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Major pharmaceutical companies are placing significant emphasis on reducing spiralling R&D 

expenditures and improving productivity and this paper is directed towards helping this being 

achieved.  Clinical trials cost estimates positively affect the quality of stop/go decision making in late 

stage clinical development. The major quantitative challenge has been identified as how to estimate 

a priori the cost of clinical trials and prior research on this subject has been based upon a limited 

sample of drugs in development and depends upon average cost data released by the industry  

 

The contention here is that the application of parametric cost analysis to pharmaceutical 

development can help reduce the uncertainty and the degree of approximation of the cost estimates. 

By shifting the research objective from proprietary accounting information to simple and publicly 

available non-cost variables, the parametric model takes cost accounting for pharmaceutical R&D 

to a new level of methodological simplicity and statistical significance.  

 

1. Introduction 

Pharmaceutical development is a complex, risky and time-

consuming process. In a substantial majority of cases, 

pharmaceutical companies abandon research on new drugs 

that have undergone clinical testing but not received 

marketing approval. The extent and speed at which the 

development process makes new therapies available to the 

public are important measures of the viability of that 

process. The time required to take a new drug from 

synthesis to U.S. marketing approval has increased from 

approximately 8 years in the 1960s to approximately 14.2 

years in the 1990s (DiMasi, 1991).  The probability of a 

New Molecular Entity (NME) in development reaching 

the market increases with each successive phase of the 

R&D process. It is estimated that 60 percent of the active 

substances currently in discovery will not progress to the 

more advanced stages of development. These high 

attrition rates are a major challenge for the industry in the 

face of demands for increased productivity of NMEs 

(Findlay & Kernani, 2000).  

Major pharmaceutical companies are placing 

significant emphasis on the drive to reduce spiralling 

R&D expenditure and improve productivity. The 

optimisation of stop-go decisions is a strategy aimed at a 

direct and immediate reduction in expenditure. 

Knowledge of the principles of stop-go decision points 

within the R&D process is therefore of prime importance 

and by making a careful last-minute decision on a 

development candidate just before it enters clinical 

development, a company can reduce considerable wasted 

effort and resources on those projects with lower 

anticipated chances of viability, and so maximise the 

numbers of candidates that complete clinical trials and 

subsequently prove successful (Datamonitor, 1997).  
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2. Modelling the Value of R&D projects 

Pearson (1972) simply described the clinical innovation 

model using the sequential characteristics of decision 

analysis. In what follows we will review this and place it 

in context from the perspective of modelling the value of 

R&D projects.  

Suppose the development program of a new drug 

includes clinical trials 1, 2 and 3 and that all the trials 

must be positive for the drug to be registered. Let p1, p2 

and p3 be the probabilities of a positive outcome for the 

three trials. Let c1, c2 and c3 be their costs. Let C be the 

total expected net present cost of clinical development and 

let V be the value of the new drug if all trials show a 

positive outcome (Gittins, 1986). 

If the trials are carried out in the order 1 2 3 and they 

are halted as soon as one of them is negative, then: 

 

C = c1 + p1c2 + p1p2c3,   (1) 

V = p1p2p3v – c1 – p1c2 – p1p2c3, (2) 

Profitability Index = I = V/C  (3) 

  

The sequence that maximises I is the one that 

minimises C. Given a number of potential new drugs in 

the pipeline, with different success probabilities, costs and 

potential values, the Index values pick out those potential 

new drugs which should be given priority. In this 

admittedly oversimplified model, when a trial has a 

positive outcome the index takes a higher value than its 

value before the test. 

The approach to financial evaluation of drug 

development has been progressively rationalised, in 

parallel with the development of financial and risk 

analysis quantitative models. Looking at the evolution of 

R&D risk-adjusted models, financial evaluation has 

progressively moved away from deterministic quantitative 

analysis in favour of non-linear, stochastic algorithms 

(Favato, 2001). 

R&D projects are characterised by contingent decisions 

that depend on future outcomes. Conceptually, investing 

in the next R&D milestone can be considered as investing 

in a call option as regards the forthcoming step and its 

outcome and eventually the final outcome. Divestiture can 

be conversely considered as a put option.  

