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A Study on Quality Assessment for Medical
Ultrasound Video Compressed via HEVC
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Abstract—The Quality of Experience (QoE) and Quality of
Service (QoS) provided in the healthcare sector are critical
in evaluating the reliable delivery of the healthcare services
provided. Medical images and videos play a major role in
modern e-health services and have become an integral part of
medical data communication systems. The quality evaluation of
medical images and videos is an essential process, and one of
the ways of addressing it is via the use of quality metrics. In
this paper, we evaluate the performance of seven state of the
art video quality metrics with respect to compressed medical
ultrasound video sequences. We study the performance of each
video quality metric in representing the diagnostic quality of
the video, by evaluating the correlation of each metric with
the subjective opinions of medical experts. The results indicate
that the Visual Information Fidelity (VIF), Structural Similarity
Index Metric (SSIM), and Universal Quality Index (UQI) metrics
show good correlation with the subjective scores provided by
medical experts. The tests also investigate the performance of
the emerging video compression standard, High Efficiency Video
Coding (HEVC), for medical ultrasound video compression.
The results show that, using HEVC, a diagnostically reliable
compressed ultrasound video can be obtained for compression
with values of the quantization parameter, QP, upto 35.

Index Terms—Medical video quality evaluation, HEVC, service
science, objective & subjective video quality assessment, medical
ultrasound videos, video compression.

I. INTRODUCTION

RECENT advancements in technology have enabled the
delivery of new healthcare services. In particular, the

emergence of advanced communication systems has empow-
ered the field of telemedicine. Today, communication systems
have led to the growth of innovative services like remote
patient monitoring and diagnosis, medical video conferencing,
long distance consultations, live surgery broadcast for educa-
tional purposes, ambient assisted living for old and cognitive
impaired people, etc. Further, the amalgamation of healthcare
services with various other disciplines like engineering, infor-
mation technology, and business management has converted
healthcare into a major service sector in the modern world.
Hence, the application of service science in e-health can
facilitate a more efficient and reliable delivery of healthcare
services.

Modern communication systems are now an integral part
of the e-health sector and reliable transmission of medical
data is now possible due to advancements in communication
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technologies. Further, the emergence of efficient image and
video compression standards has enabled efficient storage of
medical images and videos. However, the growth rate in data
storage and communication technologies is still lower than
the rate of increase in demand for storage and transmission of
medical data, in particular medical images and videos. Also,
bandwidth is a precious resource in communication systems
and compression is often needed before transmission, in
particular over wireless systems [1], [2]. Hence, compressing
images and videos is still a requirement for most applications
and services, and the effect of compression and transmission
is often a reduced quality. Therefore, it is essential that
the quality of the medical images and videos received is
monitored via Image Quality Assessment (IQA) and Video
Quality Assessment (VQA) techniques, so that, along with
quality evaluation, it can also facilitate the design of future
medical multimedia services and applications [3] [4].

The quality evaluation of medical videos is particularly
challenging since most objective video quality metrics are
essentially based on the principle of measuring the visual
quality of the video. Since medical videos carry sensitive
information, an impairment on the video may result in loss of
information of diagnostic importance. Therefore, the objective
metrics which primarily measure the visual quality of a video
may not give a reliable measure of the diagnostic accuracy of
the impaired video. Hence, it is important that the video quality
metrics used are tested for their reliability in approximating
the diagnostic quality.

In this paper, we delve into the topic of VQA in the
context of medical ultrasound videos, extending the work
presented in [5], where an insight into the VQA topic in the
context of medical videos is given. Video quality evaluation
techniques are mainly classified into objective and subjective
methods. In subjective VQA methods, a subject rates the
quality of the video based on their perception, whereas in
objective VQA, mathematical algorithms are employed to
numerically represent the quality of the video. In many cases,
the objective VQA method is preferred for quality evaluation
since it is impractical to always assess the video quality via
subjects. However, subjective VQA better represents the actual
Quality of Experience (QoE) and is also useful to assess the
performance of the objective VQA metrics [6]. An efficient
objective quality metric is expected to correlate well with the
subjective scores, since a good correlation is an indication of
the metric‘s reliability in representing the quality of the video.
In this paper, we test the performance of some of the widely
used state-of-the-art video quality metrics, in the context of
medical ultrasound videos, by testing their correlation with
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the subjective scores of medical experts and non-experts.
Subjective quality methodologies are widely used in the

