

15, 28]) and also with queuing theory ([41, 2]). Since these problems are chiefly multi-objective, 

the majority of solving methods are applied to find Pareto solutions for multi-objective FLPs. 

Additionally, since exact or hard computing approaches cannot solve NP-hard problems [47, 38, 

39], soft computing approaches are applied. Unlike hard computing techniques, soft computing 

approaches deal with imprecision, uncertainty, and approximation to determine robustness and low-

cost solutions. Neural networks, fuzzy logic and evolutionary computations may help in such 

approaches. Among these, evolutionary algorithms are more popular for developing algorithms to 

solve the FLP models [10]. Evolutionary algorithms are divided into two classifications, namely 

single and multi-objective models. Interested readers may refer to Farahani et al. [16] to see a 

survey of these studies in FLPs. 

http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_computation


3 
 

Berman et al. [5] combined location, pricing and queuing concepts in a single facility location 

problem on a network to maximize profit. They considered, simultaneously, decision making on 

location, pricing and service capacity, where the demand depends on price, distance and waiting 

time at the facilities. They presented an algorithm to achieve the optimal price and capacity. Later, 

Berman et al. [6] extended their previous research to a multi-facility location model. In these two 

research works, they assumed that customers have a prior knowledge about the expected waiting 

times at the facilities. Abouee-Mehrizi et al. [1] extended these models to locating m facilities on a 

network with n demand nodes. They assumed a M/M/1 queuing system in which (a) customers may 

balk the system upon their arrival and (b) all the facilities charge the same price for service. 

Among multi-objective algorithms, the non-dominated sorting genetic algorithm (NSGA-II) is 

one of the commonly used Pareto-based approaches proposed by Deb et al. [14]. This algorithm is 

applied to various operations research applications including FLPs and their variations. 

Bhattacharya and Bandyopadhyay [7] applied NSGA-II to solve FLPs with two conflicting 

objectives. Chambari et al. [11] solved an M/M/1/k queue model by using both NSGA-II and non-

dominated ranking genetic algorithms (NRGA). Chambari et al. [12] implemented NSGA-II to 

optimize cost and reliability of the whole system in a redundancy allocation problem. Mehdizadeh 

and Tavakkoli-Moghaddam [32] proposed a new meta-heuristic optimization algorithm, namely 

vibration damping optimization (VDO) to solve the parallel machine scheduling problem; VDO is 

based on the concept of vibration damping in mechanical vibration. Zhang and Lu [53] proposed a 

multi-objective decision support system to consider how to help users select and use the proposed 

algorithms. This algorithm simulates the vibration phenomenon. Mehdizadeh et al. [33] proposed a 

hybrid VDO algorithm to solve the multiple facilities stochastic-fuzzy capacitated location-

allocation problem. Mousavi et al. [35] developed a special type of the VDO algorithm to solve the 

capacitated multi-facility location-allocation problem with probabilistic customer locations and 

demands. Recently, Hajipour et al. [23] introduced a multi-objective version of VDO for solving 

multi-objective optimization problems. 

In this paper, a hybrid problem of location, pricing, and queuing in a network with M customer 

nodes and N potential server nodes is developed. We model the problem mathematically; the model 

contains two simultaneous objectives of (i) maximizing the profit and (ii) minimizing the sum of 

waiting time in the whole network. The model is formulated for a system in which each facility 

behaves as a M/M/m/k queuing system; m is the number of servers in each facility and k is the 

capacity in the queuing system. We have assumed that various prices at different service facilities 

are provided. Furthermore, the capacity constraints are considered to make the problem more 

realistic. This assumption is known as the “mill pricing”; petrol stations and paid car parking areas 

are examples of mill pricing application. 

http://www.sciencedirect.com/science/article/pii/S0020025509000759
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The closest research paper to this work is Aboouee Mehrizi et al. [1]. However, the 

contributions of this research to the research literature are as follows: 

 This research considers a M/M/m/K queuing system at each facility, whereas the previous 

literature is mainly based upon a M/M/1 queuing system;  

 Various prices are considered for each facility, while the simplifying assumption in the existing 

literature is based on the same price for all facilities;  

 Our mathematical model contains two objectives and is presented in the form of a bi-objective 

model; in the literature, only single-objective models have been considered to date;  

 A multi-objective VDO (MOVDO) is developed to find Pareto solutions. The VDO algorithm is 

extended, using fast non-dominated sorting and ranking procedures to find Pareto-optimal 

solutions for multi-objective optimization problems with conflicting and competing objectives. 

In fact, fast non-dominated sorting and crowding distances have been used to find and manage 

the Pareto-optimal front. The MOVDO is also analyzed and compared with the best-developed 

NSGA-II on some standard metrics. To block the impact of algorithm operators, the Taguchi 

approach is applied.  

The rest of the paper is organized as follows: Section 2 details the problem. Section 3 

formulates the problem as a non-linear integer programming mathematical model. Section 4 

presents the proposed MOVDO algorithm as well as the NSGA-II. Section 5 discusses the tuning 

parameters of the algorithms. Section 6 analyzes the computational results and investigates the 

efficiency of the algorithm. Finally, conclusions and future research directions are provided. 

 

2. Problem definition 

We consider a firm that intends to locate several multi-server facilities in a region. The system 

under study contains two networks: (1) a customers' network with demand on nodes and (2) a 

facilities network in which nodes represent candidate location for facilities. The arcs indicate the 

allocation of demand nodes to facility nodes. Each customer node has a potential number of users 

which refers to facilities traveling certain distances to receive the service/goods. In order to receive 

the service/ goods, users refer to the facility that provides the highest utility. User utility is a 

function of service/ good pricing and the distance between customer nodes and facility nodes. It is 

rational to assume that potential users refrain from receiving the service/ goods if a desirable price 

and distance are not provided. Obviously, sensitivity in each customer node toward price and 

distance is different. Therefore, pricing for service/ goods and location of facilities are the most 

important determinants for firms, in order to maximize both profit and customer satisfaction levels. 

