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Abstract 

Background 

Longitudinal studies are crucial providers of information about the needs of an ageing 

population, but their external validity is affected if partipants drop out. Previous research has 

identified older age, impaired cognitive function, lower educational level, living alone, fewer 

social activities, and lower socio-economic status as predictors of attrition. 

Methods 

This project examined attrition in participants of the Whitehall II study aged between 51–71 

years, using data from questionnaires participants have completed biennially since 1985 when 

the study began. We examine the possibility of two distinct forms of attrition – non-response 

and formally requesting to withdraw – and whether they have different predictors. Potential 



predictors were age, gender, marital status, occupational grade, retirement, home ownership, 

presence of longstanding illness, SF-36 quality of life scores, social participation and 

educational level comparing participants and those who had withdrawn from the study. 

Results 

The two forms of attrition share many predictors and are associated but remain distinct. 

Being older, male, having a lower job grade, not being a home owner, not having a long 

standing illness, having higher levels of education, and not having retired, were all associated 

with a greater probability of non-response; being married was associated with higher 

probability in women and lower in men. Being older, male, having a lower job grade, not 

being a home owner, having lower SF-36 scores, taking part in fewer social activities, and not 

having a long standing illness, were all associated with greater probability of withdrawal. 

Conclusions 

The results suggest a strong gender effect on both routes not previously considered in 

analyses of attrition. Investigators of longitudinal studies should take measures to retain older 

participants and lower level socio-economic participants, who are more likely to cease 

participating. Recognition should be given to the tendency for people with health problems to 

be more diligent participants in studies with a medical screening aspect, and for those with 

lower socio-economic status (including home ownership), quality of life and social 

participation, to be more likely to request withdrawal. Without taking these features into 

account, bias and loss of power could affect statistical analyses. 
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Background 

Longitudinal studies are important in gaining an understanding of the ageing process in older 

people. This is particularly important as life expectancy and the proportion of older people in 

the population continues to increase [1-4]. However, attrition in such studies can create bias 

in their samples and affect the validity of the study if those who drop out differ in 

characteristics from remaining participants [5-7]. 

The authors previously reviewed the literature on attrition in longitudinal studies and found 

that those who drop out from studies tend to differ from those who continue to participate [8]. 

Studies have demonstrated that attrition was associated with being older and being 

cognitively impaired, with having poor cognitive functioning, living alone and not being 

married, lower socio-economic status or level of education and being less socially active 

[8,9]. There was little or no clear evidence about the relationship between attrition and factors 

such as gender, health and home ownership [8,9]. 

In this paper we report on our analysis of attrition in data collected by the Whitehall II Study. 

The Whitehall II study is a longitudinal research study, which began in 1985 and recruited 

10,308 participants aged between 35–55 years from 20 London based civil service 

departments. Since then, participants have self-completed questionnaires on health, work and 

lifestyle every two years and undergone a medical examination every five years [10]. These 



data collections are known as “phases”. Continued participation in the Whitehall II study is 

good, although as participants age it is expected to reduce. 

We sought to answer the research question: what factors significantly predict attrition from 

Whitehall II and what is the most predictive model that can be formed from them? We 

divided the general concept of attrition (dropout) into two forms, non-response and formally 

requesting to withdraw. The authors are not aware of any previous research that made this 

distinction, despite a broad systematic review of the literature. Because previous research has 

indicated that grouping mortality and non-mortality related dropout together may create a 

highly selective picture of attrition, we did not count participants who had died in either of 

these categories [11,12]. 

Methods 

Source of data 

Ethical approval for the Whitehall II study was granted by the University College London 

Medical School committee on the ethics of human research. 

Data in this analysis was from participants who were then aged 51–71 years, with the usual 

age of 60 years for retirement from the civil service. Of the 10,308 participants at baseline, a 

total of 1,377 (13%) had formally requested to be withdrawn from the study by phase 6. Non-

response was defined at each phase as a binary outcome, and individuals could return to 

participation after a period of non-response. Table 1 shows the combined impact of this 

formal withdrawal, death and simple non-response at each phase. 

