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Abstract Soliton solutions are sought to a pair of coupled nonlinear partial 

differential equations which model the interface of two stratified ideal fluids and 

which occurs when a fundamental mode and its third harmonic component induce a 

resonant interaction. These equations bear a resemblance to the standard coupled 

nonlinear Schrodinger equations, but they contain additional terms which makes their 

analysis quite different. There are two parameters in the problem: the ratio of the 

velocity of the fluids and of their densities. A large number of solutions is found and 

some important special cases are studied in detail.  

 

Keywords. Nonlinear evolution equations, solitary waves, third harmonic resonance. 

 

 

 

 

 

 

 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 2 

 

 

 

 

 

 

 

1. Introduction 

Within the theory of capillary-gravity waves, it is manifest that the simplest examples 

of resonant interactions are those between the fundamental mode and its second and 

third harmonic. While the first scenario has been the subject of intense interest and 

even acquired its own appellation, that of Wilton ripples, the latter does not seem to 

have attracted anything like the same level of scrutiny. This is perhaps surprising for 

at least two reasons. The first is that these two types of resonance would seem to be 

the most likely to arise physically, both in nature and also in laboratory experiments. 

The second is that the mathematical equations which model these phenomena exhibit 

properties which make them quite different from those which model other resonant 

interactions. Despite the received nomenclature, one-two resonant capillary-gravity 

waves   were the subject of at least two reports before Wilton’s paper of 1915 [36]. 

One was the work of Bohr in 1906 [4] and the second [7] was due to Harrison in 

1909. In view of the apparent obviousness of the development of the problem from 

one-two to one-three resonances, it seems scarcely believable that no researcher 

worked on this problem until 1961. However, this would appear to be the case for it 

was not until then that the paper of Pierson & Fife [33] considered these third 
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harmonic resonances. However, even this treatment was fairly perfunctory. It was not 

until 1969 that Nayfeh [24,25] used the method of multiple scales to give a 

comprehensive description of third harmonic resonant surface waves.  His results 

were extended to other physical systems by Verheest [35] and by Jones [11] who 

considered the stability of such waves and generalised later by Jones [17,19] who 

introduced the existence of an upper fluid.                  

A comprehensive investigation of resonant capillary-gravity waves by means of a 

formal power series expansion was carried out by Chen & Saffman [5]; this report 

included one-two and one-three resonances as well as perfectly general M-N ones.  A 

more rigorous mathematical treatment of this problem was given later by Jones & 

Toland [20] who cast the problem as one in bifurcation theory. They employed 

functional analytic methods and confirmed most of Chen & Saffman’s conclusions. 

The third harmonic interfacial problem was considered as one in bifurcation theory by 

Jones in [18].  All the reports above were devoted to travelling wave solutions of the 

third harmonic resonance.  However the problem was re-considered by Dias & 

Bridges in [6] who showed by acknowledging the presence of O(2) symmetry  that 

additional  classes of solutions may exist. These new classes consist of standing 

waves, mixed waves and ‘Z-waves’. In [10,32] Henderson and her co-researchers 

were able to create third harmonic resonant waves in a ripple tank by means of highly 

accurate experimental techniques. They showed that such waves were excited by a 

wavemaker of frequency  8.37 Hz and that they had a wavelength of 2.99 cm, thus 

confirming a prediction in [2].     

            In this paper we present a new set of soliton solutions to the pair of coupled 

nonlinear partial differential equations which model the evolution of a third harmonic 

resonant interaction.  Soliton solutions to coupled pairs of evolution equations have 
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been found by Wadeti [34], Newboult [29] and Ohta [30]. However because of the 

triad resonance, the set of equations studied here contains additional nonlinear terms 

which make their analysis quite different to these other cases.  Also our equations 

contain two spatial co-ordinates while those mentioned above contain only one. As 

will become clear, for our solutions to exist it is essential that both coordinates are 

used. Finally although our physical motivation and setting is that of water-wave 

theory, nonlinear evolution equations such as those considered here may be employed 

to describe a wide range of physical phenomena. As examples we mention waves in a 

hot electron plasma [26-28]; in a circular jet [20]; monochromatic waves in an optical 

fibre with and without birefringence [23, 29, 34].          

