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Abstract. This research studies the low velocity impact behaviour of variable 

stiffness curved composite plates. Since variable thickness within composite 

structures is recognised as an important factor on the performance of the structures, 

significant mathematical modelling to predict the impact response of these types of 

structure is essential. Varying thicknesses of sections is widely found in aerospace 

and automotive composite sub structures. It has been observed that changing of 

geometry of these sections can vary the dynamic response of anisotropic composite 

structures under a range of monolithic and dynamic loading conditions. Here we have 

used first order shear deformation theory to predict the contact force history of curved 

composite plates and the same approach was used for variable thickness composite 

plates, which provides the main novelty of this research. It was shown that the model 

developed here is capable of successfully predicting the response of variable stiffness 

composite plates with a range of layups and geometry designs under impact loading 

conditions. 
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Nomenclature  

E             Young’s modulus (GPa) 

F(t)           dynamic force 

12G              shear modulus (GPa) 

h                 thickness 

t                  beam thickness (mm) 

R                 radius 

                  Poisson’s ratio 

                  density 

M1              mass of plate 

M2              mass of striker 

K1               stiffness constant of plate 

K2               stiffness constant of striker 

  
                effective contact stiffness 

V                 impact velocity 

u, v, w         displacements in x, y, z coordinate systems 

                axial, circumferential and radial coordinates for a curved shell 

                    Mindlin shear correction factor 

                 bending slopes in the     and     planes 

             in surface stress resultants in cylindrical polar system 

           bending and twisting moments per unit length 

                   surface load components along the axial x-axis & circumferential   axes  

                 extensional, bending stiffness of a laminated shell 

                transverse shearing force per unit length 
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1. Introduction 

The use of composite materials in aerospace and automotive structures has greatly 

increased in the last decades as a result of their attractive structural properties. 

Beneficial properties   such as low weight, high stiffness to weight ratio, high fatigue 

strengths and good corrosion and impact resistance are the most highlighted 

characteristics of these materials. It has been shown that failure modes of composite 

structures under low-velocity impact loading conditions are strongly dependent on the 

fibre type, resin type, lay-up, thickness, loading velocity and projectile type [1].  

Many researchers have investigated different mathematical models to predict the 

impact behaviour of various composite materials and structures. Some of these 

models which are used to study the impact behaviour of composite structures by 

external objects are briefly discussed below.  

 

Chai and Zhu [2] reviewed the numerical, mathematical and experimental methods 

used for the analysis of sandwich panels subjected to impact loading. They analysed 

the impact responses according to the main parameters, and consequently identified 

different classes of impact. The impact responses on sandwich structures were broadly 

categorised into two main groups, high-velocity and low-velocity impacts, with the 

focus on the low velocity impact. Khalili et al [3] developed an analytical model to 

predict the impact force history which compared well with the experimental and 

analytical results in the literature. Their results showed that the stacking sequence of 

the face sheet has an insignificant effect on both the impact force and the contact 

duration. They also showed that if the case of zero in-plane forces is considered as a 

reference state, then positive in-plane forces increase the impact force and decrease 

the contact duration, while negative in-plane forces produce  exactly the opposite 

effects, namely decreasing the impact force and increasing the contact duration. In 

another paper [4] they studied the dynamic response of a thin smart curved composite 

panel subjected to a low-velocity transverse impact. In their work shape memory 

alloys were used to reinforce the curved composite panel. A one-dimensional 

thermodynamic constitutive model by Liang and Rogers [ref] is used for estimating 

the structural recovery stress. 
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Shivakumar et al. [5] used a two-degrees-of-freedom model that consisted of four 

springs for bending, shear, membrane and contact rigidities to predict the impact 

response of a circular plate. In this model, the contact force and the contact duration 

for low-velocity impact on circular laminates was calculated. Gong and Lam [6] used 

a spring–mass model having two degrees-of-freedom in order to determine the history 

of the contact force produced during impact. They included structural damping also in 