Table 1 Phases of the Whitehall II cohort study (http://www.ucl.ac.uk/whitehallII/study-

phases) 
Phase Dates Type Number of participants Response Rate 

1 1985-1988 Screening / questionnaire 10,308 73% of those invited 

2 1989-1990 Questionnaire 8,132 79% of Phase 1 responders 

3 1991-1994 Screening / questionnaire 8,815 86% of Phase 1 responders 

4 1995-1996 Questionnaire 8,628 84% of Phase 1 responders 

5 1997-1999 Screening / questionnaire 7,870 76% of Phase 1 responders 

6 2001 Questionnaire 7,355 71% of Phase 1 responders 

7 2002-2004 Screening / questionnaire 6,967 68% of Phase 1 responders 

8 2006 Questionnaire 7,173 70% of Phase 1 responders 

9 2007-2009 Screening / questionnaire 6,761 66% of Phase 1 responders 

The precise date of withdrawal was known for 563 of 1377 who formally requested to 

withdraw from the cohort. The distribution of these dates was quite different from the dates 

of last response, and in particular rarely appeared in phases 1–3. The dates of last response 

were also notably different for those who withdrew and had a date recorded, compared to 

those who withdrew without a date. Tracing of non-responders became more systematic and 

sophisticated at phase 4. This suggests that the distribution of recorded withdrawal dates 

overlaps only very slightly with that of the unrecorded ones, making imputation 

inappropriate. We therefore treated the missing withdrawal dates as left-censored (known to 

have occurred at some point up to Phase 4), and the analysis of withdrawal started for all 

participants at the end of phase 4. 



Predictor variables 

The choice of variables was guided by our literature review. [8,9] All of the information 

comprising these variables was obtained from questionnaires completed by the participants. 

Gender, marital status, home ownership, occupational grade, longstanding illness and age 

were all measured at the baseline measurement phase 1 (1985–1988) except for educational 

level - where a better measure of this was used at phase 5, and social participation - where 

data had only been collected at phase 5 (1997–1999). The other variables were collected at 

each phase of the study (Table 2). 

Table 2 Potential predictors of attrition variables 
Potential predictors of attrition variables When obtained from self-completed questionnaires Response rate 

Age (years) Phase 1 (1985–1988) 10,308 

Gender Phase 1 ( 1985-1988 10,308 

Marital status (Married/not married) Phase 1 ( 1985-1988 10,308 

Occupational grade (3 levels) Phase 1 ( 1985-1988 10,308 

Educational achievement (5 levels) Phase 5 (1997–1999) 7,870 

Retirement At various phases  

Housing (owned/rented) Phase 1 ( 1985-1988 10,308 

Number of social activities Phase 5 (1997–1999) 7,870 

SF 36 (mental health & physical function) Phase 5 (1997–1999) 7,870 

Longstanding illness (self-reported yes/no) Phase 1 ( 1985–1988) only asked of 6339 participants 10,308 

Educational level was measured on a 5 point scale ranging from having no educational 

qualifications to having a university degree. Occupational grade ranged from low (clerical 

and support grades) to high (senior administrative grades). The presence of longstanding 

illness was subjectively reported by participants. This question was only asked in later 

versions of the phase 1 questionnaire, and therefore was answered by 6339 people at Phase 1. 

Imputation and assumptions 

The extent of missing data within phases where a participant responded is small but perhaps 

not negligible, especially as we will use the variables described above as explanatory 

variables in regression analyses. There is a general problem in imputing missing data where 

non-response or withdrawal is the outcome of interest. Because we believe all the explanatory 

variables could affect “missingness”, the data are therefore “missing not at random” (MNAR) 

by Rubin’s taxonomy [13], which means that it is not possible to use the data we do know to 

fill in plausible values for those that are missing, because those that are missing are liable to 

be different in some way that our data cannot predict. A further complexity arises from the 

longitudinal nature of the data, which needs to be taken into account when imputing. Multiple 

imputation, or the weighted estimating equation approach [14], was also not used in these 

analyses because none of the covariates were missing in a proportion of participants so large 

as to cause concern about bias. 