Since waiting time in queues is one of the satisfaction factors, firms intend to optimize profit and 

waiting time simultaneously. To obtain an efficient waiting time, queue length in each facility is 
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controlled by an appropriate pricing policy to obtain the appropriate number of servers at the 

facility. Figure 1 illustrates the network that is used in this paper. The idea is to achieve the 

following objectives:  

 Optimal number of facilities; 

 Optimal allocation process of customer nodes into the opened facilities; 

 Optimal number of servers at each facility; 

 Optimal queuing capacity at each facility; and 

 Optimal price at each facility. 
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Figure 1. Facility location problems behaving as M/M/m/k queues. 

 

There are many applications for such a problem in real-life systems, as follows: health systems 

(including local clinics, hospitals and medical centres, relief distribution centres and reconstruction 

centre locations), educational systems (such as kindergartens, guidance schools and high schools), 

police stations, truck terminals, hotels, vending machine locations, city logistics terminals, bus 

stops, post boxes, air ports, telecommunication systems, petrol stations, blood banking centres, 

libraries, automatic teller machines location and so forth. 

 

3. The proposed mathematical model 

We mathematically formulate the location-pricing-queuing problem by using the following 

notations: 
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Sets and indices 

M: Set of customer nodes  

N: Set of locations for potential facilities 

V: Maximum number of servers which can be on-duty; ( )V N  

i: Customer node index ( 1,2,..., )i M  

j: Potential facility location index ( 1,2,..., )j N  

 

Parameters 

ijd : The travelling distance from costumer i  to facility node j ; ( ,  )i M j N   

j : The demand rate at open facility node j ; ( )j N  

jw : The expected waiting time of customer batches assigned to facility node j ; ( )j N  

i : The demand rate of service requests from customer node i ; ( )i M  

je : Fixed cost of establishing a facility at potential node j ; ( )j N  

jcs : Unit cost of service/goods at facility j ; ( )j N  

j : The service rate for server j ; ( )j N  

ig : Potential number of users in customer node i ; ( )i M  

i : Price sensitivity coefficient in customer node i ; ( )i M  

i : Distance sensitivity coefficient in customer node i ; ( )i M  

 

Decision variable 

1 ; if customer  is assigned to facility 

0 ; otherwise
ij

i j
x


 
  

1 ; if facility  is opened

0 ; otherwise
j

j
y


 
  

jm :  The number of servers at opened facility j

 
jk :  Queuing capacity at opened facility j 

jp :  Price of service/ goods at open facility j 

Users in each customer node are sensitive to price and distance; the user behavior for receiving 

the service/goods can be modeled as a linear function of price and distance, as follows [54]: 

, ( , )i j i j i ij ip d g p d                                                                                                 (1) 
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, ( , )i j p d  is the number of users in customer node i patronized by price pj in potential facility j. 

Therefore, total demands that potential facility j may encounter is calculated as follows: 

,

1

( , )

M

j i j ij

i

p d x 


                                                                                                           (2) 

The first objective function, profit of facility j by providing the service/ goods to users, is 

obtained by ( )j j jp cs  . In the second objective, we assume that each facility acts as a M/M/m/K 

queue, considering Poisson arrival with a mean rate , exponentially distributed service time with 

mean  , m server to be on-duty at each facility, and the queue capacity to be restricted to k users 

[20, 50]. In most pricing-queuing problems, the effect of queuing parameters (such as waiting time) 

is considered in the form of cost reduction revenue [44, 1]. It is assumed that customers get 

information about the queue and then make a decision about balking or staying in the queue. In this 

paper, we consider waiting time as customer satisfaction and optimize it simultaneously with profit 

function. The mathematical formulation of the problem is as follows: 

1

( )

N

j j j j j

j

p cs e yMaximize   


    
 

(3) 

10,

2
1

( ) 1 (1 )( 1)
! (1 )

j j j j j

N
m k m k mj j j

j j j j j
j j jj

r
Minimize    r r k m r

m r
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1,..., 1,...,i= M  &  j= N  (15) 

 

Objective function (3) maximizes the total profit of the whole system and objective function (4) 

minimizes the total waiting time of customers. Constraint (5) turns out the demand rate that facility 

j receives from customer node i. Constraint (6) defines the arrival rate at each facility located at 

node j. Constraint (7) insures the service capacity for each facility. Constraints (8)-(11) provide 

queuing equations for the M/M/m/k queuing system. This queue is a variation of a multi-server 

system and only a maximum of k customers are allowed to stay in the system. The number of 

customers in the system is a birth-death process with appropriate rates and for a steady-state 

distribution. The main queuing performance measures can be obtained by a continuous time 

Markov chain with transition rate matrix and applying Little’s law [20]. Constraint (12) ensures that 

all demands at node i will be served by the facilities. Constraint (13) imposes that customers can be 

captured only by open facilities. Constraint (14) provides an upper bound for the number of open 

facilities. Finally, Constraint (15) identifies the type of decision variables on the model. 

 

4. The Pareto-based meta-heuristics 

Numerous exact and heuristic solution approaches have been developed to solve location problems. 

