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Abstract: Enumeration search method (ESM) checks all

possible combinations of design variables in a bottom-up

approach until it �nds the global optimum solution for

the design conditions. In this paper an optimum design

of a multilayered laminated plate made of unidirectional

�bre reinforced polymer (FRP) composite subject to uniax-

ial compression is sought. ESM togetherwith classical lam-

inated plate theory (CLPT) has been used to �nd the light-

est laminate for maximizing the buckling load capable of

providing structural stability for a set target uniaxial com-

pression load. The choice of the design variables is limited

to 4 possible �bres orientation angles (0,90,-45,+45) and

the sequence of the laminate, making the problem an in-

teger programming. Experimental and �nite element anal-

yses were used to verify the optimum solution. It has been

shown that the exhaustive enumeration search method is

a powerful tool for �nding the global optimum design.
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1 Introduction

The use of �bre reinforced composite materials origi-

nated from their application in weight- critical military

aerospace structures, and then more recently has ex-

panded in areas such as commercial aircraft, automobiles,
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robotic arms, wind turbine blades and various architec-

tural applications.

In contrast tometallic materials, structural analysis of

�bre reinforced polymer (FRP) laminated composite plates

is more complicated due to the anisotropy of each layer,

and as a result, the design of laminated FRP plates in-

cludes additional complexity. An e�cient composite struc-

tural design that meets all the requirements for a speci�c

application can be achieved not only by sizing the cross-

sectional areas and member thicknesses, but also by tai-

loring of the material properties through selective choice

of �bre orientation and stacking sequence of the layers

that make up the composite laminate. Therefore, selecting

the optimum laminate sequence requires a systematic op-

timisation approach [1, 2]. In addition, the laminated com-

posite structures are usually thin walled structures and

buckling of FRP composite elements such as plates, shells,

columns etc. whether slender or thin is an important as-

pect andcertainly shouldbe considered carefully at thede-

sign stage. In aerospace structures, thin walled members

are generally used due to weight considerations; hence,

they are prone to buckling under in-plane loads [3, 4]. Un-

like beams, where buckling is, typically, very near to ul-

timate failure, plates may have signi�cant post-buckling

ability [5].

In 1995 Fukunaga et al. [6] studied optimization of

symmetrically laminated plates with simply supported or

clamped edges to maximize buckling loads under com-

bined loading. In their analysis they considered the cou-

pling between bending and twisting. The optimal lami-

nate con�guration tomaximize the buckling loadswas ob-

tained using a mathematical programming method where

four lamination parameters were used as design variables.

Walker et al. [7] used a �nite element approach for

the optimal stacking sequence design of symmetric lam-

inated composite plates for maximum buckling load sub-

jected to biaxial compression. The e�ect of optimization

on the buckling loadwas investigatedbyplotting the buck-

ling load against the design variable. The results show that

the di�erence in the buckling loads of optimal and non-

optimal plates couldbequite substantial, emphasizing the

importance of optimization for �bre composite structures.

Walker [8] studied optimal design of biaxially loaded

laminated plates constrained under a combination of free,
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simply supported and clamped edge boundary conditions

for a maximum weighted combination of buckling load

and resonance frequency. In a further study Walker [9]

also presented optimal designs of symmetrically lami-

nated rectangular plates with di�erent sti�ener arrange-

ments. The plate designs are optimised with the objective

of maximising the biaxial buckling load with the ply �bre

orientation as the design variable. During the optimisation

procedure, the capability of each laminate design is deter-

mined using the �nite element method. The plates were

subject to a combination of simply supported, clamped

and free boundary conditions.

Sciuva et al. [10] performed optimization of laminated

and sandwich plates with respect to buckling load and

laminate thickness, usingdi�erent sets of constraints such

as the fundamental frequency, the maximum de�ection

under transverse uniform distributed load, the mass and

the buckling load. The genetic and simulated annealing

algorithms were employed together with two plate mod-

els. Adali et al. [11] presented optimal design of compos-

ite laminates under buckling load uncertainty. The lami-

nates were subjected to biaxial compressive loads and the

buckling load was maximized under worst-case scenario

in plane loading.