their model. Gong et al. [7] studied the elastic response of orthotropic laminated 

cylindrical shells to low-velocity impact. A spring-mass model was developed to 

determine the contact force between the shell and the striker. An analytical function 

for the contact force was derived in terms of material properties and the mass of the 

shell and the striker, as well as for the impact velocity. Caprino et al. [8] used a single 

degree-of-freedom system to analyse drop weight impact tests on glass/polyester 

sandwich panels. Anderson [9] described an investigation using a single degree-of-

freedom model for large mass impact on composite sandwich laminates. The stiffness 

parameters of the model were derived from the results of a three-dimensional quasi-

static contact analysis of a rigid sphere indenting a multi-layered sandwich laminate. 

 

Nanda and Kapuria [10] showed that the orthotropic ratio of the composite has a 

significant effect on the wavenumbers for tangential and mid-surface rotation modes. 

The wave propagation response predicted by the classical laminate theory (CLT) 

differs widely from the first-order shear deformation theory (FSDT) prediction, for 

thin and thick, and shallow and deeply curved beams at both low and high 

frequencies. Thus, the CLT should not be used for wave propagation analysis of even 

thin curved laminated beams. More recently, Kavousi Sisi et al [11] presented a 

theoretical method for low-velocity impact analysis of composite laminated beams 

with arbitrary lay-ups and various boundary conditions subjected to 

asynchronous/repeated impacts of multiple masses. Their results showed that the time 

of impact plays an important role in determining contact forces, beam displacements, 

absorbed energies by the beam and normal and shear stresses by positive and negative 

superposition of induced waves. Dinh Duc [12, 13] investigated an analytical method 

for calculating the nonlinear dynamic response of eccentrically stiffened functionally 

graded double curved shallow shells resting on elastic foundations and being 

subjected to axial compressive load and transverse load. The non-linear equations 

were solved by the Runge-Kutta and Bubnov-Galerkin methods and their results 
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characterised the effects of material and geometrical properties, elastic foundation and 

imperfection on the dynamical response of reinforced FGM shallow shells. Li et al 

[14] studied low-velocity impact responses and impact-induced damage evaluation 

problems for the stiffened composite laminated plates based on the progressive failure 

model and layerwise/solid elements method (LW/SE). Ghasemnejad et al [15, 16] 

studied the Charpy impact behaviour of single and multi-delaminated hybrid 

composite beam structures. The Charpy impact test was chosen to study the energy 

absorption capability of a delaminated composite beam. It was shown that the 

composite beams with the position of delamination closer to the impacted surface are 

able to absorb more energy in comparison with other delamination positions in hybrid 

and non-hybrid ones. 

 

Despite of all these research contributions which have investigated a range of 

theoretical models in order to study the dynamic and transient responses of composite 

structures, the effect of geometric changes in terms of variable layups (stiffness) 

within a composite structure remains an area that still requires further investigations. 

This research reports the development of a new mathematical model and to employ 

this to predict the impact response of curved composite panels with variable stiffness 

determined by thickness. A spring-mass model was used to predict the contact force 

between a striker and a curved plate with variable stiffness during an impact event. 

The effect of various parameters including layups, impact velocity and geometric 

change were investigated in the research reported here. 

  

2. Theoretical formulations 

The solution to the dynamic problem is presented in the form of expansions of the 

loads, displacement, and rotation functions as double Fourier series [7]. Each 

expression is based on a function of position and a function of time. Love’s equations 

of motion for a curved shell of dimensions a and b, radius R and thickness h under 

external loads [7] are expressed as (Figure 1): 
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Fig. 1. The schematic curved composite plate with variable thickness 

(stiffness), a) three sectioned curved plate and b) five sectioned curved plate. 

The constitutive equations of an especially orthotropic material are described as: 
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where, 

                   
    

   

    
   (i, j = 1,2,6)       (9) 
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b a 
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     are the transformed reduced stiffness in the     plane,      are the transformed 

shear stiffness, and   is the Mindlin shear correction factor  which is       [7]. 