The value of managerial flexibility and the upside 

potential of risk are not properly captured by traditional 

Discounted Cash Flow (DCF) analysis: while higher risk 

translates into higher discount rates in traditional 

discounted cash flow models, Real Options evaluation 

rewards the acceptance of risk by properly valuing the 

upside potential (Bode-Greuel, 2002).  Nevertheless, Real 

Options can be viewed as complementing DCF analysis if 

DCF is applied in a dynamic way and takes into account 

that the R&D process is organised along milestones at 

which management will decide whether to abandon or 

continue the project. The possible outcomes can be 

displayed in decision trees and risk represented in 

probability estimates derived from average industry-

attrition rates.  

Real Options evaluation can also replace DCF: 

financial option pricing methods can be applied in order to 

evaluate projects. In this case, risk is represented in the 

assumed spread of asset value (binomial option pricing) or 

in a volatility parameter (Black & Scholes, 1972). 

Continuous-time option pricing algorithms based on the 

Black-Scholes model have also been proposed for the 

evaluation of R&D projects in the pharmaceutical industry 

(Trigeorgis, 1996).  

A great emphasis has been placed on the determination 

of streams of future cash flows, adjusting the present value 

for time and risk with probability functions, while little 

attention has been paid to the second driver of value: the 

cost of clinical trials. A major and contentious issue is 

whether the cost of a clinical trial be determined a priori 

with a sufficient degree of statistical confidence. 

3. Cost of clinical development: a 

controversial matter 

DiMasi et al. (2002) calculated the research and 

development cost of 68 new drugs obtained from a survey 

of 10 pharmaceutical companies. These data were used to 

calculate the average pre-tax costs of new drug 

development and the costs of compounds abandoned 

during clinical testing were linked to the costs of 

compounds that obtained marketing approval. The 

estimated out-of-pocket cost per new drug was $403 

million (2000 dollars), while the capitalized cost 

discounted at a rate of 11% per year reached a total of 

$802 millions. The average capitalized cost of pre-clinical 

R&D was $335 million and clinical research was 

confirmed as being the most expensive stage of 

pharmaceutical innovation, with $467 million being 

invested on average to bring a new medicine to market.  

When compared to the results of an earlier study with 

an identical methodology (DiMasi, 1991), total capitalized 

costs were shown to have increased at an annual rate 7.4% 

above general price inflation (average cost per NCE of 

$312 million in 1990 dollars). The 1991 DiMasi estimate 

constituted a 129 percent increase in costs over an 

estimate calculated by Hansen (1979) on products entering 

clinical trials between 1963 and 1975.  One quarter of the 

increase can be seen to reflect the longer time periods, two 

thirds to reflect the increase in out-of-pocket costs, and the 

balance to reflect DiMasi et al.’s use of a higher cost of 

capital (9 percent rather than 8 percent). 

Given the importance of this issue, it is important to 

note that many have questioned the DiMasi research. First, 

critics say it is troublesome to apply so much of the 

industry data, because industry trade associations have 

incentives to exaggerate costs of all aspects of R&D. 

Secondly, critics maintain that taxpayers actually pay for 

much of the cost of preclinical and clinical research and 

thirdly, the assumptions regarding clinical expenditures 

are not supported by any project-level data. 

Of the three areas of concern, the last is particularly 

important, first because there is the issue of which concept 

of cost should be considered, distinguishing between 

average and marginal (or additional) costs of clinical 

development. The various dimensions of therapeutic 

benefit are definitely related to the costs required to prove 

those benefits in controlled clinical trials leading to 



 

marketing approval. Furthermore clinical development 

costs may be quite different depending on the degree of 

innovation shown by each individual new drug 

investigated. 

In reality the most important peculiarity of clinical 

pharmaceutical research is the significant variability in the 

number of patients required by the U.S. Food and Drug 

Administration (FDA), to grant marketing approval. The 

number of patients enrolled in registration for clinical 

trials represents the closest proxy to the total cost of 

clinical development.   The reason for this is that the 

protocol requirements of randomised studies makes cost 

relatively similar irrespective of purpose and minimises 

the cost differences among therapeutic areas. In other 

words, a patient included in a cancer study costs the same 

as a patient enrolled in an allergic rhinitis (common cold) 

trial. Therefore, if a product is approved with a 

significantly lower number of patients in the regulatory 

database than another one, it necessarily means that the 

cost of development of the first one is significantly lower 

than the second one. To understand the implications of 

this let’s consider the following situation. 