Kogiso et al. [12] carried out the reliability-based de-

sign approach to the composite laminated plate subjected

to buckling. The reliability is evaluated by modelling the

plate as a series system consisting of eigenmodes, consid-

ering the asymmetry of laminates due to the randomvaria-

tion of thematerial constants and the orientation angles. It

is shown that the reliability-based design is di�erent from

the deterministic optimum design for almost all the load

cases. Especially, the ply angle di�erence between the sur-

face and the mid-plane layers of the reliability-based de-

sign is larger than that of the deterministic one.

Latalski [13] considered ply thicknesses perturbations

in the laminate plate optimum design results in a di�erent

ply stacking sequence when compared to the solutions of

the nominal design problem. This justi�ed the incorpora-

tion of thicknesses perturbations in the optimization de-

sign algorithm. It is shown that this approach is necessary

formid-Ny/Nx load ratios, but hasnopractical importance

for very low or very high load ratios since the nominal and

robust designs in these speci�c cases are identical.

Lindgaard and Lund [14] presented nonlinear buck-

ling �bre angle optimization of laminated composite struc-

tures. The approach accounts for the geometrically nonlin-

ear behaviour of the structure by utilizing response anal-

ysis up until the critical point. They obtained the sensi-

tivity information by an estimated critical load factor at a

precritical state. In the optimization formulation, the risk

of "mode switching" is avoided by including the lowest

buckling factors. The presented optimization formulation

is compared to the traditional linear buckling formulation

and two numerical examples, including a large laminated

composite wind turbine main spar, were studied.

Hemmatian et al. [15] applied Ant Colony Optimisa-

tion (ACO) for the multi-objective optimization of hybrid

laminates for obtaining minimum weight and cost. The

hybrid laminate is made of glass �bre reinforced polymer

(GFRP) and carbon �bre reinforced polymer (CFRP) plies

using a modi�ed variation of ACO so called the Elitist Ant

System (EAS) in order to make the trade-o� between the

cost andweight as the objective functions. The �rst natural

frequency was considered as a constraint. The results ob-

tained using the EASmethod including the Pareto set, op-

timum stacking sequences, and the number of plies made

of either glass or graphite �bres were comparedwith those

reported in literature using theGenetic Algorithm (GA) and

Ant Colony System (ACS).

Kim et al. [16] optimized the stacking sequence of the

composite layer using a micro-genetic algorithm and its

e�ects on the performances of static/buckling load capa-

bility and sti�ness of an automotive lower arm. They per-

formed the design optimization with the linear perturba-

tion eigenvalue analysis, targeting a 50%weight reduction

of a conventional steel arm.

Ferreira et al. [17] used hierarchical optimization for

laminated composite structures. They considered simul-

taneously the design of structure and material at macro-

scopic and microscopic levels. At the macroscopic level,

they considered �bre orientations and �bre volume frac-

tion of unidirectional composite layers. At themicroscopic

level they considered the size of cross-sectional area and

the shape of the reinforcement �bres. Both levels are cou-

pled by a resource constraint and exchange derivatives in

a mathematically consistent manner. The objective was to

minimize compliance under a total �bre volume fraction

constraint. The plies orientations are chosenusing theDis-

crete Material Optimization (DMO) approach. The results

show that the optimization procedure permits to increase

structural sti�ness when material microstructural charac-

teristics are optimised. For a detail review of optimal de-

sign of composite structure refer to Ganguli [18].

Enumeration search method (ESM) is an exhaustive

search strategy that checks all possible combinations of

design variables in a bottom-up approach until it �nds

the optimum solution for the design conditions. Although

cumbersome, this technique was used to �nd the lightest

composite laminate during the 1970s [19, 20].

Legland and Beaugrand [21] used ESM exhaustive

search method to determine the formal de�nition of the
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geodesic diameter of natural �bre for characteristic ofmor-

phometric features and particle clustering. Park [22] ob-

tained the optimal design angles and presented them in

a graphical form as functions of the loading conditions.

The results can be directly used by laminate designers

for making a choice of composites with optimal perfor-

mance. Weaver [23] built a database that stores appropri-

ate properties of all permutations of lay- up angles for a

laminate. He came up with selection charts in which each

class of laminates was displayed within an elliptical con-

tour. These charts can be used to identify a small subset of

potential laminates that might be investigated in more de-

tails. ESM has also been applied in other �elds such as in

computer science [24, 25] and electronic rewiring [26]. In

none of the previous works was the use of a systematic ap-

proach for choosing the stacking sequence using ESM re-

ported, charts being used instead. ESM optimisation tech-

nique will be used in the present work.