The strain-displacement relations are expressed as: 
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Double Fourier series, for the displacements and the rotation of rectangular doubly 

curved composite panel with simply supported boundary conditions are defined 

according to: 

                       
    

 
   

    

 

 
   

 
                 (11) 

For a concentrated load located at the point, 
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                                     (13) 

The natural frequency of the plate is given by; 

   
  

                              

  
               (14) 

A definition of all the constants in the equation above can be found in [4] 

          
        

     

    
   

    

 
   

    

 
           (15) 

For a zero initial displacement and velocity of the curved panel, the solution becomes: 
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3. Impact model 

 

In the springs-masses model, M1 and M2 represent the mass of the shell and the striker 

respectively; K1 is the constant stiffness of the shell and K2 is the stiffness of the 

striker. The stiffness of the simply supported laminated shell can be defined as: 

 

     
                                                           (17) 

where,    is the fundamental frequency of the laminated shell and obtained through 

equation (17) by applying         

If       represent the radial displacement of the load point of the shell and       

represent the striker movement at any time   during the impact, then the contact 

deformation is expressed as (see Figure 2): 

 

                                                         (18) 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Two-degrees-freedom of spring-mass system to model dynamic force. 

 

Therefore, the existing approach applies effective contact stiffness   
  in order to 

relate the equivalent contact force to the contact deformation.  

 

  
       

                                                              (19) 

 

which can also be expressed as, 
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The effective contact stiffness   
  is calculated as [7]: 

 

  
      

   

 
 
   

 

 
        

   

 
 

    
 

 
        

   

 
 
  
             (21) 

 

where Γ is the Gamma function and the maximum contact deformation,    is given 

by: 

 

 
    

     
 
   
 
   

   
 
   

 <       <        
    

   

   
 
   

          (22) 

 

This study involves a target structure with simply supported edges and    for the 

simply supported target structure is expressed as: 

 

                                                         (23) 

 

where the subscripts        refer to free, simply supported and clamped respectively. 

The corresponding equations of motion for a two-degree-of-freedom (2 df) model are 

as follows: 

 

                                                     (24) 

 

                                                           (25) 

 

The initial conditions are defined as: 

 

                                               (26) 

 

By using the initial conditions defined in Eq. 21 the analytical function for the force 

can be defined as: 

 

  
       

                                          (27) 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 10 

The coefficients in the analytical function for the force are derived as  
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Finally, by substituting all coefficients of Eqs. (14), (21) and (28) into Eq. (27), the 

dynamic force can be found as: 

 

     

     
   

 
 
   

 

 
        

   

 
 

    
 

 
        

   

 
 
  
       

        

  
     

                      

 
        

  
     

                      
    (33) 

 

4. Verification of the theoretical models 

The selected theoretical model was verified well with available results in the literature 

[4, 7]. The model was applied to a curved steel plate and also a curved composite 

plate with 48-ply laminate consisting of a [(±45/02)2/±45/0/90]2s lay-up fabricated 

from graphite/epoxy prepreg. The mechanical properties and geometric dimensions 

can be found in Tables 1 and 2. The comparison of the force – time history showed a 

good agreement between present results and previous published work (see Figure 3). 
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Table 1. Mechanical properties of CFRP composite materials. 

 

 

 

 

E11 141.2GPa 

E22 = E33 9.72GPa 

G12 = G13 5.53GPa 

G23 3.74GPa 

v12 = v13= v23 0.30 

ρ 1536       
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Table 2. Mechanical properties of steel striker. 

 

 

 

 

 

 

 

 

Fig. 3.  a) Comparison of the force-time history for a) Steel plate and b) composite 

plate between the results of this work and results available in the literature. 
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5. Theoretical model for a variable stiffness curved plate 

The theoretical model in section 4 was developed for two curved composite plates 

with variable thicknesses across the domain (see Figure 4). The analysis is divided 

into two models, firstly a curved composite plate with three variable thicknesses 

(Figure 4b) and secondly one with five variable thicknesses (Figure 4c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Various designs of curved composite plates with a) uniform thickness, 

b) three variable thicknesses and c) five variable thicknesses and equal width 

(side view). 