Year of birth is calculated from age in any given phase and date of response, with the 

exception of 15 participants who had no date of response, and for these we assumed the 

median date of the phase. Whitehall II did not collect a precise date of retirement; we could 

detect an approximate time from the first phase when a participant said they were retired, but 

this question was only introduced from phase 4 onwards. Where this date cannot be 

approximated, either because the participant was non-responding from phase 4 on, or because 

they had already retired at phase 4, it was imputed using the median age at the first phase 



after retirement (60.8 years). This is a single imputation and liable to underestimate the 

uncertainty in any effect of retirement on non-response / withdrawal, but because all data are 

observed only in phases, the exact date of retirement does not matter as long as it is not 

allocated to completely the wrong phase of the study, and we believe this is unlikely. Table 

3a shows the impact of missing data on key time-varying covariates. 

Table 3 Numbers of participants with complete data for various time-varying covariates 
Phase N participating N not retired Employment 

grade 

recorded 

Marital 

status 

recorded 

Housing 

tenure 

recorded 

SF36 

recorded 

Long-standing 

illness recorded 

1 10308 N/A 10308 10270 10226 N/A 7654 

2 8132 N/A 8110 8124 8095 N/A 8129 

3 8815 N/A 8312 8306 8307 8292 8634 

4 8628 7021 5386 7801 N/A 7669 8564 

5 7870 5625 3525 6921 N/A 6927 7250 

6 7355 4543 2595 6665 N/A 6601 7345 

The number of social/cultural activities summarises a group of questions asked at phase 5 

only, and recorded for 7142/7870 participants. By counting them, we assume they are of 

equal (and additive) importance in predicting non-response and time to withdrawal. We also 

assume that phase 5 provides a measure that suitably represents the participants throughout 

the study. 

Employment grade, marital status and home ownership were imputed by last observation 

carried forward where not recorded. Long-term illness was imputed by carrying forward and 

backwards and analyses repeated; the method was not found to affect results substantively, so 

backward imputation was used for transient non-response because illness is a plausible cause. 

Statistical analyses 

Non-response is a longitudinal binary outcome and was modelled as such over phases 1–6 

using a multilevel logistic regression model with the individual participant as the higher level 

under which are the phases of the study. This allowed us to estimate effects of the predictors, 

unbiased by the auto-correlation in the longitudinal data. The outcome is missing for phases 

after the participant has died or withdrawn, because they are no longer at “risk” of non-

response. The explanatory variables were added in the order: gender, age, age squared, 

occupational grade, education, retirement, marital status, house ownership, social activities, 

SF-36 (both sub-scales included or removed from the model together as a block), and long-

standing illness. Interactions were considered between sex and each of the following: 

employment grade, education, marital status, and retirement as soon as both variables were 

included. The “gllamm” program for Stata software was used to fit the model and predictions 

for individuals from the random effect were extracted using the mean best linear unbiased 

predictor (BLUP), derived from the “gllapred” program for Stata [15]. This gives an 

empirical Bayes estimate of each individual’s log-odds ratio for non-response compared to 

the average for the cohort, after independent variables have been accounted for [16]. 

Withdrawal is a terminal event and there are participants who do not have a withdrawal date 

either through remaining in the study or death. Because withdrawal dates are clustered around 

the data collection periods for each phase, a Cox proportional hazards model of time to 

withdrawal was appropriate and was fitted using Stata version 11 software. The period of 

time under consideration was from the participant’s response to phase 4 (or the median date 



of phase 4: 18 May 1995, if they did not respond) to the earliest of withdrawal, death or 1 

January 2009. Hazard of withdrawal will differ as a result of administrative activities, 

correspondence, tracing exercises and data collection phases, so the calendar date was used as 

the timescale. Predictor variables were added in the same order as for the logistic regression, 

and the participants’ BLUPs were added to the final model as an additional predictor. Time-

varying covariates were as described above under “Predictor Variables”. 