Other solution methods for integer/discrete program-

ming problems include branch and bound method, cut-

ting plane, heuristic methods, etc. The branch and bound

method is based on the observation that the enumeration

of integer solutions has a tree structure. The name of the

method comes from the branching that happens when a

node is selected for further growth and the next generation

of children of that node is created. The bounding comes in

when the bound on the best value attained by growing a

node is estimated. We hope that in the end we will have

grown only a very small fraction of the full enumeration

tree [27]. The cutting-plane method is an umbrella term

for optimization methods which iteratively re�ne a feasi-

ble set or objective function by means of linear inequal-

ities, termed cuts. Such procedures are popularly used to

�nd integer solutions tomixed integer linear programming

(MILP) problems, as well as to solve general, not necessar-

ily di�erentiable convex optimization problems. The use

of cutting planes to solve MILP was introduced by Gomory

and Chvátal [28, 29].

In this study, theminimumweight of a symmetric uni-

directional FRP composite plate is soughtwhen the plate is

subjected to a uniaxial compressive loading. ESM together

with classical laminatedplate theory (CLPT) has beenused

to �nd the lightest laminate for maximizing the buckling

load capable of providing structural stability for a set tar-

get uniaxial compression load. The choice of the design

variables is limited to 4 possible �bres orientation angles

(0,90,-45,+45) and the sequence of the laminate, making

the problem an integer programming. The optimum stack-

ing sequence is the output of the computer programme. Ex-

perimental and �nite element analyses were used to verify

the optimum solution.

2 Calculating critical buckling load
for FRP laminated plates

The load-displacement behaviour of a plate subjected to

compressive in-plane load P, causing an out of plane dis-

placement w measured typically at one of the crests of

a buckle is shown in Figure 1 (following [30]). The Euler

elastic critical buckling load for a linearized idealisation,

PC, is when the plate will suddenly loose in-plane sti�-

ness (A-C). This point is called the bifurcation point as the

load path branches into two possible equilibrium paths.

The other possible solution path, though unstable, is A-

B. If large displacement and large rotation geometric non-

linearity are considered in the analysis for the perfect plate

under in-plane loading, path A-D (shown in Figure 1) will

be predicted where the sti�ness is increasing as the load

increases [31, 32]. The plate behaviour after bifurcation is

called the post-buckling region. This region is important

as it shows the plate is capable of carrying load far beyond

the critical load. However, in this region the sti�ness is sig-

ni�cantly reduced so the behaviour should be known pre-

cisely.

In the buckling analysis, some assumptions are made

such as an initially perfect �at plate and material be-

haviour that does not precisely describe reality. These as-

sumptions put limitations on the theoretical results. All

materials to some extent are imperfect and may contain

�aws of varying magnitudes. For example, a manufac-

tured FRP composite plate has an initial curvature, non-

uniform resin rich areas between the plies and probably

residual stresses from uneven cooling during curing of

laminates or some machining damage may exist in the

plate. However, in our analysis the �at plate assumed to

be perfect noting that in the buckling behaviour of struc-

tures, thematerial and geometric imperfections have been

proven experimentally to be detrimental.

When the assumptions are found to be an ideal de-

scription of the actual behaviour of the �at plates, the

question arises how these initial imperfections a�ect the

plate behaviour before, as well as after, the bifurcation

point. Figure 1 shows the di�erence in behaviour of a �at

plate when the plate imperfections are considered. Con-

sidering Figure 1, two conclusions concerning how the im-

perfection in�uence the plate behaviour may be drawn.

Firstly, buckling of a �at plate with inherent imperfections

is gradual and it is very di�cult to specify exactly when

critical load has been reached. Hence, there will be some

discrepancies between theoretical and experimental buck-

ling load. Secondly, the plate may continue to carry load

after the bifurcation point. Thus, the critical load is a con-
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Figure 1: The influence of initial plate imperfections on buckling
behaviour of a plate (following [30]).

servative estimate of the ultimate buckling resistance of

the plate in question. As a result, the selection of critical

buckling load extracted from experimental load versus the

out-of-plane displacement diagram is not well de�ned. In

this work the critical buckling loadwas extracted at the in-

tersection of tangents to the postbuckling section and ini-

tial sti�ness line of the diagram as will be discussed later.