Many location problems can be modeled by integer programming and solved by conventional 

techniques such as branch-and-bound. However, for real-life large-sized problems, heuristic 

approaches need to be used. Since the premise of this paper is a multi-objective optimization 

problem (or specifically, bi-objective), a novel Pareto-based algorithm called MOVDO is presented 

to find and manage Pareto solutions of the designed bi-objective mathematical formulation. NSGA-

II is also applied to demonstrate the performance of the proposed MOVDO. First, some essential 

multi-objective concepts are explained in the next section. 

 

4.1. Fundamental concept of multi-objective algorithms 

http://en.wikipedia.org/wiki/Continuous_time_Markov_chain
http://en.wikipedia.org/wiki/Continuous_time_Markov_chain
http://en.wikipedia.org/wiki/Transition_rate_matrix
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Consider a multi-objective model with a set of conflicting objectives  1( ) ( ),..., ( )mf x f x f x  subject 

to ( ) 0 , 1,2,..., ,ig x i c x X   , where x  denotes n-dimensional decision variable that can take 

real, integer, or Boolean value. X is the feasible region, and ( )f x
 
is a set of m objective functions. 

Then, for a minimization model, solution a  dominates solution ( , )b a b X if: 

1) ( ) ( ), 1, 2, ...,i if a f b i m     and  

2)  {1, 2, ..., }: ( ) ( )i ii m f a f b    

In Pareto-based algorithms, the concept of Pareto solutions set (or so-called Pareto front) is the 

key concept; it is a set of solutions that cannot dominate one another. An efficient Pareto front 

includes an appropriate convergence and diversity of solutions. Further, the Pareto optimal front 

(the front obtained in the last iteration of algorithm) has the most convergence and the highest 

diversity [14]. Figure 2 represents Pareto front solutions in multi-objective concepts for a problem 

with two minimization-type objective functions. 

2f

1f

a

b

f

 

Figure 2. Pareto optimal set and domination concept. 
 

4.2. Multi-objective vibration damping optimization (MOVDO) algorithm 

VDO is a meta-heuristic based on the concept of vibration damping in mechanical vibration [32]. 

Hajipour et al. [23] introduced MOVDO for solving multi-objective optimization problems. In this 

subsection, the multi-objective version of the VDO algorithm has been developed for discrete 

environments of location-queuing-pricing problems.  

 

Solution coding 

To code the solutions, we have used the solution structure in [39]. Our model has three extra 

decision variables, which add three new vectors to the solution representation structure. Therefore, 

this coding approach avoids infeasible solution generation. Thus, the majority of restrictions are 

satisfied and the rest are penalized. The solution representation structure of the problem with thi

customer gene ( ( )ii ) and 
thj  facility gene (

( )jj ) is represented in Figure 3, where: 
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 The fourth vector is a new vector indicating the number of servers at all facilities.  

 The fifth vector is a new vector indicating the queuing capacity at all facilities. 

 The sixth vector is a new vector indicating the price of service/ goods at all facilities.  

1i 2i 3i Mi. . .

1j 2j 3j Nj. . .

  Rand  1,Integer V

1m 2m 3m Nm. . .

1k 2k 3k Nk. . .

1p
2p 3p Np. . .

First vector

Second vector

Third vector

Fourth vector

Fifth vector

Sixth vector

 

Figure 3. Solution representation. 

 

To encode the decision variables, specifically the number of required facilities and their 

allocation process of customers, the decoding process of the first three vectors is provided in [39]. 

In this structure, when the cell values of the second vector are zero, the corresponding cell values of 

the fourth, fifth, and sixth vectors will be zero. No capacity and price can be assigned to the inactive 

facilities. 

After the decoding process, the solutions should be evaluated. Since some constraints are likely 

to be violated, they are penalized and infeasible solutions are fined using Eq. (16) [48].  

( )
( ) ( ) 1 0

g x
P x M

b

 
    

 
                   (16) 

where M , g(x), P(x) , and f(x) represent a big number, the constraint, the penalty function, and the 

value of chromosome x , respectively. This equation is designed in form of a ( )g x b  constraint; 

an additional function is utilized to evaluate the infeasible solutions as follows [42]: 

( ) ; feasible region
( )

( ) ( ) ; feasible region

f x x
F x

f x P x x


 

 
         (17) 

 

MOVDO main loop 

In the vibration theory, the concept of vibration can be considered to be the oscillation. If the 

damping is small, it has little influence on the natural frequencies of the system and calculation for 

the natural frequencies is made on the basis of no damping. In the VDO algorithm, at high 

amplitudes, the solution scope is larger and a new solution is more likely to be obtained. Therefore, 

when the amplitude is reduced, the probability of obtaining a new solution decreases; then the trend 

continues until the amplitude fades away [32, 36]. 
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In order to make an analogy between the vibration damping process and an optimization 

problem, the states of the oscillation system represent feasible solutions of the optimization 

problem; the energies of the states correspond to the objective function value computed at those 

solutions, the minimum energy state corresponds to the optimal solution of the problem, and rapid 

quenching can be viewed as local optimization. The VDO algorithm starts by generating random 

solutions in search space. Then, the algorithm parameters, including initial amplitude (A0), 

maximum number of iterations at each amplitude (L), damping coefficient (γ) and standard 

deviation (σ), are initialized. Then, the solutions are evaluated by means of the objective function 

value (OFV). The algorithm contains two main loops. The first loop generates a solution randomly 

and then, using neighborhood structure, a new solution is obtained and the best one is selected. 