literature for validating objective quality metrics and for de-
signing and validating assessment models. For instance in [7]
an index to measure the decrease in diagnostic content of com-
pressed echocardiograms was developed based on the inputs
from cardiologists. [8] recommended acceptable compression
ratios using MPEG-2 for surgical videos. Very few works in
the literature have focused on evaluating the performance of
state of the art objective video quality metrics in the context
of medical videos, in particular medical ultrasound videos.
The works in [9], [10], [11] have considered video quality
assessment of compressed medical videos. However, their
tests have employed a limited number of videos and video
quality metrics and do not consider many popular state-of-
the-art VQA metrics. In this work, we try to fill the gap in
the literature on the evaluation of VQA metrics for medical
ultrasound videos. Our work considers seven state of the art
objective video quality metrics and tests their performance
in giving a reliable approximation of diagnostic accuracy on
ultrasound video sequences. Further, we also evaluate the
compression performance of the HEVC standard for medical
ultrasound videos.

The paper is organized as follows. Section II provides an
introduction to the medical video quality evaluation topic.
Section III describes the experimental setup, followed by dis-
cussion of results in Section IV. Finally, Section V concludes
the paper.

II. QUALITY EVALUATION FOR MEDICAL IMAGES AND
VIDEOS

In medical VQA both Objective and Subjective VQA meth-
ods are widely used. A brief overview of these methods is
given below.

A. Objective VQA

Over the years, several objective video quality metrics have
been developed. Different metrics have employed different
approaches for the computation of video quality. The evolution
of objective video quality metrics can be broadly classified
into two categories: Statistical measures, and Human Visual
System (HVS) measures.

• Statistical Measures: Most of the early objective metrics
are based on statistical measures of one or more specific
features of the video pixel information. For instance,
one of the most popular metrics, Peak Signal to Noise
Ratio (PSNR), measures the signal to noise ratio, wherein
signal is the original video and noise is the Mean
Square Error (MSE) between the original and distorted
video. Similarly, the Moran Peak Ratio (MPR) metric
measures the spatial correlation in the video, and the
Spatial Frequency Measurement (SFM) metric computes
the video quality as a measure of row and column pixel
difference [12]. In spite of low complexity computation,
these metrics at some occasions show low correlation
with the perceptual quality of the video. An attempt to
overcome this shortcoming of objective metrics was made

by developing metrics which consider the impact of video
features on the HVS.

• HVS measures: In the last decade, several metrics based
on the response of the HVS to particular image and
video features were developed. One of the landmark
IQA metrics developed is the SSIM. The SSIM metric
measures the structural similarity between the reference
and impaired videos by means of luminance, contrast and
structural comparison. The philosophy behind SSIM is to
represent video quality degradation as a measure of the
changes in the structural information [13]. Other metrics
like Visual Signal to Noise Ratio (VSNR), VIF were also
developed on models based on the response of the HVS
[14]. The metrics developed using the HVS approach
showed better correlations with the perceptual quality
of the video. This advantage was further exploited by
researchers which eventually led to the increased adoption
of HVS measures in developing metrics for VQA.

Objective quality metrics may not always ensure the diag-
nostic quality of the medical video. Hence, an effective way
to evaluate the diagnostic quality of medical video is via the
opinion of a medical expert. This is referred as subjective
quality evaluation.

B. Subjective VQA

In subjective quality assessment, medical experts give their
opinions on the videos based on the perceptual quality and
the diagnostic information preserved in the processed video.
Subjective VQA methods involve obtaining the Mean Opinion
Score (MOS). To obtain MOS, medical subjects are presented
with a randomized set of videos and are asked to rate the
quality of the videos on a given scale. The ratings obtained
from all the subjects are collected and their mean result in
MOS. Several techniques for subjective quality measurements
are recommended by International Telecommunications Union
(ITU), for instance, Single Stimulus Continuous Quality Scale
(SSCQS), Absolute Category Rating (ACR), Double Stimulus
Impairment Scale (DSIS), Double Stimulus Continuous Qual-
ity Scale (DSCQS), etc. [15].

In practical terms, the method of subjective VQA is not
always feasible. Moreover, subjective VQA is often an incon-
sistent and lengthy procedure. On the other hand objective
VQA is a quicker and an easier methodology, however its
reliability must be tested. Therefore, it is important to evaluate
the performance of objective VQA in terms of its ability to
give a better approximation of the diagnostic accuracy of
the processed video. One effective method to evaluate the
performance of objective VQA is to assess its correlation with
the subjective scores, a method which is explored in this paper.