2.1 Critical buckling load from analytical
solution

In the ESM optimisation the analysis of �at plate buckling

is based on CLPT [5, 33]. According to CLPT, the compo-

nents of reduced sti�ness matrix for each ply are:
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where c = cos θ and s = sin θ. The extensional (A), cou-

pling (B), and bending (D) sti�ness matrices are:

Aij =
nl∑
k=1

[Qij]k(zk − zk−1), (3)

Bij =
1
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)
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Note that for symmetric laminates [B] matrix is zero.

For large de�ection of an especially orthotropic

symmetric laminated plate where A
16

= A
26

= 0,

D
16

= D
26

= 0 and Bij = 0, the �rst von Karman equation

becomes:
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where w is out-of-plane de�ection and px, py and pz are
distributed loads (force/area). For a plate under biaxial

loading and Nxy = px = py = pz = 0, and Equation (6) re-

duces to:
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The solution of w for a plate with simply supported edges

(SSSS) is:

w =

∑∑
Amn sin

mπx
a sin

nπy
b . (8)

Substituting w from Equation (8) in Equation (7) and if the

plate aspect ratio de�ned as R = a/b then
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De�ning k = Ny/Nx and Nx = −NC then from Equation (9)

results
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For a plate under uniaxial loading Ny = 0 thus k = 0; and

for SSSS boundary condition Equation (10) simpli�es to:

NC =
π2
[
D
11
m4

+ 2 (D12
+ 2D

66)
m2n2R2 + D

22
n4R4

]
a2m2

.

(11)

For a plate with clamped-simply supported-clamped-

simply supported (CSCS) boundary conditions subjected

to uniaxial loading the solution to Equation (7) becomes

NC =
π2
b2
√
D
11
D
22
(K), (12)

where NC is the critical buckling load, b is the width of the

specimen, and K is

K =
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b
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D
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)
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and m is an integer number which

represents the number of half- wave in load wise direction

and a is the length of the plate in the direction of loading.

2.2 Critical buckling load from �nite
element eigen solution

Finite element modelling was used to obtain the critical

buckling load using ANSYS software. The linear buckling

analysis in ANSYS �nite elements software is performed

in two steps. The �rst step is a linear static analysis of the

structure to determine the stresses for a given reference

set of loads. Subsequently in the second step an eigen-

value analysis given in the Equation (14) is solved which

provides the results in terms of load factors (eigenvalues)

and mode shapes (eigenvectors). This equation takes into

consideration the prebuckling stress e�ect matrix [S] cal-

culated in the �rst step.(
[K] + λi[S]

)
{Ψi} = {0}. (14)

In above [K] is sti�ness matrix, [S] is initial stress sti�-

ness matrix, λi is the ith eigenvalue (used to multiply the

loads which generated [S]) and {Ψi} is the ith eigenvector

of displacements. The ’Block Lanczos’ method in ANSYS

was used to extract the eigenvalues resulting from Equa-

tion (14). The eigenvalues obtained from thebuckling anal-

ysis are factors by which the initially applied force is mul-

tiplied. As a result, the critical buckling load is calculated

from to Equation (15).

Pcr = λminPA, (15)

where λmin is the minimum eigenvalue,A is the total area

on which pressure is applied, and P is the initially ap-

pliedpressure. By applying aunit pressure (P = 1) inEqua-

tion (15), the critical buckling load will be as follow

Pcr = λminA. (16)

In all the FEA models SHELL281 elements were used. A

unit pressure is applied at the loading edge and the �rst

eigenvalue is the critical buckling load.

3 Optimisation problem
The stacking sequence for a glass �bre reinforced com-

posite �at plate with CSCS boundary conditions with di-

mensions of 150mm long; 80mm wide is to be selected to

stand a minimum target buckling load of 200N/mm with

the minimum thickness. The plate is made from symmet-

ric unidirectional plies (UD) with ply nominal thickness of

0.29mm. This is the benchmark solution of the integer pro-

gramming problem in composites as the choice of the de-

sign variables due to manufacturing constraints is limited

to four possible �bres orientation angles (0,90,-45,+45).

Any ply angle can be repeatedly used in the stacking se-

quence.

3.1 Optimisation Formulation

The objective function of the optimisation can be stated as

min

∑
weight = min

∑
number of plies. (17)

Subject to:

NC
Nt

≥ 1, (18)

where NC is critical buckling load and Nt is the target ap-

plied compressive load. The design variables are the �bre

orientation and stacking sequence. The constraint is se-

lection from four possible �bre orientations angles (0,90,-

45,+45) for a symmetric laminate. The �bre direction can

be repeatedly selected in the stacking sequence.