However, similar to the simulated annealing (SA) algorithm, the solution with a lower OFV can be 

selected regarding the Rayleigh distribution function. In fact, the new solution is accepted if 

Δ=OFV (New Solution) – OFV (Current Solution)<0 ([39]). Besides, if Δ>0, then a random 

number r between (0, 1) is generated. The current solution is selected with regard to the following 

criterion:
 

2

2
1 exp( )

2

A
r


                                                                                                     (18) 

The second loop adjusts the amplitude, which is used for reducing amplitude at each iteration. 

The algorithm is stopped when the stopping criterion is met as follows: 

0 exp( )
2

t

t
A A


                                                                                                   (19)  

After a brief illustration of the VDO algorithm, we developed the MOVDO algorithm to handle 

Pareto-optimal solutions. To do so, we applied two main concepts of multi-objective meta-

heuristics to compare solutions; namely, fast non-dominated sorting (FNDS) and crowding distance 

(CD). In FNDS, to sort the population, each solution should be compared with every other solution 

in the population to find if it is dominated. First, all chromosomes in the first non-dominated front 

are found. In this case, xi is the non-dominated solution within the solution set {xi, xj}; otherwise, it 

is not. Then, in order to find the chromosomes in the next non-dominated front, the solutions of the 

previous fronts are disregarded temporarily. This procedure is repeated until all solutions are set 

into fronts.
 

After sorting the population, a CD measure is defined to evaluate solution fronts of population 

in terms of relative density of individual solutions [14]. To this aim, consider Z and 1 2kf ; k , to be 

the number of non-dominated solutions in a particular front (F) and the objective functions, 

respectively. Besides, let di and dj be the value of the CD for solutions i and j, respectively. Then, 

CD is obtained using the following steps:
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I. Set di=0 for i=1, 2, …, Z 

II. Sort all objective functions fk; k=1,2 in ascending order 

III. The CD for boundary solutions in each front ( 1d and Zd ) are 1= Zd d   

IV. The CDs for dj; j=2, 3, …, (Z-1) are 
1 -1

= +( )
j jj j k kd d f f

  

 

In order to select individuals of the next generation, the crowded tournament selection operator 

">" is applied [13] through the following steps: 

Step 1: Choose n individuals in the population randomly. 

Step 2: Non-dominated ranks of each individual should be obtained and the CDs of the  solutions 

having equal non-dominated rank calculated. 

Step 3: The solutions with the least rank are selected. If more than one individual shares the least 

rank, the individual with the highest CD should be selected. 

In other words, the comparison criterion of MOVDO algorithm solutions is considered as 

follows: If rx<ry or (rx=ry and dx<dy) then rx>ry where rx and ry are the ranks and dx and dy are CDs. 

In this paper, a polynomial neighborhood structure for the selected chromosome is performed. 

After performing the aforementioned operators and concepts, the parents and offspring 

population should be combined to ensure the elitism. On the other hand, the offspring population is 

combined with the current generation of population and selection is performed to set the individuals 

of the next generation. Since all previous and current best individuals are added to the population, 

elitism is ensured. This concept leads to keeping the best individuals from the parent and child 

population for the next generation. Since the combined population size is naturally greater than the 

original population size N, non-dominating sorting is again performed. In fact, chromosomes with 

higher ranks are selected and added to the population until the population size becomes N. The last 

front also consists of the population based on the CD. The algorithm stops when a predetermined 

number of iterations (or any stopping criteria) is reached. 

 

Evolution process of MOVDO 

The process starts working by initializing the first population of the solution vectors Pj. Later, the 

operators are implemented on Pj to get a new population Qj. The combination of Pj and Qj creates Rj 

for the elitism process [14]. Besides, solutions in Rj are categorized in different fronts based on 

FNDS and CD. In the end, a population of the next iteration Pj+1 is selected to have a predetermined 

size. Figure 4 illustrates the evolution process of the proposed MOVDO. 
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Figure 4. MOVDO evolution process. 

 

Figure 5 illustrates the flowchart of MOVDO in which the multi-objective parts are highlighted. 

In the flowchart, we use Perturb function as representative of the objective function. PERTURB(X) 

represents the objective function values of solution X. Figure 6 provides Pseudo code of MOVDO. 
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Figure 5. Flowchart of the proposed MOVDO. 
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Figure 6. MOVDO Pseudo-code. 

 

4.3. The NSGA-II 

To demonstrate performance of the proposed MOVDO, a well-developed Pareto-based multi-

objective evolutionary algorithm (MOEA) called NSGA-II is applied. The main difference of the 

NSGA-II with the MOVDO is the evolution process of the algorithm from   tP  to   tQ . The evolution 

of MOVDO is based on Figure 4 but in NSGA-II the evolution process of a GA is applied. In order 

to minimize the impact of algorithms operators in comparing the two algorithms, the neighborhood 

operator of MOVDO is designed similar to the mutation operator of NSGA-II. Moreover, in 

NSGA-II, the crossover operator is also performed by uniform crossover operator [25]. The NSGA-

II framework is depicted in Figure 7. 

Begin; 

  Input: nPop (Population Number), γ (Damping Coefficient) and σ (Raleigh Distribution Constant); 

  Initialize (X; A; L and t, t=1);  

  Evaluate Solutions 

 

  Perform fast non-dominate sorting (FNDS) and calculate ranks  

  Calculate crowding distance (CD) 

  Sort population according to ranks and CDs 

 

  For  j=1: nPop 

     Pj = Population 

     For i=1:L 

           Y = PERTURB(X); {Generate Neighborhood Solution} 

              ( )   ( ); 

           If      Or (   
 
  

          (   )) 
           Then    X = Y ; {Accept the Movement if Dominated Final Pareto Solution} 

           End if  

            

           Update (A and t ;  A=A0* 
 
  

 , t = t+1) 

           Until (Stop-Criterion) 

  End for 

 

  Qj = New Population 

  Rj = Pj Qj 

  Perform fast non-dominate sorting (FNDS) on Rj and calculate ranks  

  Calculate crowding distance (CD) of Rj 

  Sort Population according to ranks and CDs on Rj 

  Create Pj+1 as Size as Population Size (Population= Pj+1)  

 

End for 

End 
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Figure 7. Flowchart of NSGA-II. 