In May 1996, Gemzar (gemcitabine) by Eli Lilly & Co. 

received approval by the FDA for the treatment of patients 

with inoperable pancreatic cancer. Gemzar, one of the 

most innovative cancer chemotherapies made available in 

the past few years, demonstrated clinical efficacy in two 

studies of 69 and 126 patients with locally advanced or 

metastatic pancreatic cancer (FDA Bulletin, 05/15/96).   

On December 27th, 2001 Schering Plough announced that 

a new drug application was submitted to FDA seeking the 

approval of Zetia (ezetimibe), a cholesterol absorption 

inhibitor. Zetia is the first compound in a new class of 

lipid lowering agents that inhibits the intestinal absorption 

of cholesterol in patients with hypercholesterolemia. In 

controlled clinical studies, over 8,000 patients were 

exposed to the treatment with Zetia for over two weeks 

(Schering Plough press release, January 2002). It requires 

no specialist understanding of finance to understand that 

the difference in the relative cost incurred by each of these 

two clinical programmes enrolling respectively 195 and 

over 8,000 patients was enormous.  

Why did Zetia need so many patients to get marketing 

approval? The answer is embedded in the theory of 

clinical trial planning: the sample size required for clinical 

development of new pharmaceuticals can be determined a 

priori as a function of the smallest significant clinical 

outcome to be proved. It is to this issue that attention will 

now be directed. 

4. Clinical sampling methodology 

The randomised, controlled trial is the benchmark for the 

evaluation of new drug therapies. Random allocation is a 

powerful means of controlling for the potential effects of 

confounders and serves to minimize bias (systematic 

deviation from the truth) on the part of physicians and 

patients. In clinical trials it is also vital that investigators 

choose as a primary measure of response an outcome that 

is clinically meaningful (delta). In the past there has been 

an over-reliance on surrogate markers of efficacy such as 

improvements in laboratory tests and in some instances 

these have been shown not to correlate with clinically 

meaningful outcomes. The reality is that investigators 

should consider use of quality of life measures as 

measures of response in addition to the more conventional 

outcomes of death, occurrence of disease-related 

complications and clinical activity indices (Hulley et al., 

2003). Nevertheless, an appropriate outcome has been 

identified, but the planning of a clinical trial requires input 

from a bio statistician. Careful consideration has to be 

given to the number of patients required, which is 

dependent upon the alpha (false positive) and beta (false 

negative) error rates selected by the investigator, the size 

of treatment effect that is considered to be clinically 

meaningful and the estimated rate of occurrence of the 

outcome of interest in the placebo (or standard therapy) 

group. If interim analyses are planned, these must be 

defined prior to initiation of the study, and appropriate 

statistical techniques employed to account for the increase 

in the alpha error rate that results from the use of multiple 

statistical testing procedures (Kazdyn, 2002). 

Wooding (1984) identified four non-cost variables 

driving sample size and therefore the cost of 

pharmaceutical research in humans; these were the critical 

difference (δ), risk of failing to detect a difference greater 

than delta (β), the risk of falsely claiming that a difference 

exists (α), the estimated expected experimental error (s). 

Delta (δ) is the minimum population difference that the 

clinical researchers wish to be detectable using a 

hypothesis test to compare data from two samples. This 

difference represents the smallest difference of interest 

clinically. The following is an example for a two-tailed 

test: 

 

H0: μ1 – μ2 = 0  (4)  

 H1: | μ1 – μ2 |= δ  (5)   

 

In the test of the null hypothesis of equation (5), the 

investigator wishes to test for significance to determine 

whether to reject that hypothesis. 

Alpha (α) is the probability of being wrong if that test 

leads the researcher to claim significance (e.g., if the 

researcher states that two treatment group averages are 

different by an amount delta, favouring one or the other 

treatment). 

Beta (β) is the probability of being wrong if the test 

leads the researcher to claim that no difference of delta or 

greater exists between the two group means. 

Sigma (σ) is the estimate of the experimental error or 

variation of each measurement, on average. 