The optimum solution is sought using the Enumera-

tion Search Method (ESM). ESM is a bottom-up exhaus-

tive searchmethodwhere all possible combination of plies

will be selected and each of the laminates will be tested to

checkwhether the condition in Equation (18) is satis�ed or

violated. As themethod starts from the least possible plies

and moving upward until it �nds the laminate which sat-

is�es the conditions in Equation (18), the solution will be

a global optimum solution.
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Figure 2: Flow chart of the developed ESM optimisation programming.

Table 1:Mechanical properties of UD GFRP composite material.

E11 E22 G12 ν12 Xt Yt S
(GPa) (GPa) (GPa) (MPa) (MPa) (MPa)
37 ± 2 13 ± 1 5 ± 1 0.23 ± 0.01 624 ± 21 71 ± 8 48 ± 1
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A programming code in MATLAB has been developed to

�nd all possible stacking sequence combinations for any

number of layers from the given ply options. It should be

noted that the total number of possible combinations of

stacking sequences from p option of layers, and for the

symmetric case, can be found from Cnl = pnl/2, where Cnl
is total number of combinations and nl is the number of

layers. For unsymmetrical lay-up, Cnl = pnl can be used.

The detail of the ESMprogramming is described in the �ow

chart shown in Figure 2.

4 Experimental studies

4.1 Material characterisation

All specimens are fabricated fromGFRPprepregswithE722

epoxy matrix supplied by Tencate Advanced Composites,

UK. The mechanical properties of the laminate were ob-

tained according to the ASTM D3039 standard¹ for 0

◦
and

90

◦
and ASTM D3518² for ±45

◦
. The mechanical proper-

ties of the GFRP composite material are summarised in

Table 1. Xt is tensile strength in �bre direction, Yt is ten-

sile strength in normal to �bre direction and S is shear

strength. In the FEA studies averaged value of thematerial

properties are used.

Figure 3: Clamped-simply supported-clamped-simply supported
(CSCS) buckling testing rig during operation.

1 ASTM Speci�cation D3039/D3039M, Standard test method for ten-

sile properties of polymer matrix composites, ASTM International,

Conshohocken, PA, 2006.

2 ASTM Speci�cation D3518/3518M, Standard test method for in-

plane shear response of polymer matrix composite materials by ten-

sile test of a +-45 laminate, ASTM International, Conshohocken, PA,

2007.

Figure 4: Schematic of buckling test set up showing the location of
points where LVDTs are attached.

Table 2: Dimensions of plate specimens in buckling experiments.

Specimen Length, a Width, b Plate thickness
(mm) (mm) (mm)

B1a 149.4 80.3 2.33
B1b 150.1 80.1 2.30
B1c 149.2 80.4 2.40
B2a 149.8 80.0 2.30
B2b 150.1 80.0 2.45
B2c 149.1 80.1 2.40
B3a 150.1 80.5 2.30
B3b 150.3 80.0 2.30
B3c 149.6 80.2 2.30
B4a 150.2 80.7 2.40
B4b 150.3 80.6 2.30
B4c 150.2 80.5 2.30

4.2 Buckling tests

The buckling tests were performed according to ASTM

D7137 standard³. Buckling tests have been done for vali-

dation of the ESM results and FEA modelling. The buck-

ling tests are performed using a 50 kN Zwick/Roell univer-

sal testing machine. After manufacturing the laminated

plates, the test specimens are held in the buckling test �x-

ture during loading (see Figure 3).

The buckling testing rig is placed between the base of

the machine and the upper moving head. The machine is

stopped when the load drops at failure. The out-of-plane

3 ASTM Speci�cation D7137/D7137M, Standard test method for com-

pressive residual strength properties of damaged polymer matrix

composite plates, ASTM International, Conshohocken, PA, 2005.
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Figure 5: Load (N/mm) versus out-of-plane displacement (mm) for laminated plates (a) B1, (b) B2, (c) B3 and (d) B4 specimens.
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Figure 6: Side view of deformed shape of buckled laminated plate
observed in the experiments.

displacements at selected points of the plate are moni-

tored using four linear variable di�erential transformers

(LVDTs) as shown in Figure 3. Figure 4 shows the set-up

for the buckling tests. In all the buckling tests the bound-

ary conditions on the plate edges were clamped-simply

supported-clamped-simply supported (CSCS).