 

5. Parameters 

This section is classified into two subsections to set input parameters of the model and the two 

algorithms parameter setting. 

 

5.1. Input parameters 

Twenty test problems are generated randomly based on literature [39]. These problems are 

classified according to the number of costumers (M), the number of facilities (N), and the maximum 

number of on-duty servers (V). Each test problem is run thirty times and the average solution values 

are computed. The travel distance dij is calculated as being a proportion of the Euclidean distance 

among the location of customers and potential facilities, i.e., di  ~Uniform [100,500]. The service 
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rate of server j has a uniform distribution function, i.e., μi  ~Uniform [100,1000]. Fixed cost of 

establishing potential facility j follows a uniform distribution, i.e., e  ~Uniform [1000,6000]. Unit 

cost of service/goods at facility j has a uniform distribution, i.e., cs  ~Uniform [100,500]. At each 

facility, the upper bound for the number of servers at each facility, the upper bound of queuing 

capacity at each facility and the upper bound of price are set to be 10, 300 and 1000, respectively. 

Potential number of users in customer node i  has a uniform distribution, i.e., gi~Uniform 

[5000,10000]. Price and distance sensitivity coefficients in customer node i have a uniform 

distribution, i.e., αi and βi~Uniform [1,10], respectively. 

 

5.2. Algorithm parameter tuning 

Different approaches, such as response surface methodology [37, 39] and the Taguchi method, [35] 

have already been utilized for algorithm calibration. In this subsection, to tune the parameters of 

both algorithms, the Taguchi approach is applied. The Taguchi approach exploits orthogonal arrays 

to manage and adjust experiences in the presence of a group of decision variables or factors [40]. 

The method attempts to minimize the effect of noise and to obtain the optimal level of signal 

factors. Since the nature of our response is minimization, the smaller the response the better. The 

following equation formulates signal-to-noise ratio (S/N):  

 2/ 10 log ( ) /S N S Y n                                                                                                (20) 

Y denotes response value, n denotes the number of the orthogonal arrays, and S(Y) is the 

representative objective function value.   

For conducting the method, a criterion is applied [42]. The two main goals are i) appropriate 

convergence and ii) diversity of Pareto solutions. Among standard multi-objective metrics, 

computational time and mean ideal distance (MID) are two metrics for modeling the convergence of 

the algorithms and other metrics are applied for formulating diversity of the Pareto solution. In the 

proposed metric, diversity and MID (as representatives of their multi-objective feature group) are 

combined through Eq. (21). The two features of the Pareto-based meta-heuristics are considered 

simultaneously. Therefore, by using this metric as the response of the Taguchi method, a 

combination of major signals can be proposed. Thus, we expect to obtain precise outputs. This 

metric is called the multi-objective coefficient of variation (MOCV) [42]: 

MID
MOCV

Diversity
                                                                                                          (21) 

In order to implement the Taguchi method, the level of each factor is reported in Table 1.  
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Table 1. Algorithm parameter ranges and levels of the factors. 

Multi-objective 

algorithm 

Algorithm 

parameter 

Parameter 

range 

Low 

(1) 

Medium 

(2) 

High 

(3) 

NSGA-II 

nPopNSGA-II 25-100 25 50 100 

Pc 0.6-0.9 0.6 0.8 0.9 

Pm 0.1-0.4 0. 1 0.25 0.4 

MaxIT 100-500 100 300 500 

MOVDO 

A0 6-10 6 8 10 

σ 1-2 1 1.5 2 

γ 0.005-0.5 0.005 0.05 0.5 

L 50-100 50 75 100 

nPopMOVDO 4-12 4 8 12 

 

In each algorithm, three levels (i.e. low, medium and high) are considered for each factor. Then, 

by using Minitab Software, L9 design is used for NSGA-II and L27 design is exploited for 

MOVDO. The orthogonal arrays of these designs and our obtained responses are presented in Table 

2 (for NSGA-II) and Table 3 (for MOVDO). 

 

Table 2. Taguchi procedure for NSGA-II. 

Run 

order 

Algorithm parameters Proposed 

response for 

NSGA-II nPop Pc Pm MaxIT 

1 1 1 1 1 4839.4 

2 1 2 2 2 .8934. 

3 1 3 3 3 4.834.4 

4 2 1 2 3 3.843.9 

5 2 2 3 1 39814.9 

6 2 3 1 2 .181499 

7 3 1 3 2 9.8.949 

8 3 2 1 3 2389434 

9 3 3 2 1 34843.9 
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Table 3. Taguchi procedure for MOVDO. 

Run 

order 

Algorithm parameters Proposed 

response for 

MOVDO 
A0 σ γ L nPopMOVDO 

1 1 1 1 1 1 483.94 

2 1 1 1 1 2 183494 

3 1 1 1 1 3 389439 

4 1 2 2 2 1 389399 

5 1 2 2 2 2 383344 

6 1 2 2 2 3 38294. 