The recommended procedure includes the specification 

“a priori” of beta and alpha risks, as well as a value for 

delta and an estimate of sigma. As the FDA is reluctant to 

accept significance tests using alpha values that exceed 

0.05 and beta values lower than 0.20 as primary evidence 

of efficacy and safety, the sample size is simply a function 

of the effect size, the critical difference over variance 

(δ/s). In the following table, Wooding (1984) reported the 

calculated number of patients per treated arm ranked by 

effect size values, at a level of significance of alpha equal 

to 0.05 and beta equal to 0.20. In order to obtain the total 



 

number of patients enrolled, the calculated sample size 

needs to be doubled, as most clinical trials are 

comparisons of two mean values. 

 

Effect size Patients/arm 

0.40 100 

0.45 79 

0.50 64 

0.55 53 

0.60 45 

0.65 39 

0.70 34 

0.75 29 

0.80 26 

0.85 23 

0.90 21 

0.95 19 

1.00 17 

1.10 14 

1.20 12 

1.30 11 

1.40 10 

1.50 9 

1.60 8 

1.70 7 

1.80 6 

1.90 6 

2.00 6 

2.10 5 

2.20 5 

2.30 5 

2.40 4 

2.50 4 

3.00 4 

3.50 3 

 

Table 1. Sample sizes ranked by effect size for a two-tailed test of 

comparison of two means, with alpha= 0.05 and beta= 0.20. 

 

A unique implication of the use of clinical experimental 

design is the possibility to derive a mathematical equation 

that estimates a priori the number of patients (the closest 

proxy of cost) required to test the chosen clinical outcome 

accurately.   In simple terms this involves the derivation of 

parametric costs and in what follows the application of 

parametric cost analysis to pharmaceutical clinical 

development is demonstrated as being a useful tool to 

reduce the uncertainties related to cost estimates. 

DiMasi et al. (2002) 

5. Parametric cost analysis 

Parametric Cost Analysis establishes a clear linkage 

between cost and a product's technical non-cost 

parameters by using equations to map measurable system 

attributes onto cost (Dean, 2000). The measures of the 

system attributes are called “metrics”. The equations are 

called “cost estimating relationships” (CER) and are 

obtained by the analysis of cost and technical metric data 

of products that are analogous to those to be estimated. 

Johnston (1960) provides foundational theory, methods 

and results on case studies. Klein and Tait (1971), in an 

early example of applied parametric cost analysis to a 

business as distinct from a research and development 

problem, expressed the number of tool-design and tool-

fabrication hours per part in terms of the number of drilled 

and reamed holes, the volume of the piece, the number of 

locating points, and the complexity of part orientation. 

The authors used step-wise regression to select, from the 

eleven chosen as possible cost drivers, these statistically 

significant variables for a linear equation. The authors also 

introduced the reality of cost uncertainty through a trade-

off of confidence and expected time. 

Today, parametric estimating is typically applied to 

large systems, such as those found in the U.S. Department 

of Defence or NASA (2001). Parametric estimating relies 

on simulation models that are systems of statistically and 

logically supported mathematical equation that defines the 

impact of a product’s physical, performance and 

programmatic attributes on cost and schedule. Tailoring 

parameters are used to describe the object being estimated 

and the output of the model is validated with data from 

past projects. The object to be estimated is described by 

choosing specific values for the independent variables in 

the equation that represents the characteristics of the 

object. The equations are then used to extrapolate from 

past and current experience to forecast the cost of future 

products. 

The fundamental assumption in parametric cost 

analysis is that a measurable relationship exists between 

system attributes and the cost of the system: if a function 

exists, the attributes are cost drivers. Sample-size 

variables are constraints on the clinical development 

process (Wooding 1984). From optimisation theory it is 

known that any active constraint generates cost by not 

permitting full optimisation of the objective and sample-

size variables are cost drivers. 

The typical statistical process is to find a value for m 

parameters p = (p1 … pk) such that the cost y can be 

predicted reasonably well by the equation: 

 

  y = f (x, p) + e   (6) 

 

where e is the prediction error and x = (x1 … xm) is a 

set of measures of system characteristics that vary over n 

cases (yi x1i … xmi), different for each i = 1, n. 

CER is a mathematical expression relating cost as the 

dependent variable to one or more independent cost-

driving variables. 

6. Developing a Cost Estimating Relationship 

(CER) model for clinical trials. 