Three specimens of GFRP �at plates from each

of four stacking sequences of B
1
= [0/90/O

2
]s,

B
2
= [90/0/ ± 45]s, B3 = [O

2
/9O

2
]s, and B4 = [±45

2
]s were

manufactured and tested under quasi- static compres-

sive load at a constant cross-head displacement rate of

2mm/min until failure occurred. Dimensions of plate

specimens in buckling experiments are summarised in

Table 2. The experimental results of load versus out-of-

plane displacement for di�erent buckling tests are shown

in Figure 5. The critical buckling load is extracted from the

lowest load reading of 4 LVDTs. The critical buckling load

was de�ned at the intersection of the tangents to the post-

buckling and initial sti�ness as shown in Figure 5 as used

by Shukla et al. [34]. The extracted experimental critical

buckling loads are summarised in Table 5.

The general mode shape of plate buckling obtained

from the readings of LVDTs is shown in Figure 6. This �g-

ure shows that the mode shape of buckling is antisymmet-

ric with two half waves and it is similar to the �rst eigen

mode solution obtained from �nite element simulation.

Figure 5 shows that specimen B4with a stacking sequence

of [±45
2
]s is the optimum laminate sequence.

5 Optimisation of unidirectional
laminated plates

The ESMoptimisation is used to determine the stacking se-

quence for the minimum number of layers from UD plies.

All possible solutions for 2, 4, 6 and 8 layers are shown in

Figures 7 and 8. The detail of stacking sequences for these

cases are summarised in Tables 3 and 4. As shown in Fig-

ure 8, theminimumnumber of layers for which the critical

buckling value is equal or bigger than the target buckling

load is 8 layers.

Progression of the highest critical buckling load ratio,

NC
Nt , for laminates made from UD as the number of plies in-

creases (bottom-up approach) is shown in Figure 9. The

result shows that all laminates with 8 layers pass the tar-

get buckling load and the optimum solution which is able

to carry the highest buckling load is symmetric UD [±45
2
]s

plate.

It should be emphasised that the plate buckling anal-

ysis is based on the classical laminated plate theory de-

scribed in Equation (13). However, CLPT is a simpli�ed

model which discards factors such as imperfections, non-

elastic material behaviour, dynamic e�ects of the loading,

and the fact that the in-plane loading is not applied exactly

at the mid-plane. But plates in the real world are not per-

fectly �at and do not have perfect symmetry. As a result,

there are always some di�erences between experimental

and analytical results. In addition, critical buckling loads

obtained from FEA eigen buckling solutions are based on

geometrically perfect plates. The results of buckling tests

and �nite element simulations are summarised in Table 5

and shown in Figure 10. These results show that the di�er-

ences between the FEAmodelling, CLPT and experimental

results are small; e.g. for specimen number B4, the di�er-

ence between the critical buckling load from the eigen so-

lution and experiment is -3.2%. Note that in the analytical

solution the elastic coupling exists when D
16

and D
26

of

the bending sti�nessmatrix [D] are non-zeros. The% error

between the FEA results is due to values of D
16

and D
26

be-

ing non-zeros for plies whose angles are those other than

0

◦
or 90

◦
, thus changing the governing di�erential equa-

tion. Campbell reported that the values of D
16

and D
26

be-

come small when a large number of plies are stacked and

become insigni�cant for thicknesses of more than sixteen

plies [35].

The mode shape of specimen B4, extracted from FEA

analysis is shown in Figure 11. The FEA mode shape

matches the experimental results shown in Figure 6 which

indicates that the boundary conditions and testing proce-

dure are reliable.
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Figure 7: Ratio of NC/Nt for all possible combinations of stacking sequence of symmetric UD laminates from 4 �bre orientation and made of
(a) 2 layers, (b) 4 layers, (c) 6 layers. Set target buckling load is 200 N/mm. All failed.
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Table 3: Analytical critical buckling load for all possible stacking sequences of 2, 4 and 6 layers of symmetric UD laminates when the set
target buckling load is 200N/mm.