7 1 3 3 3 1 389249 

8 1 3 3 3 2 3824.4 

9 1 3 3 3 3 383993 

10 2 1 2 3 1 189929 

11 2 1 2 3 2 389929 

12 2 1 2 3 3 4893.9 

13 2 2 3 1 1 1894.3 

14 2 2 3 1 2 483.94 

15 2 2 3 1 3 383324 

16 2 3 1 2 1 38.191 

17 2 3 1 2 2 489341 

18 2 3 1 2 3 382.49 

19 3 1 3 2 1 389499 

20 3 1 3 2 2 384434 

21 3 1 3 2 3 1839.4 

22 3 2 1 3 1 383914 

23 3 2 1 3 2 383949 

24 3 2 1 3 3 3839.4 

25 3 3 2 1 1 383949 

26 3 3 2 1 2 389.94 

27 3 3 2 1 3 38.3.4 

 

 

 
Figure 8. Outputs of Taguchi ratio for NSGA-II. 
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Figure 9. Outputs of Taguchi ratio for MOVDO. 

 

For each algorithm, the effect plots for S/N ratio are presented in Figures 8 and 9. By using 

these results for each algorithm, the optimum values of all parameters are obtained and reported in 

Table 4. 

 

Table 4. The calibrated values of both algorithms. 

Multi-objective 

algorithms 

Algorithm 

parameters 

Optimum 

value 

NSGA-II 

nPopNSGA-II 25 

Pc 0.6 

Pm 0.1 

MaxIT 100 

MOVDO 

A0 6 

Σ 1.5 

γ 0.5 

L 75 

nPopMOVDO 12 

 

6. Computational results and analysis 

In order to evaluate performance of each algorithm, two features should be assessed: efficiency and 

effectiveness. In a single objective algorithm, the objective function represents effectiveness and the 

computational time is a proxy of efficiency. However, in a multi-objective algorithm for assessing 

the efficiency and effectiveness, different metrics can be used to have a comprehensive picture of 

the algorithm’s capability. Given this notion, in Pareto-based multi-objective algorithms, we adopt 

the two following strategies to fulfill the above-mentioned features: 1) convergence, and 2) 

diversity. In this paper, computational time is also used as a metric. Computational time can still be 

used as a good metric for evaluating effectiveness. 

M
e

a
n

 o
f 

S
N

 r
a

ti
o

s

321

1

0

-1

-2

-3

321 321

321

1

0

-1

-2

-3

321

A0 Sigma Gama

L nPop

Main Effects Plot (data means) for SN ratios

Signal-to-noise: Smaller is better



21 
 

In summary, the performance of the proposed MOVDO algorithm is evaluated using five multi-

objective performance metrics as follows [51, 52]: 

 Diversity computes the extension of the Pareto front. 

 Spacing computes the standard deviation of the solutions distances in the front. 

 MID computes the convergence rate of Pareto fronts to a certain point (0, 0). 

 The number of Pareto solutions (NOS) enumerates the number of the Pareto solutions in 

optimal front. 

 The run time shows executing time of the algorithm to attain best solutions. 

While in terms of the diversity and NOS metrics, larger values are desirable, for spacing, MID, 

and CPU time, smaller values are desired. Table 5 reports the computational results of 

implementing the algorithms on the 20 test problems. In the table, the test problems in which the 

algorithm cannot find Pareto front in the reported time are identified by "NAN". In order to code the 

proposed meta-heuristic algorithms, MATLAB Software [30] has been exploited and the programs 

have been implemented on a Core i7, 2 GHz laptop with 8 GB RAM. 

 

Table 5. Multi-objective metrics computed by MOVDO and NSGA-II. 