The basic process of developing a parametric model 

can be simplified using four fundamental steps (Dean, 

2000):  

1) cost model scope determination;  

2) data collection; 

3) data analysis and testing; 

4) data application. 



 

 

Step 1: cost model scope determination. 

Developing a simplified parametric model is to 

establish its scope, which includes defining the end use of 

the model, the cost basis of the model and its critical cost 

drivers. The pharmaceutical innovation cost model is 

derived by the randomised clinical trials sampling theory 

(Wooding, 1984), where the sample size is a function of 

four non-cost variables: critical difference (δ), risk of 

failing to detect a difference greater than delta (β), the risk 

of falsely claiming that a difference exists (α), the 

estimated expected experimental error (s). If considered in 

terms of pharmaceutical clinical research, alpha (0.05) and 

beta (0.20) are constant. The effect size, the normalised 

non-cost parameter, is equal to delta in terms of the 

number of estimated expected experimental error and it is 

calculated by dividing the specified delta value by the 

estimated value of sigma (δ/s). In the simplified case of 

regulatory clinical trials, where alpha and beta are 

constant, the sample size is function of the effect size, the 

standardised minimal significant outcome.   In its specific 

application to pharmaceutical innovation model, the 

derived CER would estimate the cost of clinical trials 

apparently relate two non-cost variables (effect size and 

sample of patients). Actually the number of patients 

required for outcomes to be significant is a defined proxy 

for the total direct costs of a clinical trial. The dollar 

amount per patient can be estimated on the base of the 

average all-inclusive fee charged for each clinical patient 

enrolled by the external clinical research organizations 

(CROs), which generally are contracted by pharmaceutical 

companies to conduct global clinical trials.  

 

 

Step 2: data collection. 

The data collection and development of a parametric 

model requires significant effort and the quality of the 

resulting parametric model can be no better than the 

quality of the data it is based upon. To derive a CER 

model for clinical development, the sample sizes 

calculated by Wooding (1984, reported in Table 1) are 

adequate but a larger database of sampling data from 

published randomised clinical trial would be indispensable 

to obtain a more reliable estimate of clinical trials cost. In 

short, Parametric Cost Analysis extrapolates future costs 

from past non-cost data.  

As regards pharmaceutical research and development, 

clinical trial protocols designed for registration are 

negotiated with the FDA, which therefore reflect the 

agency perspective on sample size required to grant a 

NME marketing approval. . FDA priorities go well beyond 

medical statistics and depending on the nature of the 

investigational drug, it is willing to tolerate safety risks in 

favour of clinical efficacy. If the therapeutic area is very 

severe, with limited treatment alternatives currently 

available, the FDA might be willing to approve a drug 

exposed to very few patients: that was the case of Xigris 

(Eli Lilly & Co.) approved in January 2002 for treatment 

of severe sepsis with a dossier of less than 700 patients 

(FDA - The Pink Sheet, 2002). Discussions with the FDA 

are not centred on the minimal clinically significant 

outcome (delta) but rather on standard error assumptions. 

In medicine the standard error is rarely pre-determined on 

the base of large epidemiological evidences. Standard 

errors are based on previously published trials and limited 

population data and very often the FDA requires a sample 

size large enough to support the validity of outcomes with 

standard errors much smaller than the one used for 

academic trials. A Cost Estimating Relationship derived 

from a significant sample of past clinical protocols would 

reflect the variety of FDA approaches to grant marketing 

approval. It would also provide an estimate that is not 

“exact”, but at the same time is based on the specific 

cohort of clinical trials, with all the variables and caveats 

of a negotiation process. 

 

Step 3: data analysis and testing. 

 The General Linear Model describes the various 

factors that influence an individual score (on the 

dependent variable) in an investigation. In linear 

regression analysis, a single independent variable (X) is 

used to estimate the dependent variable (Y), and the 

relationship is assumed to be linear (a straight line).  This 

is the most common form of regression analysis used in 

CER development. Before developing a mathematical 

equation, a data plot may suggest the type of relationship 

among points (linear, log-linear, and exponential) and note 

any points that may require further investigation. 