 

2. The equations of propagation 

In this section we present a derivation of the system of partial differential equations 

which model the physical system. Since this procedure is well know we only sketch it, 

full details may be found in Jones [17], see also [11-14]. Our method is that of 

multiple scales and for other instances of the use of this method see [16, 24-

28].Throughout the paper many of our calculation have been carried out using the 

computer algebra package maple.  

Let us consider the three dimensional motion of two ideal fluids, one lying on top of 

the other.  Throughout the following the subscript 1 refers to the lower fluid and 2 

refers to the upper.  The densities of the fluids are denoted by 1 and 2  and we shall 

assume the upper fluid floats on the lower so that 21   , it will also prove useful to 

introduce the parameter 
1

2




   which lies between zero and unity. We shall 

impose a three-dimensional Cartesian co-ordinate system, so that in the undisturbed 
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state the equation for the flat interface is given by z=0. The fluids are supposed to 

have infinite vertical extent and the forces on the system are those of gravity g, which 

acts in  the negative z direction and surface tension S which acts at the interface 

between the fluids.  In the undisturbed state the fluids are in uniform horizontal 

laminar motion with velocity 1V and 2V  in the direction parallel to the x-axis. We also 

introduce the  

parameter  V which is defined as  
1

2

V

V
V  .This is depicted in Fig.1  

 

 

Fig. 1 

 

 Our interest will centre on the small amplitude interfaces which are formed by the 

interaction between the fundamental mode and its third harmonic.  We shall normalise 

and assume the wave-number of the fundamental is unity so that its wavelength is .2  

To this end we introduce the notation )(exp)( txinnE   for any 1n where is 

the frequency. We also introduce the small positive parameter which acts as a 

measure of the interface wave steepness. The motion is regarded as irrotational and 

hence we are permitted to introduce velocity potentials  ),,,( tzyxj    )2,1( j  

which satisfy Laplace’s equation in each fluid. We also introduce a   function 

),,( tyx   so that the disturbed interface is given by  .z     

We shall present the full nonlinear equations of motion shortly but first we shall use 

their linearisations to derive the dispersion relations. These are  

  2,1,,0)(  jzxjVjzt      (2.1a) 

and 
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.,0)(
1

)
1

(
12

)
2

(
2

1




  zyyxx
S

x
V

tx
V

t
      (2.1b)        

We seek solutions of the form ).(,)(
2

,)(
1

nCEnzenBEnzenAE     

Substituting into (2.1a) yields CiVA
1

 and  ,
2
CiVB  while substituting into (2.1b) 

yields 

              .0

1

2
)1(2

1
2
2





Sn

gnVnV                      (2.2)  

We wish this relationship to be satisfied for n=1,3. This means that  

1

)1(2
1

2
2 


S

gVV   and  

1

9
)1()2

1
2
2

(3



S

gVV                 (2.3) 

which in turn implies                        

4

2
2

2
1

1

VVS 




  and 

4

)2
2

2
1

(3
)1(

VV
g





                             (2.4) 

and we shall henceforth assume that these relationships are satisfied. 

The fully nonlinear boundary conditions at the interface then take the form:  

          .2,1,,0)(  jzyjyxjxxjVjzt                    (2.5) 

and 


x

V
tx

V
t 1

)
1

(
12

)
2

(
2

                           

 )2
1

2
1

2
1

(
2

1
)2

2
2
2

2
2

(
2

)2
2

2
1

(
4

3
zyxzyx

VV 


                                                 

.,0
23)221(4

)2)21()21()(2
2

2
1

(










z

yx

xyyxxyyyxxVV
      (2.6)   

        The next step is to expand the expressions for the velocity potentials and 

interface profile as power series in . To facilitate this exercise we introduce the ‘slow 
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space variables’ yYxX   ,  and the ‘very slow time variable’ tT 2 . It might be 

thought that we should have also included a slow time scale, tT 1  say. However  

such terms drop out of the expressions during the calculations , see [16] eq (2.13a) or 

[19] eq (2.16) so we do not consider them. 