Results 

The model for non-response could be fitted on 9042 participants who had complete data on 

the predictor variables. Because of the large number of data and complexity of the 

computation required, this took 7.5 hours to converge to a solution on a 2.13GHz Intel Core2 

desktop computer. The model was fitted using 3, 6 and 30 integration points to test stability 

of the results [15]; only negligible differences were seen, and the results in Table 4 are for 30 

integration points. Predictors and interactions not shown in the table were not significant, 

along with the quadratic effect of age. 

Table 4 Results of the longitudinal analysis of non-response 

   Odds Ratio p-value 95% CI 

Age   1.08 <0.001 1.07-1.09 

Sex Male (baseline)   

 Female  0.60 <0.001 0.48-0.75 

Educational level Primary (baseline)   

 Secondary 1.23 0.007 1.06-1.44 

 Tertiary  1.67 <0.001 1.41-1.96 

Employment grade High (baseline)   

 Middle 2.36 <0.001 2.04-2.72 

 Low  5.43 <0.001 4.45-6.63 

Retired (in men)  0.48 <0.001 0.41-0.57 

 (in women) 0.78 0.007 0.66-0.93 

Married (in men)  0.74 <0.001 0.63-0.87 

 (in women) 1.25 0.019 1.04-1.51 

Homeowner  0.54 <0.001 0.45-0.65 

Long-standing illness 0.68 <0.001 0.62-0.74 

The random effect models inter-participant variability (in terms of the logarithm of the odds 

of non-response) by a normal distribution, which has a standard deviation of 2.01. Because 

95% of data in a normal distribution lie within 1.96 standard deviations of the mean, as many 

participants have odds of non-response between 51 times greater and 51 times smaller than 

the predicted value (e
1.96x2.01

=51), with residual intra-class correlation of 0.65 (95% CI 0.63-

0.66). This indicates a very large inter-participant variability, which could be interpreted as a 

propensity to respond/ not respond. Each participant’s propensity to non-response was 

predicted from the random effect using the BLUP. 

We included 9259 participants in the Cox regression model for time to withdrawal, with 520 

withdrawals, making a total of 118,944 person-years at risk. The proportional hazards 

assumption was tested graphically and found to be acceptable (Table 5). 



Table 5 Results of the survival analysis of withdrawal 

   Hazard Ratio p-value 95% CI 

Age   1.08 <0.001 1.05-1.11 

Sex Male (baseline)   

 Female  0.63 0.029 0.41-0.95 

Employment grade High (baseline)   

 Middle 1.31 0.196 0.87-1.99 

 Low  1.91 0.026 1.08-3.39 

Homeowner  0.61 0.068 0.36-1.04 

Social activities 0.88 0.002 0.81-0.95 

SF-36 physical 0.98 0.023 0.96-1.00 

SF-36 mental 0.97 <0.001 0.95-0.99 

Long-standing illness 0.68 0.045 0.47-0.99 

The odds ratios and hazard ratios cannot be quantitatively compared as they measure 

different things. However, it is clear that the qualitative effects of age, sex, employment 

grade, home ownership and long-standing illness are shared between both models. Both 

forms of attrition are more likely in participants who are older, male, in lower employment 

grades, do not own their own home, and free from long-standing illness. Educational level, 

retirement and marital status appear to affect non-response but not withdrawal. In contrast, 

social activities and SF-36 scores for physical function and mental health were associated 

with withdrawal but not non-response. 