Problem  

No. 
M N V 

Diversity NOS MID Spacing Time 

NSGA-II MOVDO NSGA-II MOVDO NSGA-II MOVDO NSGA-II MOVDO NSGA-II MOVDO 

1 16 7 5 2.11E+08 1.25E+07 22 8 2.27E+07 2.42E+07 1.95E+08 1.25E+07 15.13 10.84 

2 20 9 6 1.22E+09 2.66E+07 19 9 4.48E+08 3.55E+08 2.75E+08 3.26E+05 25.43 12.12 

3 35 12 9 2.23E+09 4.22E+07 23 5 6.55E+08 4.92E+09 4.35E+08 7.64E+06 39.31 19.75 

4 42 15 11 3.23E+07 3.77E+07 20 11 3.70E+08 2.15E+09 3.65E+06 4.71E+06 44.12 18.65 

5 57 17 12 4.54E+09 7.67E+08 25 6 4.22E+08 9.65E+09 3.80E+08 4.36E+06 46.31 21.65 

6 62 21 14 1.44E+09 3.60E+09 23 8 2.46E+08 6.71E+09 4.68E+08 5.75E+07 45.64 22.35 

7 77 25 18 4.31E+10 3.66E+09 24 9 4.54E+08 8.92E+09 3.48E+10 5.49E+06 49.35 20.45 

8 81 30 20 2.87E+11 8.20E+08 23 6 5.65E+09 6.72E+09 3.49E+10 6.92E+06 51.43 29.53 

9 90 38 22 3.00E+08 2.19E+09 22 8 1.57E+08 4.45E+08 5.67E+06 5.69E+06 54.57 28.53 

10 105 42 25 3.71E+08 3.14E+09 23 10 4.55E+08 3.61E+08 6.55E+07 3.59E+07 53.43 31.84 

11 128 45 25 2.17E+08 2.12E+08 25 8 3.68E+08 2.21E+09 4.54E+08 4.58E+07 58.45 29.13 

12 147 53 30 1.69E+09 2.33E+08 23 10 4.36E+08 3.81E+08 6.76E+08 3.47E+07 61.19 26.86 

13 175 68 38 2.15E+08 2.91E+09 20 7 8.79E+08 5.73E+08 5.88E+08 2.38E+07 84.12 35.55 

14 196 70 45 2.95E+10 4.90E+10 24 9 2.16E+09 2.46E+09 5.73E+08 3.74E+07 86.83 36.68 

15 220 88 52 3.35E+10 4.12E+10 25 9 4.52E+09 6.44E+08 6.73E+09 2.35E+07 101.13 59.74 

16 250 95 70 3.88E+09 9.52E+09 24 12 3.46E+09 3.45E+09 2.87E+08 6.54E+07 119.43 65.35 

17 350 105 75 3.73E+10 1.99E+10 25 7 4.52E+09 5.70E+10 2.32E+09 3.56E+09 121.13 63.32 

18 800 190 140 2.16E+12 3.66E+11 21 11 6.54E+10 4.70E+09 2.33E+12 3.48E+10 118.64 69.44 

19 2200 750 570 NAN 2.82E+10 NAN 8 NAN 7.74E+09 NAN 2.47E+10 228.74 110.84 

20 3500 1100 700 NAN 1.70E+10 NAN 12 NAN 4.19E+10 NAN 3.71E+10 331.77 189.63 

 

In order to demonstrate performance of the proposed MOVDO, various analyses are carried out 

as follows.  
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6.1. Statistical analysis 

In order to show the difference of both algorithms in terms of five metrics, the algorithms are 

statistically analyzed according to obtained solutions via analysis of variance (ANOVA) tests [34]. 

The procedure of ANOVA including F-test value and also P-value on each metric is summarized in 

Table 6. To visualize statistical outputs for the cases, NOS and computational time metrics are 

drawn in Figures 10 and 11. In Figure 12-15, the algorithms are also compared schematically for all 

test problems.  

Table 6. The results of ANOVA test. 

Metrics Source DF SS MS F-test P-value Test results 

Diversity 

Algorithms 1 1.30529E+23  1.30529E+23  1.04  0.314 
Null hypothesis is 

not rejected 
Error 36  4.50046E+24  1.25013E+23   

Total 37  4.63099E+24    

NOS 

Algorithms 1 1905.79  1905.79  523.53  0.000 
Null hypothesis is 

rejected 
Error 36  131.05   3.64   

Total 37  2036.84    

MID 

Algorithms 1 8.69201E+19  8.69201E+19  0.39  0.536 
Null hypothesis is 

not rejected 
Error 36  8.01466E+21  2.22630E+20   

Total 37  8.10158E+21    

Spacing 

Algorithms 1 1.57744E+23  1.57744E+23  1.11  0.299 
Null hypothesis is 

not rejected 
Error 36  5.11057E+24  1.41960E+23   

Total 37  5.26831E+24    

Time 

Algorithms 1 17385  17385  4.73  0.036 
Null hypothesis is 

rejected 
Error 38  139687  3676   

Total 39  157071    

The results are analyzed in a 95% confidence level. Table 6 shows that when the metrics are 

statistically compared, the algorithms have significant differences in terms of NOS and CPU Time. 

According to Figure 11, the algorithms perform similarly in terms of diversity, spacing, and MID 

metrics. Moreover, in large-sized test problems (i.e. test problems 19 and 20), NSGA-II cannot find 

Pareto front but MOVDO can. This fact demonstrates better performance of the proposed MOVDO 

in large-sized problems. In order to investigate the performance of MOVDO in large-sized 

problems, a separate analysis is performed. 

 

Figure 10. Individual value plot of NOS metric. 
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Figure 11. Individual value plot of computational time metric. 

 

 

Figure 12. Graphical comparisons of MID metric for both algorithms on all test problems. 

 

Figure 13. Graphical comparisons of Spacing metric for both algorithms on all test problems. 
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Figure 14. Graphical comparisons of Diversity metric for both algorithms on all test problems. 

 

Figure 15. Graphical comparisons of NOS metric for both algorithms on all test problems. 

 

Figure 16. Graphical comparisons of Time metric for both algorithms on all test problems. 
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6.2. Optimized solution 

To validate the problem representations, for test problem no. 1, we have reported the optimized 

solutions obtained by the proposed MOVDO as follows: 
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6.3. Relative Performance of MOVDO and NSGA-II  

In order to compare the results of NSGA-II versus the proposed MOVDO with more visibility, we 

have analyzed non-dominated solutions obtained by both algorithms. Table 7 represents the results 

of NSGA-II that are dominated by the results of MOVDO in test problem 13. For example, result 

no. 2 of NSGA-II is dominated by results nos. 1 and 2 of MOVDO. Therefore, six Pareto solutions 

of NSGA-II algorithm are dominated by MOVDO and no MOVDO is dominated by NSGA-II. 
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Table 7. Pareto solutions of problem no. 13 along with non-domination analysis. 