 Then the series expansion for 1 is, up to third order: 









 zeEC

Vzi
C

Vzi
AziACVzACiV XXYYXX )1()

22
()(

1 1
1

2

1
1)2(

1

)3(

1

2

11

)2(

111      









 zeEC

Vzi
C

Vzi
AziACVzACiV XXYYXX

3)3()
26

()(
1 3

1

2

3
1)2(

3

)3(

3

2

31

)2(

33   

,6)6()6(4)4()4(2)2()2( 222 cczeEAzeEAzeEA                 (2.7) 

together  with similar expressions for  2 and  . 

In the expansions the coefficients are functions of the slow variables only and c.c. 

stands for complex conjugate. The derivation then proceeds by substituting into the 

boundary conditions and matching like terms.                                  

At cubic order and using some standard scaling transformations, we arrive at the 

following pair of equations  

,0)1(3||)1(||)1(3)1( 2*

131

2

11

2

311  CCwCCvCCuCCpiC YYXX1T       )( a   

.0)1(||)1(||)3(
3

5
)3( 3

13

2

13

2

333  CwCCuCCvCCpiC YYXX3T        )( b        

The value of the coefficients p(1) etc may be found in the appendix.                             

These equations are the same as those derived in [18] apart from some elementary  

 

scaling simplifications. The system )(  models up to cubic order the evolution of a  

 

capillary-gravity wavetrain at the interface of two fluids which is caused by the  

 

interaction between the fundamental mode and its third harmonic.  There are two  
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parameters in the problem: 
1

2

V

V
V   which is the ratio of the fluid velocities and 

1

2




    which is the ratio of their densities. The parameter V  can take any value, 

positive or negative, since we do not assume the fluids propagate in the same  

 

direction, while    must lie between zero and unity. The case V=0  (ie 2V =0) 

 

corresponds to the case of resonant waves on the free surface of a single fluid  with  

 

constant atmospheric pressure on the free surface. For a study of this see [11].   

 

The system ( ) bears a resemblance to that derived in [16] (see also [12,15])  

 

which considered the general M-N interaction  apart from the 1:2 and 1:3 resonances.   

 

The difference between the equations presented there and those here is that the terms  

 

involving )1(w  are absent. This means that the solutions are quite different. Soliton 

 

solutions of equations similar to those presented in [12,16] were found  in  [34,30]. 

 

However the equations considered there displayed a high degree of symmetry in that 

 

the coefficients v(1) and v(3) were assumed to be equal and p(1) and p(3) were  

 

assumed to be equal to unity. In addition those equations contained only one spatial  

 

derivative.  

 

 

3. The soliton solutions  

This section contains the main results of this paper. In the first subsection we derive a 

general soliton solution to the system )( . In the two subsequent subsections we look 

at some important particular cases in detail.  

3.1 General solutions    

Encouraged by [34] we shall seek solutions of  )(  in the form 

        ]exp[)(1 TiYiXiqfAC                               (3.1a) 

]333exp[)(3 TiYiXiqfBC                                  (3.1b) 
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where f(q)=sech(q), TcYbXaq   and BAcba ,,,,,,,   are real constants. 

Note that because of the terms 2*

13CC and 3

1C  in )(  the complex argument of 3C  

must be three times that of 1C . This constraint does not occur for the evolution 

equations solved in [30-34] and is a fundamental difference between those equations 

and )( . 