III. MATERIALS AND METHODS

A. Video Sequences

The performance of the objective VQA metrics is evaluated
on nine original medical ultrasound videos, each compressed
at eight different quality levels, with a frame resolution of
640×416. Each video sequence has 100 frames, encoded at 25
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Fig. 1. An example frame of each of the sequences used in the tests. A: Echocardiography in 4 chambers view. The right ventricle is dilated; B:
Echocardiography: subcostal view displays the liver and the inferior vena cava; C: Renal ultrasound: cortical and medullary view; D: Echocardiography:
parasternal long axis view, displaying left atrium and ventricle, aorta and mitral valves; E: Echocardiography: subcostal view displays the liver, the inferior
vena cava and hepatic veins; F: Echocardiography in 4 chambers view: both atria and ventricles are visualized; G: Echocardiography in subcostal view: the
liver and hepatic veins are visualized. H: Renal ultrasound: cortical and medullary view; I: Ultrasonography of the lungs. Normal lung, no edema.

TABLE I
OBJECTIVE IMAGE QUALITY METRICS USED IN THE TESTS

Objective Image Quality Metrics Defining Equation Features considered

PSNR PSNR = 20 ∗ log10(
255

√
MSE

) (1)
Gives ratio of signal over the noise, where
signal refers to the original image and noise
refers to the standard error.

SSIM [13] SSIM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2)

Measures the structural similarity between
two images. The constant values are chosen
to be C1 = 0.01, C2 = 0.03.

UQI [16] Q =
4σxyµxµy

(σ2
x + σ2

y)(µ
2
x + µ2

y)
(3) Measures the structural distortion and gives

good approximation of perceived distortion.

Video Quality Metric (VQM) [17] A standardised metric developed by the National telecommunications & Informations Administration (NTIA),
USA. VQM is also recommended by ITU and is widely adopted. VQM measures the quality based on seven
parameters to assess the quality. The software is freely available at [17].

Noise Quality Metric (NQM) [18] NQM is a weighted signal to noise ratio measure between the original and the processed image. NQM considers
variation in contrast sensitivity and local luminance mean, and contrast measures.

VIF [19] The images are decomposed into wavelets and computation is done using several models which gives a measure
of the visual quality.

VSNR [14] Contrast thresholds are used to identify distortions. The distortions above the threshold are modeled to measure
the image quality.

frames per second (fps). Of the nine ultrasound videos, three
videos are related to the heart and liver each, two for kidney,
and one video is related to the lung. An example frame and
a detailed description of each medical video sequence used in
the tests is shown in Figure 1.

To obtain the distorted video sequences, the medical videos
are compressed using the emerging video compression stan-
dard, HEVC. HEVC is the successor to the widely popular
H.264/AVC video compression standard. HEVC gives a 50%
higher compression than the H.264 standard for the same
visual quality [20]. Since HEVC is considered as the future
video compression standard, this work also tests its perfor-

mance for medical ultrasound videos.

The compression of the sequences is done at eight different
Quantization Parameter (QP) levels using the HM reference
software provided by the Joint Collaborative Team on Video
Coding (JCT-VC) team [21]. The QP values chosen are 27,
29, 31, 33, 35, 37, 39, and 41. As the QP value increases,
the compression ratio increases which in turn leads to lower
quality videos. Four out of the eight QP values [i.e. QP = 31,
35, 37, and 41] are chosen as per the testing recommendations
of the Video Quality Experts Group (VQEG) [22]. In the tests,
we used then 72 impaired medical video sequences i.e., 9
video sequences, compressed at 8 different QPs.



4

B. Subjective Test

The compressed video sequences were subjectively eval-
uated for the visual and diagnostic quality by both medical
experts and non-medical experts who provided their opinion
scores on a scale of a specified range. The subjective evalua-
tion was done using the Double Stimulus Continuous Quality
Scale (DSCQS)- type II, which is one of the methodologies
recommended by the International Telecommunication Union
(ITU) in the document ITU-R BT.500-11 [15]. The DSCQS
method is adopted in our tests because in this method the sub-
jective scores are less sensitive to the context, i.e., the ordering
and the level of impaired sequences has less influence on the
subjective ratings [23]. The DSCQS method is widely used
in medical video subjective quality evaluation, for instance, in
[24], [8], [25].