No. of layers Stacking no. Sequence Nc (N/mm) Nc/Nt Pass/Fail
1 [0]s 3.20 0.016 Fail

2 2 [90]s 3.39 0.017 Fail
3 [45]s 3.82 0.019 Fail
4 [−45]s 3.82 0.019 Fail
1 [O

2
]s 25.56 0.128 Fail

2 [0/90]s 26.63 0.133 Fail
3 [0/45]s 26.53 0.133 Fail
4 [0/ − 45]s 26.53 0.133 Fail
5 [90/0]s 26.88 0.134 Fail
6 [9O

2
]s 27.09 0.135 Fail

7 [90/45]s 27.52 0.138 Fail
4 8 [90/ − 45]s 27.52 0.138 Fail

9 [45/0]s 29.94 0.150 Fail
10 [45/90]s 30.14 0.151 Fail
11 [45

2
]s 30.58 0.153 Fail

12 [45/ − 45]s 30.58 0.153 Fail
13 [−45/0]s 29.94 0.150 Fail
14 [−45/90]s 30.14 0.151 Fail
15 [−45/45]s 30.58 0.153 Fail
16 [−45

2
]s 30.58 0.153 Fail

1 [0
3
]s 86.27 0.431 Fail

2 [O
2
/90]s 87.34 0.437 Fail

3 [O
2
/45]s 87.24 0.436 Fail

4 [O
2
/ − 45]s 87.24 0.436 Fail

5 [0/90/0]s 93.77 0.469 Fail
6 [0/9O

2
]s 87.52 0.438 Fail

7 [0/90/45]s 87.95 0.440 Fail
8 [0/90/ − 45]s 87.95 0.440 Fail
9 [0/45/0]s 93.03 0.465 Fail
10 [0/45/90]s 94.10 0.470 Fail
11 [0/45

2
]s 93.99 0.470 Fail

12 [0/ ± 45]s 93.99 0.470 Fail
13 [0/ − 45/0]s 93.03 0.465 Fail
14 [0/ − 45/90]s 94.10 0.470 Fail

6 15 [0/ − 45/45]s 93.99 0.470 Fail
16 [0/ − 45

2
]s 93.99 0.470 Fail

17 [90/O
2
]s 89.78 0.449 Fail

... ... ... ... ...
40 [45/90/ − 45]s 100.15 0.501 Fail
41 [45

2
/0]s 102.56 0.513 Fail

42 [45
2
/90]s 102.76 0.514 Fail

... ... ... ... ...
62 [−45

2
/0]s 102.76 0.514 Fail

63 [−45
2
/45]s 103.20 0.516 Fail

64 [−45
3
]s 103.20 0.516 Fail
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Table 4: Analytical critical buckling load for all possible stacking sequences of 8 layers of symmetric UD laminates when the set target buck-
ling load is 200N/mm. All passed.

Stacking no. Sequence Nc (N/mm) Nc/Nt Tested specimens
1 [O

4
]s 204 1.0225

2 [O
3
/90]s 206 1.0278

3 [O
3
/45]s 205 1.0273

4 [O
3
/ − 45]s 205 1. 0273

5 [O
2
/90/0]s 212 1.0600

6 [O
2
/9O

2
]s 213 1.0653 B3

... ... ... ...
17 [0/90/O

2
]s 207 1.0373 B1

... ... ... ...
76 [90/0/ ± 45]s 216 1.0814 B2
... ... ... ...
185 [±45/45/0]s 244 1.2199
186 [±45/45/90]s 244 1.2209
187 [±45/45

2
]s 245 1.2231

188 [±45
2
]s 245 1.2231 B4

189 [45/ − 45
2
/0]s 244 1.2199

190 [45/ − 45
2
/90]s 244 1.2209

191 [45/ − 45
2
/45]s 245 1.2231

192 [45/ − 45
3
]s 245 1.2231

... ... ... ...
253 [−45

3
/0]s 244 1.2199

254 [−45
3
/90]s 244 1.2209

255 [−45
3
/45]s 245 1.2231

256 [−45
4
]s 245 1.2231

Table 5: Comparison of critical buckling load from experiment, analytical (CLPT), and �nite element eigen solution when the set target buck-
ling load is 200N/mm.