Substituting into )( a and taking the real part leads us to  

      
.0)1(3)1()1(

33)1()1(

33232

2222





fABwfAvfBu

ffbfpfapf 
                                               (3.2)                            

Then using the fact that  32 fff   and matching like powers of f presents us with  

,033)1()1( 2222   bpap                                                                       

(3.3a) 

and 

.0)1(3)1()1(6)1(2 2222  ABwAvBubap                                                     (3.3b) 

Meanwhile, the imaginary part of )( a  gives us  

06)1(2  bapc  .                                                                                         (3.3c) 

The corresponding equations for arising from )( b are  

,015
3

5
)3(9)3(3 2222   bpap                                                              (3.4a) 

,0)1()1()3(
3

10
)3(2 32322  AwBAuBvbBBap                                            (3.4b) 

.010)3(6  bapc                                                                                          (3.4c) 

If we now eliminate c between (3.3c) and (3.4c) we obtain  

b,2a3p(3))(p(1)                                                                                              (3.5) 

while eliminating   between (3.3a) and  (3.4a) presents us with  
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.026
3

222))3(3)1((32))1(3)3(( 2   bppapp                                        (3.6) 

This means that we have to solve the reduced system   

b,2a3p(3))(p(1)                                                                                            (3.7a) 

026
3

222))3(3)1((32))1(3)3(( 2   bppapp ,                                     (3.7b) 

,0)1()1()3(
3

10
)3(2 32322  AwBAuBvbBBap                                             (3.7c) 

0)1(3)1()1(6)1(2 2222  ABwAvBubap .                                                    (3.7d) 

It may now be noticed that for this method to work,  it is most important that we 

consider three-dimensional waves and that the spatial dependence in the evolution 

equations is in both the X and Y directions. For if we were to consider waves that 

propagate in the x-directions only, so the Y terms were missing in the system )( , 

then the right-hand side of (3.7a) would be zero. It is then easy to see from (3.7ab) 

that this would then force a and to also be zero and hence no interesting solutions 

would arise.  Of course there may be other classes of solutions which contain only one 

space variable. It should also be emphasised that our method only leads to the 

restricted (though large) class of sech solutions. More general solutions could be 

obtained by replacing Af(q) and Bf(q) in (3.1) with  quite general functions f(q) and 

g(q). This would then lead to a coupled system of nonlinear ordinary differential 

equations whose solutions in general will not be sech.  It is probable that such a 

system would have to solved numerically, but this is an interesting avenue for further 

work. 

The system (3.7) consists of four nonlinear algebraic equations for six unknowns: 

Aba ,,,,  and B. The most logical way now to proceed would seem to regard the 
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leading wave amplitudes A and B as the independent variables. Then solving (3.7cd) 

for a and b leads to  

))3(9)1(5(2

)3(9)1()159()1(5)1()59( 323232
2

ppB

BvwABABAvuBBA
a




 ,                      (3.8a)           

)8.3(.
))3(9)1(5(2

))1()3()1()(1(3))1(3)1()1(()3(3 33222
2 b

ppB

AwBvBAupBAwAvBuBp
b




                     

                

Then solving for  and   between (3.7ab) presents us with the following  

relatively simple expressions    

)}1()33()1()3(3)1()3)){(3(3)1((3

})1(3)1()9()1()3()3({2
322323

2223323
2

wAABBAvBvuBABpp

bBAvwABAuBBABv




  (3.8c) 

)8.3(.
)}1()33()1()3(3)1()3{(6

})1(3)1()9()1()3()3()){3(3)1((
322323

2223323
2 d

wAABBAvBvuBAB

aBAvwABAuBBABvpp






                                                                                                                              

It may now be remarked that A and B, the amplitudes of the two leading harmonics, 

may be assigned any real values independently and corresponding solutions will 

almost certainly exist for a restricted, but fairly large, set of values of   and V; 

certainly this turns out to be the case for the examples we present in detail.  This is in 

contrast to the solutions fond in [11-14] where the amplitudes of the leading 

harmonics could only assume a highly restricted set of values. 

Owing to the large number of choices for A and B, we shall confine ourselves to four 

cases 
3

A
B  and AB  . We choose the first case we are dealing with a 1:3  

resonance so that the amplitude of the third harmonic is one-third the amplitude of the 

fundamental. This approach is analogous to the one taken by Jones [14], Nayfeh [26] 

and McGoldrick [21,22] in the case of Wilton ripples. We consider the second case 
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because then the evolution of the interface will be dependent on the interactions 

between the harmonics and not their relative magnitude. 