The DSCQS methodology uses a Just Noticeable Difference
(JND) approach in which the medical expert is presented with
two videos side by side, typically the original and a processed
video. The subject is asked to rank both the videos. One of
the sequences is the reference video, i.e. unimpaired video,
whereas the other sequence is impaired. The subject is asked
to rate both the sequences on two separate scales of 1 to 5,
where 1 corresponds to the lowest and 5 to the highest quality.
The subject is unaware of which one is the reference video
(the reference video is displayed randomly either at the left or
at the right end side). In our tests, the video sequences were
displayed on a Liquid Crystal Display (LCD) monitor. The
original resolution of the videos was maintained for display
in order to avoid any distortions due to scaling. For tests
with medical specialists, the evaluation was performed in a
room which the specialists use to visualize video sequences
and perform diagnosis accordingly. For tests with non expert
viewers, the light conditions in the room were those suggested
in ITU recommendation [26].

The video sequences were separated in two batches. The
subjects were allowed to take a break between the two batches
so that fatigue could not affect their judgement. Prior to the
actual tests, the subjects underwent a short training session to
familiarize with the testing process. During the actual tests, if
the subjects were not able to judge the quality of the video in
the first viewing, they were provided with an option to play the
video sequence again until they were confident of providing a
score. The Moscow State University (MSU) perceptual quality
tool [27] was used to document the score obtained in the
subjective study. The ratings obtained were then used to get
the mean scores and other desired statistics.

C. Subjective Scores

The subjective evaluation was done by four medical experts
and sixteen non-medical experts. The experts rated the video
sequences for their diagnostic quality, whereas the non-experts
are more likely to rate based on the visual quality. In the
DSCQS method, for each video sequence, two ratings were
obtained. One of the scores corresponds to the reference video
and the other to the impaired video. If Refi,j is the rating
given to the reference sequence of the jth video by subject
i, and IQi,j is the rating given to the impaired sequence of

the jth video by subject i, then the Differential Opinion Score
(DOS) for the jth video by the subject i is given by:

DOSi,j = Refi,j − IQi,j . (4)

The DOSi,j for each video j is obtained for i = 1, 2, ...N
subjects. The scores of all the subjects were tested for reliabil-
ity and interobserver variability via the subject rejection proce-
dure mentioned in [15]. The screening procedure methodology
is based on determining the normal distribution of the scores
by computing the Kurtosis coefficient of the scores. The scores
are accepted if the Kurtosis value of the scores is between
2 and 4. If the standard deviation of the subject‘s scores fall
outside the 95% confidence interval range from the mean score
then it accounts for large inter-observer variability and makes
the scores unreliable, subsequently resulting in the rejection
of the subject‘s scores. In our tests, out of the 16 non-expert
subjects, the scores of one subject were rejected since they
were out of the expected confidence interval range. None of
the expert scores got rejected in the screening procedure. The
accepted DOSi,j scores were further used to obtain the mean
score i.e. Differential Mean Opinion Score (DMOS) for video
sequence j, given by:

DMOSj =

N∑
i=1

DOSi,j (5)

D. Performance Evaluation Tests

To test the performance of a given objective VQA metric,
the correlation of the objective metric with the DMOS is
evaluated. A higher correlation would imply that the given
objective metric correlates well with the subjective quality
and hence is more reliable. Therefore, a correlation analysis
between the objective VQA metrics and the DMOS is carried
out according to the methodology recommended in [28]. The
objective VQA metrics used in our tests are tabulated in Table
I.

The correlation between the objective and subjective scores
is evaluated using the Pearson Linear Correlation Coefficient
(PLCC) and the Spearman Rank Order Correlation Coefficient
(SROCC). We obtain the correlation with the expert DMOS
and then with the non-expert DMOS, and finally with the
combined scores of both experts and non-experts. Further,
a non linear regression analysis using a 4-parameter logistic
function is performed on the objective metrics in order to
improve prediction accuracy and correlation with the DMOS
[6]. The 4-parameter logistic function is described in (6):

IQ
′

j = β2 +
β1 − β2

1 + exp(−(
IQj−β3

|β4| ))
. (6)

The β values are obtained by implementing (6) using the
nlinfit tool in MATLAB. The fitted objective values IQ

′

j

are tested for their correlation with DMOS using the PLCC
method.
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TABLE II
PLCC AND SROCC OF THE OBJECTIVE SCORES WITH THE DMOS SCORES. THE FIRST TWO ROWS REPORT PLCC RESULTS BEFORE AND AFTER

NON-LINEAR REGRESSION. THE THIRD ROW REPORTS THE SROCC RESULTS

CC State of the art objective metrics
SSIM VSNR VIF UQI PSNR VQM NQM

Experts
PLCC 0.9264 0.8925 0.9258 0.9292 0.9109 0.8080 0.8961

PLCCNlin 0.9366 0.9150 0.9417 0.9309 0.9261 0.8309 0.9127
SROCC 0.9375 0.9139 0.9382 0.9251 0.9331 0.8368 0.9090