Each case is analysed for a range of impact velocities and laminate designs to 

understand their effect on the impact performance of composite structures. The 

proposed model is based on the natural frequency,     of the plate and      is 

given as follows: 

      
                                     

   

 
         (34) 

where, m is the number of variable sections in a curved composite plate. 

 

10 layers 

(1/3) b 

10 layers 

  (1/5) b 

10 layers 
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10 layers 

  (1/5) b 

 

8 layers 

  (1/5) b 

8 layers 

  (1/5) b 
10 layers 

  (1/5) b 

8 layers 

(1/3) b 
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     where, Meq is the equivalent mass of the variable thickness plates. 
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Additionally the analysis above was extended to curved composite plates with 

unequal width for variable thicknesses. Details of the geometric design are 

presented in Figures 5 and 6. This analysis has been carried out for various layups 

presented in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Three sectioned curved composite plate with variable thicknesses in 

unequal widths.  

 

 

 

 

 

 

 

 

 

Fig. 6. Five sectioned curved composite plate with variable thicknesses in unequal 

widths. 
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Table 3. Laminate designs of three and five sectioned curved composite plates. 

 

6. Results and Discussions 

6.1 Effect of contact stiffness on contact force history 

Layup 
Number of 

Sections 
Layup 

 

1 3 

 

[-45 45 0 90 0]s 

[-45 45 0 90]s 

[-45 45 0 90 0]s 

 

 

2 3 

 

[0 90 0 45 -45]s 

[0 90 -45 45]s 

[0 90 0 45 -45]s 

 

3 3 

 

[0 90 0 90 0]s 

[0 90 0 90]s 

[0 90 0 90 0]s 

 

 

4 5 

 

[-45 45 0 90 0]s 

[-45 45 0 90]s 

[-45 45 0 90 0]s 

[-45 45 0 90]s 

[-45 45 0 90 0]s 

 

 

5 
5 

[0 90 0 45 -45]s 

[0 90 -45 45]s 

[0 90 0 45 -45]s 

[0 90 -45 45]s 

[0 90 0 45 -45]s 

 

6 5 

[0 90 0 90 0]s 

[0 90 0 90]s 

[0 90 0 90 0]s 

[0 90 0 90]s 

[0 90 0 90 0]s 
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The analysis on the effect of contact stiffness    is shown in Figure 7. It can be seen 

from the model developed in section 5 that the contact force increases with an 

increase of the contact stiffness, k2, but the contact duration decreases. The higher    

yields to a higher effective contact stiffness,   
 . Therefore, a higher contact stiffness 

between shell and striker indicates more contact force. This means that a larger force 

is acting over a shorter time period. Likewise, higher modes of deformations are 

generated due to the shorter contact time. 

 

Fig. 7. Effect of contact stiffness on contact force history. 

 

6.2 Effect of the stacking sequence (Equal widths) 

In this paper the effect of layup and impact velocity was studied for two variable 

thickness composite plates with three and five sections respectively. Figure 8 shows 

the effect of fibre orientations and also impact velocity on the contact force history of 

the plate with three sections and equal widths. Layup 2 ([0 90 0 45 -45]s // [0 90 -45 

45]s // [0 90 0 45 -45]s) yielded the highest maximum contact force due to the reason 

that the plate stiffness and natural frequency was higher in this particular orientation. 

The contact duration for layup 2 is less than the contact time of the other two cases. 