We also investigated the relationship between the two forms of attrition to some extent by 

including the BLUP (individual propensity to non-response) in the survival model for 

withdrawal. This is a significant predictor in addition to those in Table 5, and its inclusion 

does not materially alter any of the other coefficients. This suggests that the BLUPs predict 

withdrawal as well as non-response and are not on the causal pathway from predictors to 

withdrawal (via non-response) [17]. There are two alternative interpretations of the 

relationship, shown in Figure 1. Either non-response directly causes withdrawal, at least in 

part, or they share an unobserved latent variable representing general attrition. The latter 

could involve a general and a specific form of individual propensity, but with the general 

form unobserved, both will be combined to some extent in the BLUP, and so it is through the 

general propensity that the BLUP would predict withdrawal. In practical terms they are 

indistinguishable because the latent variable is unobservable, but the differences in covariates 

between the two outcomes, as well as the temporal order of the outcomes, argue against the 

“latent attrition” model, which would have a single set of individuals’ characteristics 

affecting both outcomes. 

Figure 1 Two plausible causal models linking non-response and withdrawal 

Discussion 

The purpose of this study was to examine whether the characteristics of participants and 

dropouts in the Whitehall II study differ. We have found a large effect of gender, not 

established in previous analyses of attrition. Men are considerably more likely to drop out, all 

other factors being equal. There is an interesting effect of retirement and long-standing 

illness, both of which appear to reduce non-response, with long-standing illness also reducing 

withdrawal. The effect of educational level on non-response is unexpected, with higher 

qualifications associated with more non-response. This could be attributable to greater 



mobility in this group, particularly around retirement, causing the study to lose contact with 

them, but this effect needs to be examined further to be properly understood. 

The effect of lower SF-36 scores and fewer social activities appears to increase withdrawal – 

but not non-response – which confirms and adds detail to previous research where cognitive 

impairment and social isolation were associated with dropout. These results add some 

additional detail in suggesting that self-reported long-standing illness, a health concern that is 

not necessarily debilitating or socially isolating, actually reduces both forms of attrition while 

reduced physical function, mental health and social activity increases withdrawal from the 

study. It would be useful to discover more detail about the long-standing illnesses in the 

cohort. 

An analytic method gaining popularity is joint modelling of longitudinal and time-to-event 

processes [18]. While this is an interesting potential avenue for further investigation of these 

data, there are three major methodological barriers to be overcome before it could be 

employed. Firstly, at the time of writing, such models have yet to be demonstrated on 

autocorrelated binary longitudinal processes. Though the extension from continuous variables 

such as biomarkers is theoretically straightforward, the implementation in software requires 

considerable work. Secondly, the time to withdrawal is subject to some assumptions as set 

out above. While we believe the assumptions provide results sufficiently approximating the 

underlying processes, in a joint model it would be worth including the uncertainty about 

withdrawal as an interval-censored time variable, and this has not been done before. Thirdly, 

there are no software packages currently available that allow joint modelling beyond the 

basic specification, and so each model has to be written as a bespoke program. We believe 

the reasonable approximation we have achieved does not warrant additional analyses on this 

scale. 

These findings support those from other longitudinal studies involving older people, reviewed 

in the introduction. Findings from research into dropout in other longitudinal studies have not 

been consistent on the relationship of gender, health status or home ownership with attrition. 

Our results add considerable detail to the evidence base on this topic. 

Implications of results 

Attrition is a major issue in research, particularly in longitudinal studies involving older 

people, where each phase is likely to involve further dropout and the possibility of sample 

bias if those who drop out differ in characteristics from remaining participants. These 

findings have implications for those who plan longitudinal studies, who must be prepared to 

expect higher attrition or refusal rates from these groups of people. One way of tackling this 

is oversampling from within these groups at the initial phase of recruitment, and 

appropriately weighting the data in any analyses. This would ensure that when people from 

these groups are lost at follow up, there are still adequate numbers who remain as 

participants. Oversampling of these “at risk” groups at baseline would be difficult as the 

variables are not known until interview. Encouragement to continue participating is 

paramount especially as participants age and their participation becomes more difficult. 