Non-Experts
PLCC 0.9208 0.8888 0.9431 0.9521 0.8896 0.8146 0.9233

PLCCNlin 0.9279 0.9200 0.9688 0.9521 0.9116 0.8440 0.9435
SROCC 0.9383 0.9277 0.9663 0.9495 0.9280 0.8606 0.9464

Experts & Non-Experts combined
PLCC 0.9350 0.9022 0.9532 0.9612 0.9064 0.8249 0.9312

PLCCNlin 0.9427 0.9321 0.9770 0.9612 0.9272 0.8532 0.9510
SROCC 0.9570 0.9456 0.9801 0.9633 0.9475 0.8789 0.9587

(a) DMOS vs. SSIM (b) DMOS vs. VIF (c) DMOS vs. UQI

Fig. 2. Scatter plots of DMOS vs. VQA metrics along with logistic fit for both expert and non-expert scores. Blue "+" markers indicate expert scores, and
red diamonds indicate non-expert scores.

IV. RESULTS AND DISCUSSION

A. Results

Tables II report the correlation of objective VQA metrics
with the subjective scores of experts, non-experts, and all
subjects, respectively, with the top performing metric in each
correlation test highlighted. In each sub-table, the first two
rows present the PLCC measures of the objective metrics
with the DMOS for all video sequences before and after non-
linear regression analysis. It can be noted that the correlation
improves slightly after non linear regression analysis. The third
row reports the SROCC measure after non linear regression
analysis, a measure of the monotonicity of the prediction.

Figure 3 shows the scatter plots of the expert DMOS against
each objective VQA metric considered in the work. The plots
show the performance of each metric with respect to the
subjective scores of the expert. Further, the plots are logistic
fitted with the data to give a better approximation of the metric
performance. Figure 2 shows the scatter plot of the metrics
SSIM, VIF, and UQI vs. DMOS for both the expert and non-
expert scores. Figure 4 shows the variation of DMOS across
the QP values for all the nine sequences considered in the
tests.

B. Discussion of Results

From Table II, it can be seen that the metrics, VIF, UQI, and
SSIM show the highest correlations with the DMOS scores

Fig. 4. Variation of DMOS across different QP values. The nine curves
represent the nine sequences used in the tests.

of the experts. The performance of the metrics is further
illustrated in Figure 3. However, the correlation results of non-
expert scores slightly vary. The metric NQM shows a better
correlation than the SSIM metric for non-expert scores. The
variation in the logistic fit between the non-expert and expert
scores can be seen in Figure 2. For the overall scores, i.e.,
when both expert and non-expert scores are considered, UQI,
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(a) DMOS vs. SSIM (b) DMOS vs. PSNR

(c) DMOS vs. VSNR (d) DMOS vs. VIF

(e) DMOS vs. UQI (f) DMOS vs. VQM

(g) DMOS vs. NQM

Fig. 3. Scatter plots of DMOS of experts vs. VQA metrics along with logistic fit.

VIF, and SSIM show the highest correlations.

The correlation results from our tests indicate that the met-

rics VIF, UQI, and SSIM consistently show good correlations
with both expert and non-expert scores. To further interpret
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the results, it can be inferred that these metrics provide a
reliable assessment of both, diagnostic and visual quality. The
VQM metric shows the lowest correlation amongst the metrics
considered.

Figure 4 shows the variation in the DMOS values across the
QP range of 27 to 41. As the value of the QP increases, there
is also an increase in the DMOS values, which indicates the
degradation in the video quality as perceived by the subject.
From the plot, it can be seen that considerable degradation
in the video quality for most sequences approximately starts
around QP = 35. In our tests, it was observed that HEVC is
able to compress diagnostically reliable ultrasound videos with
low bitrate requirements. This implies that a high compression
ratio without a compromise on the video quality can be
obtained for medical videos using the HEVC standard.

V. CONCLUSION

In this paper, we have evaluated the performance of state
of the art VQA metrics for medical ultrasound videos. The
correlation of the objective VQA metrics with the subjective
scores of both experts and non-experts is used as a measure
to indicate the efficiency of the VQA metrics in predicting the
diagnostic as well as the visual quality of the processed video.
The results showed that VIF, UQI, and SSIM are the best
metrics for medical ultrasound video quality evaluation among
the considered metrics in this paper. Further, our tests showed
that HEVC can compress the considered medical ultrasound
videos at low bitrates without compromising on the diagnostic
accuracy.
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