 Since a,b  ,  must all be real, the signs of the various quantities on right-hand sides 

of   (3.8) must be non-negative. We now note that the quantities )3(9)1(5 pp   and 

)3(3)1( pp   (which occur in the denominators) are both always positive, this may be 

shown by an elementary completing the square calculation. Hence it is clear that 2  

is just a positive multiple of 2  and its existence need not be considered further.  

 

3.2 The case .
3

A
B   

We examine this case first because it is probably the simplest of the four examples  

 

which we consider. 

 

Substituting into (3.8) now yields that  

,
))3(9)1(5(18

))1(198)1(45)3(9)1(76( 22 A
pp

wvvu
a




                                                         (3.9a) 

,
))3(9)1(5(6

))}1(27)3()1(9)(1())1(9)1(9)1()(3({ 22 A
pp

wvupwvup
b




                       (3.9b) 

.
)}1(9)3(3)1(72)1(26)){3(3)1((3

)}1(6)3()1(27{2 2
2

vvwupp

buvv




                                         (3.9c) 

It now turns out that a and both exist by completing the square methods.                                                                                                                          

Hence the existence of a solution to the problem depends solely on the entity in the 

numerator of 2b which equals   

}.4584928203186864352288686418

 987551159614584911596116077 98755{
60

1

64635332

4224322

VVVVV

VVVV








   (3.10) 

The regions where (3.10) is positive and hence solutions of the system exist are   

depicted as shaded in Fig.2. 
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Fig. 2 

 3.3 The case .
3

A
B   

 

The only difference between this and the case just discussed is that the sign of the 

coefficient of w(1) is changed in all the expressions in which it appears.  

Calculations show that 2a  and 2 both exist provided                  

.15.2466.0 2  V                   (3.11)                            

Hence for solutions for the problem to exist a necessary and sufficient condition is 

that in addition to (3.11), the expression occurring in the numerator of  2b  be positive.  

The regions of existence are shown in Fig. 3. As can be seen, when the velocity ratio 

V is negative, the region of existence is very narrow and the value of the density ratio 

  must be very small, less than 0.1 in fact.  However, when V is positive, the region 

of existence is larger and more-or-less coincides with that defined by 

15.2466.0 2  V . 

Fig. 3 

 

 

3.4 The case B=A. 

Here we have 

,
))3(9)1(5(2

))1(6)1(5)3(9)1(4( 22 A
pp

wvvu
a




                                                                 (3.12a) 
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Ccalculations similar to the previous ones now lead to the conclusion that both                

a and   exists if and only if  

either 532.0190.0 2  V    or      26.588.1 2  V   .                                      (3.13) 

For solutions to exist the numerator of 2b  must in addition be positive.       

These regions of existence are as shaded in Fig. 4. As in the previous case, when the 

velocity ratio V is negative, the region of existence is very small and the value of the 

density ratio   must also be very small. For positive values of V there are two regions 

of existence. 

 

Fig. 4 

 

3.5 The case .AB   

As before, when we evaluate the quantities a,b and   we find they are the same as in 

the previous case, except that the sign in front of  w(1)  is always changed.  

Similar calculations now reveal that a and  exist if and only if 

    0963.00667.0 2  V   or  .0.154.10 2  V                                                 (3.14) 

The final condition for solutions to exist is the expression for  2b  positive, however a  

 

calculation shows the only places where this is negative lie outside the regions defined  

 

by (3.14) and hence the condition for existence is precisely that given by (3.14). These  

 

conclusions are depicted in Fig.5.  Note that in this case the criterion for existence  

 

depends solely on the parameter .2V   

 

Fig. 5 

 

4. Discussion and conclusions 
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The coupled nonlinear partial differential equations which model a third harmonic 

resonant interaction in two space dimensions and one time dimension have been 

studied. This is an important problem because this, together with second harmonic 

resonant interaction, is the one most likely to appear in nature and is the one easiest to 

reproduce in the laboratory. However despite its importance, this seems to be a little 

studied and oddly neglected problem. These equations exhibit mild symmetry 

conditions and are generalisations of the standard coupled nonlinear Schrodinger 

equations. However they contain certain additional terms which makes their analysis 

somewhat different. These terms impose a relationship between the wavenumbers and 

phases of the two expressions which form the solution.  These equations have been 

shown to be integrable and explicit 2sech  soliton type solutions have been found. The 

existence of the solutions is dependent on the values of two parameters:   the density 

ratio and V the velocity ratio. It is shown that solutions exist for a large selection of 

values of the parameters. 