Methods for doing this (to ensure the sample remains representative) - particularly for older 

people - are discussed elsewhere [8]. It is especially important to encourage older people to 

continue participating in longitudinal studies if we are to use research findings to understand 

the needs of this group. As life expectancy and the proportion of older people in the 

population continues to increase, it is vital to gain an understanding of the ageing process to 

inform policy decisions regarding current and future generations of older people. However, 



methods for dealing with missing data to achieve unbiased statistical results, such as multiple 

imputation or doubly robust estimators, are increasingly widely used, and these rely on 

models that effectively predict missing data. Our findings provide an indication of the 

variables to collect in order to construct such models, as well as evidence that different 

models should be considered in longitudinal studies where two types of attrition may occur. 

Strengths and limitations 

A strength of this study is the large sample size used for the analysis. Other analyses of 

attrition in longitudinal studies involving older people have been based on much smaller 

samples [7,9]. In addition, the study population is homogenous with respect to occupation, 

yet the civil service grading structure provides a clear ranking by socio-economic standing. 

However, restriction of the sample to members of the civil service excludes certain categories 

of people such as the unemployed. Original recruitment for the Whitehall study was from 

Central London based departments, which perhaps restricts its generalisability to the rest of 

the population. 

Our study was limited by the variables available in the Whitehall II dataset and the 

completeness of these data. For example, we wished to examine the relationship between 

cognitive function and attrition in the study, but the cognitive function measures were only 

introduced in later phases of the study, after a substantial number of participants had already 

requested to be withdrawn. Also, participants had not been systematically asked for reasons 

for withdrawal or when returning after a period of non-response. 

Future research 

Further research is required to address the issue of attrition, and to find ways of encouraging 

retention. In particular, research on the effectiveness of different ways of encouraging people 

of low socio-economic standing to participate in longitudinal studies, and to stay within these 

studies, is needed. Researchers involved in longitudinal studies should record the extent of 

attrition in their studies, and details of those who cease to participate and their reasons for 

doing so. This would ensure that further evidence on the reasons for attrition becomes 

available. The distinction between predictors of non-response and withdrawal needs to be 

confirmed in other longitudinal studies. Development of methods for joint modelling may 

also shed light on the relationship in the near future. 

Conclusions 

In conclusion, attrition in longitudinal studies is a serious issue as samples become biased and 

affect the validity of the study, if those who drop out differ from participants. We found that 

those who dropped out of the Whitehall II study did differ in characteristics from those who 

continued to participate. In particular, after controlling for all other variables, we found that 

those who were older and from a low occupational grade were more likely to drop out. 
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MNAR, Missing not at random; BLUP, Best linear unbiased predictor 



Competing interest 

The Principal Investigator Anthea Tinker is a participant in the Whitehall II study. This was 

declared to the appropriate ethics committee. All of the data was anonymised. 

Authors’ contributions 

GM conceived the original study and revised the final manuscript, RG conducted the final 

statistical analysis, SJ did the initial analysis and wrote the first draft, CS did the initial 

analysis and wrote the first draft. RA read all versions of the manuscript, AT conceived the 

original study, read and edited all versions of the manuscript. All authors have read and 

approved the final manuscript. 

Acknowledgements 

Martin Shipley for his valuable comments on the final draft, and Aida Sanchez for support 

with the data management, (Dept of Epidemiology and Public Health, Division of Public 

Health, University College London). Karen Glaser for her valuable comments on an earlier 

draft (Institute of Gerontology, Kings College London). We are also grateful to the late 

Professor Janet Askham who was a co-investigator on this study but died tragically and 

unexpectedly half way through the project. 

Declaration of sources of funding 

This work was supported by The Atlantic Philanthropies, [grant number 15867] and we 

express our gratitude to them. 