The maximum contact force for case 2 was 17% higher than that for layup 1 ([-45 45 

0 90 0]s // [-45 45 0 90]s // [-45 45 0 90 0]s). The third sequence, layup 3 ([0 90 0 90 
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0]s // [0 90 0 90]s // [0 90 0 90 0]s) yielded the smallest contact force and was 20% 

less than the corresponding value of layup 1. 
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Fig. 8. Effect of stacking sequence on the three sectioned plate with variable 

thicknesses a) 6m/s, b) 10m/s and c) 15m/s. 
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The contact force of layup 2 was higher than the other two layups, at all values of the 

impact velocity between 6-15 m/s. A change of impact velocity from 6-10m/s 

increased the maximum contact force from 17.5kN to 26.5kN. It can also be observed 

from Figure 8(a) and Figure 8(b) that the difference between the maximum contact 

forces decreases slightly as the impact velocity rises, since an increase of the impact 

velocity to 15m/s increased the contact force of layup 2 to 35.4kN. This is worthy of 

note given that the ratios of the kinetic energy of the striker increases much more 

steeply than the maximum contact force. It is noted that the contact duration remains 

unchanged. 

 

Figure 9(a) shows the effect of stacking sequence for an impact velocity of 6m/s for a 

five sectioned plate with variable thicknesses. It can be observed that as the number of 

sections increased, the effect of stacking sequence decreases.   
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Fig. 9. Effect of stacking sequence on five sectioned plate with variable thicknesses 

 a) 6m/s b) 10m/s and c) 15m/s 

 

6.3 Effect of impact velocity (Equal widths) 

The effect of impact velocity on the contact force is studied in this section. It is 

observed that the impact velocity has a direct effect on the contact force for all layups. 

Increasing of impact velocity from 10-15 m/s for layup 1 increased the maximum 

contact force by 36% as shown in Figure 10(a). The maximum contact force increased 

by 58% in layup 3 when the velocity increased from 6-10m/s. It is deduced that for all 

cases accompanied with a three sectioned plate, the increase of contact force was 

uniform; however, the contact duration remains unchanged. The reason for this is that 

the higher velocity gives rise to higher impact energy, thus requiring a larger 

deflection and contact force to dissipate it.  
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Fig. 10. Effect of impact velocity on a three sectioned plate a) Layup 1 b) Layup 2 

and c) Layup 3. 
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Figure 11 shows the effect of impact velocity on the composite curved plate with 5 

sections for the 3 different layups associated. For example, when the impact velocity 

was increased from 10-15m/s, the maximum impact force increased by 32% as shown 

in Figure 11(a) for the fourth stacking sequence (layup 4). This increase was slightly 

less when compared with the plate with three sections with similar stacking sequence. 

The greatest increase of maximum contact force for this plate is observed for layup 6 

as the impact velocity is raised from 10-15m/s. The contact force increased by 33.5% 

as observed in Figure 11(c). 
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Fig. 11. Effect of impact velocity on five section variable thickness plate a) Layup 4 

b) Layup 5 and c) Layup 6. 

 

6.4 Effect of stacking sequence (un-equal width sections) 

The visual representation depicted by Figures 12 and 13 gives a detailed 

understanding on the effect of the stacking sequence on the two types of plates. The 

impact velocity was set at 6m/s in the first instance as shown in Figure 12.  

Similarly to the plate with equal widths, layup 2 yielded the maximum contact force 

for the plate with unequal widths. However, the variation of contact force as the 

stacking sequence changes remained slightly less affected. For example, as the 

stacking sequence is changed from the first case to the second; the maximum contact 

force increased only by 3%, whereas for the plate with equal sections, it was 17%. 

This fact shows if the number of sections in the panel increases, the effect of stacking 

sequence on the contact force will decrease. Figure 12 shows the results for the 

contact force histories with different impact velocities. It is observed that as the 

velocity increases, the curves tends to be more spread out, thus the difference in 

maximum contact force between all selected stacking sequences increases. 
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Fig 12. Effect of stacking sequence on three section variable thickness plate with 

unequal sections a) 6m/s b) 10m/s and c) 15m/s. 
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Fig 13. Effect of stacking sequence on a five unequal section plate with variable 

thicknesses a) 6m/s b) 10m/s and c) 15m/s. 