The solutions which have been found are dependent on two spatial dimensions, there  

do not appear to be any analogous solutions in one spatial dimension only. This is in 

contrast to the case of the standard coupled nonlinear Schrodinger equations, see []. 

 

Of course there may be other types of solution which are functions of X or Y only.  

There are a number of directions ways in which this research may be extended.  

Firstly, it would be interesting to see if we could relax the ansatz in (3.1) where the  

Soliton part of each solution is taken to be the same function f . If f is replaced by g 

in (3.1b), then this would lead to a system of coupled ordinary differential equations, 

the general solution of which would almost certainly have to be computed 

numerically. Another avenue of further study would be to see if the equations have 
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any other solutions such as those corresponding to the Ma soliton or the peregrine 

soliton.   

  

 

Appendix 

We here present the expressions for the coefficients occurring in the system ).(  

We have  

                  ,
}8

4

)V3(1V3{
p(1)

2 
           (A1) 

                 ,
}1111

12

)V(1V16{ρ
p(3)

2 
          (A2) 

                 ,6969 22 4VV118u(1)                  (A3) 

                 ,
}77 2

2

VV102{77
v(1)

42  
               (A4) 

                 ,
}123 2

2

VV266{123
w(1)

42  
             (A5) 

                .
}783783 2

10

VV{5346
v(3)

42  
             (A6) 

Note that only p(1) and p(3) depend on   and V explicitly, the other quantities are  

 

functions of the single entity 2V  only. It might be thought that conservation of  

 

energy considerations would suggest some form of symmetry in the coefficients of  

 

,( a ).b If we consider the analogous coefficients presented in  [16] which  dealt  

 

with the general M-N resonant case (although the 1:3 resonant case was specifically  

 

excluded in that report), we see that there is indeed  a symmetry in M and N. However  

 

the transparency of this is lost for any particular numerical values. Note however that  

 

the coefficients of 1

2

3 || CC  and 3

2

1 || CC   are equal and that the coefficient of  
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2*

13CC  is three times that of  .
3

1C  
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Captions for Figures 

Fig. 1 The flow configuration. 

Fig. 2  The case .
3

A
B   The regions where (3.14) is positive and hence solutions 

exist is shaded. 

Fig. 3a  The case 
3

A
B   and V negative. The bold lines show 2V = 0.466 and 

2.15.  The regions where (3.18) is positive is shaded. Only the lower shaded region 

corresponds to an area of existence. 

Fig. 3b  The case 
3

A
B   and V positive. The bold lines show 2V = 0.466 and 2.15.  

The region where (3.18) is positive and hence solutions exist is shaded. Notice it just 

fits between the lines. 

 

Fig. 4a  The case AB   and V negative. The dotted lines show 2V =0.190, 0.532, 

1.88, 5.26.The bold lines show the zeros of (3.25) which is positive in the region 

enclosed by them. Solutions exist in the shaded region. 

Fig. 4b  The case AB   and V positive. The dotted lines show 2V =0.190, 0.532, 

1.88, 5.26.The bold lines show the zeros of (3.25) which is positive in the region 

between them. Solutions exist in the shaded regions. 

 

Fig. 5  The case AB  . The dotted lines show 2V =0.0667, 0.0963, 10.4, 15.0. 

Solutions exist in the shaded regions. The bold lines show the zeros of (3.27) which is 

negative between them although this is irrelevant for our purposes. 
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Fig 2 
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Fig 3a 

 

Fig 3b 
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Fig 4a 

 

Fig 4b 
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Fig 5 

 