The Whitehall II study has been supported by grants from the Medical Research Council; 

British Heart Foundation; Health and Safety Executive; Department of Health; National 

Heart Lung and Blood Institute (HL36310), U.S. National Institutes of Health: National 

Institute on Aging [AG13196], U.S. National Institutes of Health; Agency for Health Care 

Policy Research [HS06516]; and the John D and Catherine T MacArthur Foundation 

Research Networks on Successful Midlife Development and Socio-economic Status and 

Health. We thank all participating Civil Service departments and their welfare, personnel, and 

establishment officers; the Occupational Health and Safety Agency; the Council of Civil 

Service Unions; all participating civil servants in the Whitehall II study; all members of the 

Whitehall II study team. 

References 

1. Academy of Medical Sciences: Rejuvenating ageing research. London: Academy of 

Medical Sciences; 2009. 

2. European Commission: Meeting social needs in an ageing society. Luxembourg:; 2008. 

3. House of Lords Science and Technology Committee: Ageing: scientific aspects. London: 

The Stationery Office; 2005. 



4. The Economist: Healthcare strategies for an ageing society. The Economist Intelligence 

Unit; 2009. 

5. Miller R, Wright D: Detecting and correcting attrition bias in longitudinal family 

research. J Marriage Fam 1995, 57:921–929. 

6. Miller R, Hollist C: Attrition bias. In Encyclopaedia of measurement and statistics. Edited 

by Salkind N. Thousand Oaks: Sage; 2007. 

7. Van Beijsterveldt C, van Boxtel M, Bosma H, Houx P, Buntinx F, Jolles J: Predictors of 

attrition in a longitudinal cognitive aging study: the Maastricht Aging Study. J Clin 

Epidemiol 2001, 55:216–223. 

8. Bhamra S, Tinker A, Mein G, Ashcroft R, Askham J: The retention of older people in 

longitudinal studies: A review of the literature. Quality in Ageing 2008, 9:27–35. 

9. Chatfield M, Brayne C, Matthews F: A systematic review of attrition between waves in 

longitudinal studies in the elderly shows a consistent pattern of dropout between 

differing studies. J Clin Epidemiol 2005, 58:13–19. 

10. Marmot M, Brunner E: Cohort profile: The Whitehall II study. Int J Epidemiol 2005, 

34:251–256. 

11. Deeg D: Attrition in longitudinal population studies: does it affect the 

generalizability of the findings? an introduction to the series. J Clin Epidemiol 2002, 

55:213–215. 

12. Ferrie J, Kivimäki M, Singh-Manoux A, Shortt A, Martikainen P, Head J, et al: Non-

response to baseline, non-response to follow-up and mortality in the Whitehall II cohort. 
Int J Epidemiol 2009, 38:831–837. 

13. Rubin DB: Inference and missing data. Biometrika 1976, 63(3):581–592. 

14. Rajan KB, Leurgans SE: Joint modelling of missing data due to non-participation and 

death in longitudinal aging studies. Stat Med 2010, 29:2260–2268. 

15. Rabe-Hesketh S, Skrondal A, Pickles A: Reliable estimation of generalized linear 

mixed models using adaptive quadrature. Stata J 2002, 2(1):1–21. 

16. Robinson GK: That BLUP is a good thing: the estimation of random effects. Stat Sci 

1991, 6(1):15–51. 

17. Greenland S, Pearl J, Robins JM: Causal diagrams for epidemiologic research. 

Epidemiology 1999, 10(1):37–48. 

18. Ibrahim J, Chu H, Chen LM: Basic concepts and methods for joint models of 

longitudinal and survival time data. J Clin Oncol 2010, 28(16):2796–2801. 



Covariates

Non-response

Individual’s 

propensity

(BLUP)

Time to 

withdrawal
Covariates Covariates

Latent 

attrition

Individual’s general 

propensity for 

attrition

Non-response

Time to 

withdrawal

Individual’s specific 

propensity for non-

response

BLUP
Figure 1


	Start of article
	Figure 1