Stacking se-
quence

No. of layers Specimen Analytical NC Experimental NC FEA Eigen NC % devia-
tion of NC
between
analytical
& experi-
ment

% devia-
tion of NC
between
FE Eigen
& experi-
ment

[0/90/O
2
]s 8 B1 207 173 ± 60 208 -16.4 -16.8

[90/0/±45]s 8 B2 216 153 ± 20 188 -29.2 -18.6
[O

2
/9O

2
]s 8 B3 213 185 ± 5 202 -13.1 -8.4

[±45
2
]s 8 B4 245 213 ± 10 220 -13.1 -3.2
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Figure 8: Ratio of NC/Nt for all possible combinations of stacking
sequence of symmetric UD laminates made of 8 layers from 4 op-
tions according to Table 3. Set target buckling load is 200N/mm. All
passed.

Figure 9: History of progression of critical buckling load for the
�ttest laminates made of UD plies as the number of plies is in-
creased. Set target buckling load is 200N/mm.

Figure 10: Comparision of critical buckling load from experiment,
analytical (CLPT), and �nite element eigen solution for sequences
B1, B2, B3 and B4 shown in Table 4. Set target buckling load is
200N/mm.

Figure 11: The �rst mode shape of [±45
2
]s laminated plate (B4 speci-

men); m = 2, n = 1, top view (left) and side view (right). The contour
indicates ratio of w/wmax.

6 Conclusion
In this work, enumeration search optimisation method

(ESM) and classical laminated plate theory (CLPT) were

used to develop a computer programme to �nd the opti-

mum stacking sequence. ESM is one of the discrete opti-

misation methods by which many engineering problems

might be solved. The developed programme is able to �nd

the lightest laminate that is able to withstand a set tar-

get buckling load. This is achieved by selecting the opti-

mum stacking sequence from a set of prede�ned ply an-

gles while maximizing the buckling load capability. The

optimum stacking sequence is the output of the computer

programme and no chart is required to �nd the plies angle.

In the ESM method all possible combinations of de-

sign variables, i.e. �bre orientation and number of plies,

using a bottom-up approach were examined and the best

combination of plies angle and number of layers was

found. The optimum lay-up resulted in the laminate mini-

mumweight and satis�ed the target critical buckling load.

The ESM optimisation code was written for MATLAB using

CLPT for calculation of the critical buckling load.

A case study has been done and the optimum num-

ber of layers for symmetric unidirectional plies for the

200N/mm target critical buckling load from �bre ori-

entation of 0

◦
, 90

◦
, 45

◦
and −45

◦
was found to be

eight layers with sequence [±45
2
]s. Laminated plate spec-

imens from the optimum (B4 specimen) and a selection of

non-optimum (B1-B3 specimens) were manufactured and

tested. The critical buckling load from experimental re-

sults is comparedwith those from theESMandFEanalysis.

The percentage di�erence of the critical buckling load, NC,
calculated from the analytical and FEA eigen solutions,

Brought to you by | Kingston University
Authenticated

Download Date | 6/1/15 1:04 PM



Enumeration search method for optimisation of stacking sequence of laminated composite plates | 203

with those from experiments are -13.1% and -3.2%, respec-

tively. It should be noted that there are variations in the

experimental buckling load from the repeat tests as main-

taining the exact consistency of geometric dimensions and

microstructures of the specimens is not possible.

It has been shown that the enumeration search

method (ESM) is a powerful tool for �nding the global opti-

mum design at a reasonable computing cost using simple

mathematical formulation. The method works very well

for small to medium-size number of variables, but it very

rapidly becomes unworkable for problemswithmany vari-

ables, e.g. for a very thick laminate with many �bre orien-

tation angles.
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Nomenclature
a Length of plate

A Area

Aij The extensional sti�ness

b Width of plate

Bij Coupling sti�ness

Dij Bending sti�ness

Eij Young’s modulus

Gij Shear modulus

[K] Sti�ness matrix

C cos θ
s sin θ
nl Number of layers

NC Critical buckling load

Nt Target buckling load

Nx In-plane load in x-direction

Ny In-plane load in y-direction

Nxy In-plane shear load

P In-plane load

Pc Critical buckling load

px , py , pz distributed loads (force/area)

Qij Reduced sti�ness matrix

Qij Transformed reduced sti�ness matrix

[S] Initial stress matrix

S Shear strength

w Out-of-plane displacement

Xt Tensile strength in �bre direction.

Yt Tensile strength in normal to �bre direction.

zk Ply distance from mid plane

θ Ply angle

λi ith eigenvalue

νij Poisson’s ratio

{Ψi} The ith eigenvector of displacements
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