 

A larger effect on the contact force is observed for the 5 section unequal width plate 

when compared with the 3 section unequal width plate, as shown in Figure 13. An 
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increase in the contact force of 12.6% is depicted when the stacking sequence is 

changed from layup 4 to 6. This force was higher when compared with the 3% 

increase obtained in the case of the 3 section unequal width plate. Therefore, it can be 

concluded that as the number of sections increases, the change in maximum contact 

force also increases. This is different compared to the case of plates of equal sections 

where the effect of stacking sequence decreased with an increase in the number of 

sections. Figure 14 shows the variations in the contact force with different striker 

velocities. In this case, the results showed that the contact force of layup 2 was higher 

in this instance.  
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Fig. 14. Effect of stacking sequence on five section variable thickness plate with 

unequal sections a) 6m/s b) 10m/s and c) 15m/s. 
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6.5 Effect of impact velocity (un-equal width sections) 

Here we report the effect of impact velocity on the three and five sectioned plate with 

un-equal widths.  Increasing the impact velocity had a direct effect on the contact 

force as discussed earlier. The maximum contact force increased with an increase of 

the striker velocity.  

Figure 15 shows the effect of the impact velocity on the impact force history of the 

plate with five sections. Similarly to the previous cases, the maximum impact force 

increases with an increase in velocity. The largest change in the maximum contact 

force was observed in layup 5 as the velocity changes from 6-10m/s. This change was 

higher than the change observed for the plate with equal sections.  
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Fig. 15. Effect of impact velocity on five section variable thickness plate with unequal 

widths a) Layup 4 b) Layup 5 and c) Layup 6. 

 

7. Conclusions 

In this paper, a mathematical model was developed to predict the impact response of 

curved fibre-reinforced polymer (FRP) composite plates with variable lateral stiffness 

which is a more realistic representation of composite structures compared to existing 

models. The analysis was performed first to validate the original model against 

available results in the literature and then it was used to study four geometry designs 

with variable lateral stiffness. The outcomes were presented in the form of force-time 

history curves and maximum impact forces were calculated for each case. The 

comparison between all of these designs is summarised in Tables 4 and 5. It is 

anticipated that this knowledge may benefit the composite industry in providing a 

better understanding of structural health monitoring and protection mechanisms of 

advanced composite structures in aerospace and automotive sections. This may help 

to significantly reduce calculation time during design, analysis and manufacturing as 

well as improving the quality of final products. 
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Layup Stacking Sequence 
Max. Contact Force 

Equal                    Unequal 

1 
[-45 45 0 90 0]s // [-45 45 0 90]s // [-45 

45 0 90 0]s 
15kN 13.7kN 

2 
[0 90 0 45 -45]s // [0 90 -45 45]s // [0 

90 0 45 -45]s 
17.5kN 14.1kN 

3 
[0 90 0 90 0]s // [0 90 0 90]s // [0 90 0 

90 0]s 
12kN 13.1kN 

 

Table 4 Comparison of maximum contact forces for a three sectioned plate with equal 

and unequal widths. 

 

Layup Stacking Sequence 
Max. Contact Force 

Equal                    Unequal 

4 

[-45 45 0 90 0]s // [-45 45 0 90]s // [-45 

45 0 90 0]s // [-45 45 0 90]s // [-45 45 

0 90 0]s 

19.3kN 18.2kN 

5 

[0 90 0 45 -45]s // [0 90 -45 45]s // [0 

90 0 45 -45]s // [0 90 -45 45]s // [0 90 

0 45 -45]s 

20.5kN 20.5kN 

6 
[0 90 0 90 0]s // [0 90 0 90]s // [0 90 0 

90 0]s // [0 90 0 90]s // [0 90 0 90 0]s 
18.8kN 16.5kN 

 

Table 5. Comparison of the maximum contact forces for the five sectioned plate with 

equal and unequal widths (// change of thickness). 
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