Pareto 

Solution  

Number 

NSGA-II MOVDO The solutions of 

MOVDO dominate each 

solution 
Objective 1 Objective 2 Objective 1 Objective 2 

1 6.45E+06 4.17E+04 8.94E+07 5.20E+04 - 

2 1.98E+07 4.90E+05 6.55E+08 1.42E+05 1 and 2 

3 9.85E+07 9.85E+05 8.85E+08 5.17E+05 2, 3, 4, and 5 

4 2.45E+08 6.85E+06 9.88E+08 6.84E+05 2, 3, 4, 5 and 6 

5 4.19E+09 7.97E+06 3.21E+09 6.95E+05 6 

6 8.52E+09 2.56E+07 6.58E+09 9.85E+05 7 

7 8.69E+09 3.52E+07 9.45E+09 9.90E+06 7 

8 9.75E+09 8.65E+07     - 

9 5.70E+10 8.86E+07     - 

10 9.87E+10 9.18E+07     - 

11 9.89E+10 1.65E+08     - 

12 1.69E+11 1.69E+08     - 

13 2.85E+11 6.58E+08     - 

14 5.51E+11 8.47E+08     - 

15 6.48E+11 9.65E+08     - 

16 8.79E+11 9.85E+08     - 

17 5.86E+12 1.65E+09     - 

18 8.85E+12 6.58E+09     - 

19 8.95E+12 6.77E+09     - 

20 9.13E+12 6.85E+09     - 

 

In order to investigate the performance of MOVDO in large-sized problems with further 

analysis, 10 large-sized problems are tested and reported. The computational results of these 

problems, in terms of the five multi-objective metrics, are summarized in Table 8. As can be 

observed, NSGA-II is unable to find non-dominated solutions in large-scale problems. Generally, 

for good performance of each algorithm, two features should be applied, (i.e., efficiency and 

effectiveness). As results show, in large-sized problems, NSGA-II has a lower efficiency. 

Therefore, MOVDO dominates NSGA-II in large-scale problems. 
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Table 8. Multi-objective metrics computed by MOVDO and NSGA-II. 

Large Scale 

Problem  

No. 

M N V 
Diversity NOS MID Spacing Time 

NSGA-II MOVDO NSGA-II MOVDO NSGA-II MOVDO NSGA-II MOVDO NSGA-II MOVDO 

LS-01 4000 1400 850 NAN 2.22E+10 NAN 14 NAN 3.52E+10 NAN 3.66E+10 480.98 253.21 

LS-02 4600 2200 1200 NAN 3.75E+10 NAN 12 NAN 2.55E+09 NAN 3.77E+10 592.84 293.77 

LS-03 5200 3000 1800 NAN 4.32E+11 NAN 13 NAN 4.66E+12 NAN 7.22E+10 793.51 398.74 

LS-04 6300 3600 2800 NAN 5.65E+10 NAN 9 NAN 3.81E+09 NAN 4.38E+10 952.55 520.33 

LS-05 7000 4500 3600 NAN 9.22E+12 NAN 9 NAN 6.73E+11 NAN 6.71E+10 1963.27 963.29 

LS-06 8800 6000 4900 NAN 5.72E+10 NAN 8 NAN 5.79E+11 NAN 4.22E+10 2548.59 1366.41 

LS-07 9400 7700 6200 NAN 3.22E+11 NAN 7 NAN 5.21E+10 NAN 9.28E+10 3669.88 1932.53 

LS-08 12000 9500 7800 NAN 9.66E+11 NAN 12 NAN 9.37E+10 NAN 1.22E+10 4902.78 2530.69 

LS-09 15000 12200 10500 NAN 8.50E+10 NAN 10 NAN 5.74E+10 NAN 5.39E+10 8935.22 3726.10 

LS-10 20000 16800 14500 NAN 1.32E+11 NAN 11 NAN 3.11E+11 NAN 2.24E+10 12632.88 6358.09 

 

Figure 13 plots MID vs. time, illustrating the multi-objective evolution of the MOVDO 

algorithm over time. This figure shows that MOVDO has a better convergence performance in 

MID. Therefore, it can be shown that in spite of all the above- mentioned differences, MOVDO has 

a significantly greater capability. To sum up, in small and medium-sized problems, NSGA-II shows 

better performance for those metrics which are related to a diversity feature, while MOVDO 

performs better on convergence-based metrics. In large-scale problems, MOVDO can be considered 

a well-developed algorithm to find Pareto solutions in multi-objective optimization. 

 
 

Figure 13. Multi-objective convergence plot of MOVDO and NSGA-II 

 

7. Conclusion 

In this paper, a bi-objective FLP with multiple servers, pricing policies and immobile servers was 

formulated. Since FLPs are basically NP-hard, a Pareto-based meta-heuristic called MOVDO was 

developed to solve the model. In the bi-objective model, we maximize total profit of the whole 
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system and simultaneously minimize the sum of waiting time in queues.The results are compared 

with NSGA-II as well-developed, multi-objective, evolutionary optimization algorithms. To do so, 

first, the algorithms were tuned by means of the Taguchi method. Then, MOVDO was statistically 

tested over 20 test problems using five metrics. The results showed that the performance of 

MOVDO with respect to diversity, spacing, and MID is similar to the performance of NSGA-II. 

Moreover, MOVDO significantly performs better than NSGA-II in terms of CPU time and it is 

dominated by NSGA-II in terms of the number of Pareto solutions. According to the computational 

analysis, the proposed MOVDO is able to generate well-distributed Pareto optimal solutions for 

multi-objective optimization problems especially in large-sized problems. As future research, multi-

layer services with multiple objectives in QFLPs could be modeled. Moreover, the proposed 

MOVDO could be applied in different fields of multi-objective optimization problems to explore 

the effectiveness of the technique against problems which were previously solved using NSGA-II. 
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Research highlights 

 A b-objective mathematical model is presented for a location-queuing-pricing problem 

 This paper considers M/M/m/K queuing system at each facility while M/M/1 is usual in the 

literature. 

 Unlike previously published papers which consider the same price at all facilities we consider 

different prices. 

 We developed a multi-objective vibration damping optimization to find Pareto solutions. 

 Taguchi method is also implemented using a response metric to tune the parameters.  

 Some test problems are generated to compare the algorithm with non-dominated sorting genetic 

algorithm (NSGA-II) 

 




