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ABSTRACT
Intrusion detection is concerned with monitoring and analysing events occurring in a computer system in order to discover potential malicious activity. Data mining, which is part of the procedure of knowledge discovery in databases, is the process of analysing the collected data to find patterns or correlations. As the amount of data collected, stored and processed only increases, so does the significance and importance of intrusion detection and data mining.
	A dataset that has been particularly exposed to research is the dataset used for the Third International Knowledge Discovery and Data Mining Tools competition, KDD99. The KDD99 dataset has been used to identify what data mining techniques relate to certain attack classes and employed to demonstrate that decision trees are more efficient than the Naïve Bayes model when it comes to detecting new attacks. When it comes to detecting network intrusions, the C4.5 algorithm performs better than SVM. 
 	The aim of our research is to evaluate and compare the usage of various feature selection and reduction algorithms against publicly available datasets. In this contribution, the focus is on feature selection and reduction algorithms. Three feature selection algorithms, consisting of an attribute evaluator and a test method, have been used. Initial results indicate that the performance of the classifier is unaffected by reducing the number of attributes. 
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INTRODUCTION
There are two types of intrusion detection: misuse detection and anomaly detection. Misuse detection uses a database consisting of signatures of recognized intrusions to match and identify unlabelled data. The signatures are used to define abnormal behaviour. Any behaviour that is not recognized is considered normal (Panda & Patra, 2008).
 	Anomaly detection uses an opposite approach. A model is built based on what is considered normal behaviour. Any variation from the model will be classified as abnormal (Panda & Patra, 2008). Compared to misuse detection, anomaly detection is considered more powerful. This is due to its theoretical potential for discovering novel attacks (Amudha & Abdul Rauf, 2011).
 	Data mining is part of the knowledge discovery in databases (KDD) procedure and is the process of analysing collected data to discover patterns or correlations. The KDD procedure can be seen as five steps: Data selection, data cleaning/pre-processing, data reduction, data mining and interpretation/evaluation (Jensen & Shen, 2008).

KDD99 DATASET
The KDD99 dataset is a collection of simulated raw TCP dump data collected over a period of nine weeks (Amudha & Abdul Rauf, 2011), and it has been particularly exposed to research. The dataset consists of 41 attributes and instances of normal data and 22 different attacks. The attacks are divided into four categories: Denial-of-Service (DoS), Probe, User-to-Root (U2R) and Remote-to-Local (R2L) (Kdd.ics.uci.edu, 2015). There are approximately five million instances in the KDD99 dataset (Tavallaee, Bagheri, Lu & Ghorbani, 2009).

	KDD99 attributes

	duration
	protocol_type
	srv_serror_rate

	service
	src_bytes
	srv_diff_host_rate

	dst_bytes
	flag
	dst_host_srv_count

	land
	wrong_fragment
	dst_host_diff_srv_rate

	urgent_
	hot
	srv_rerror_rate

	num_failed_logins
	logged_in
	dst_host_count

	lnum_compromised
	lroot_shell
	dst_host_same_srv_rate

	lsu_attempted
	lnum_root
	dst_host_same_src_port_rate

	lnum_file_creations
	lnum_shells
	dst_host_srv_diff_host_rate

	lnum_access_files
	lnum_outbound_cmds
	dst_host_srv_serror_rate

	is_host_login
	is_guest_login
	dst_host_srv_rerror_rate

	count
	serror_rate
	dst_host_serror_rate

	rerror_rate
	same_srv_rate
	dst_host_rerror_rate

	diff_srvrate
	srv_count
	label (class) 




 	For this experiments, three new datasets were created, consisting of randomly selected instances from the original KDD99 dataset. No changes were made to the attributes or the class, meaning the new datasets all have 41 attributes and uses the attribute ‘label’ as the class. 
 	The training set created contains of the DoS attacks pod, teardrop, land, back and an equal amount of normal instances. Duplicates in the datasets were removed, resulting in 5,536 instances in the training set. The first test set created contains unseen instances of the DoS attack neptune and has a total of 239,615 instances. The second test set contains unseen normal instances. To create a common label and to be able to classify data as either DoS or normal, all attacks were renamed and labelled dos.   
	
RELATED WORK
Panda and Patra (Panda & Patra, 2008)  used the KDD99 dataset when the performances of three well-known data mining classifier algorithms, ID3, J48 and Naïve Bayes, were evaluated. Their results demonstrated that Naïve Bayes is one of the most effective algorithms while decision trees, ID3 and J48, are more interesting when it comes to detecting novel attacks (Panda & Patra, 2008). Nguyen and Choi (Nguyen & Choi, 2008) used the KDD99 dataset to evaluate performances of a comprehensive set of classifier algorithms. An extensive performance comparison is presented and they propose two models for algorithm selection. Ektefa et al (Ektefa, Memar, Sidi & Affendey, 2010) used the same dataset and data mining techniques for intrusion detection. They discovered that the C4.5 algorithms performs better than SVM in detecting network intrusions and false alarm rates. 

EXPERIMENTS
The decision tree learning algorithm C4.5, known as J48 in Weka, was applied to the training set. The accuracy of J48 was also tested against both test sets. All tests classified the training and testing sets correctly. 
 	Three feature selection algorithms were chosen and applied to the training sets. Each feature selection algorithm (FSA) consists of an attribute evaluator and a search method. 

	No. 
	Attribute evaluator
	Search method

	FSA1
	Fuzzy Rough Subset Evaluation
	Hill Climber

	FSA2
	Correlation Attribute Evaluation
	Ranker

	FSA3
	Cf Subset Evaluation
	Best First









The results showed that the different algorithms chose different attributes. FSA1 selected service, flag and src_bytes. FSA2 produced a list ranking all attributes from 0-1, and attributes with a ranking of zero were excluded (lnum_root, lnum_file_creations, lsu_attempted, is_guest_login, lnum_outbound_cmds, urgent, num_failed_logins and is_host_login). FSA3 selected four attributes: src_bytes, dst_bytes, dst_host_srv_diff_host and dst_host_rerror_rate. 
	The training set and testing sets were reduced to contain only the attributes chosen by the FSAs. The reduced datasets were then used to test the accuracy of J48.

	Dataset
	Performance using training set
	Performance using testing set 1 (unseen dos)
	Performance using testing set 2 (unseen normal)

	FULL
	100%
	100%
	89%

	FSA1
	99%
	82%
	97%

	FAS2
	100%
	100%
	89%

	FAS3
	100%
	100%
	86%


 
The initial results indicate that reducing the number of attributes, and hence resulting in a faster decision and less of storage, has no detrimental effect on the performance of the classifier. 

FUTURE WORK
[bookmark: _GoBack]To be able to present a comprehensive review and comparison of different feature selection and reduction algorithms, more tests will have to be performed. Other tests will involve different learning algorithms and different feature selection and reduction algorithms consisting of various attribute evaluators and search methods. 
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