  

 

 

 
Figure 1. Scatter plot of Wooding sample variables (Table 1) 

 

The graphical relationship between effect size and 

relative sample size calculated by Wooding (1984) (See 

Figure 1) seemed to suggest a curvilinear, probably 

logarithmic relationship between the two variables. This is 

not a general relationship but is the drawn from the 

randomised clinical trials sampling theory. The rationale 

for this is that the sample size increases exponentially as 

the variable to be observed becomes smaller (Wooding, 

1984). As Parametric Cost Analysis recommends the use 

of simple linear regression to derive the CER (ISPA, 

2001), both variables were transformed in their 

logarithmic equivalent. The trend line for the logarithmic 

transformation of both dependent and independent data 

was derived by least squares and has the formula: 

Wooding table variables scatter plot
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   log sample size = 1.266 + (-1.665 x log effect size) (7) 

 

The independent variable is the effect size (delta/s): the 

effect size describes the minimal detectable difference (δ) 

over the estimated variance (s). The dependent variable is 

the calculated number of patients per treated arm. 

Applying this formula to any effect size decided a priori 

by the investigator yields computed number of patients 

(sample size) per treated arm. In clinical research, an arm 

is a group of patients receiving the same treatment 

(investigational drug or placebo). Usually comparative 

trials have two arms, but the adoption of protocols with 

three or four treatment groups is not infrequent.  

 

As an illustrative example, let’s assume that a planned 

two arm clinical trail has the effect size of 0.65. Plugging 

the effect size into the CER equation (7), the expected 

sample size of the study is 76 patients (38 patients in each 

of the two arms). If the study protocol is designed in 3 

arms, the expected sample size would be 114 patients (38 

patients x 3 arms). 

The evaluation of the CER quality is the most critical 

step in the Parametric Cost Estimating process. When 

testing the precision of a model, the most often cited 

statistic is the coefficient of correlation R-square, which is 

the correlation between the dependent and the independent 

variables. A strong correlation (an R-square value above 

0.7) indicates good prediction. The R-square for the CER 

derived from the Wooding data sample is 0.989, 

indicating that the relationship is essentially linear. It 

seems unlikely that relevant variables have been excluded, 

based on the Wooding (1984) sample theory for 

randomised clinical trials, however, it is also prudent to 

check the F statistic, which indicates whether the model as 

a whole is significant. The CER derived from the linear 

regression of the log-transformed variables proved to be a 

statistically significant cost estimating model (F value 

2457.903, P<0.001). Lastly, the standard error of the 

estimate (SSE) is examined to ascertain how much 

dispersion there is in the equation. If the CER equation is 

used to predict the number of patients per treated arm, 95 

percent of the predictions will fall within two SSE of the 

predicted value. The very small SSE value of the derived 

CER (0.05) would suggest an elevated degree of reliability 

of the cost predicting linear equation.  

The derived CER satisfied the fundamental 

assumptions of regression: the negative correlation shown 

between effect size and sample size is extremely 

significant (p< 0.01): therefore, in clinical trials, effect 

size and sample size are linearly correlated.  

 

Step 4: data application: a case example. 

The research activity of a biotech company led to the 

discovery of a new neuroprotective compound showing a 

novel mechanism of action (Bode-Greuel, 1997). Pre-

clinical studies indicated a potential clinical activity on 

degenerative diseases of the peripheral nervous system, 

such as diabetic neuropathy. In the absence of official 

registration guidelines for neuropathy, the biotech 

company negotiated with the FDA a clinical development 

plan requiring three comparative clinical studies to prove 

the following endpoints: 

1. short term tolerability and symptomatic improvement; 

2. improved nerve conduction velocity; and 

3. long term tolerability and delay in neurological   

    deterioration. 

Table 2 summarises the relevant parameters of each 

study. 

 

 
Clinical studies required by 

FDA 

Effect size Probability of 

success 

Study 1: short term 

tolerability and symptomatic 

improvement 

0.5 22% 

Study 2: improved nerve 

conduction velocity 

0.2 14% 

Study 3: long term tolerability 

and delay in neurological 

deterioration 

0.1 8% 

 

 
Table 2. Clinical trials parameters for the development of a 

neuroproctetive new compound. 

 

 

By simply plugging the estimated effect size of each 

planned clinical trial into the derived CER equation 

(number!) it was possible to estimate a priori the number 

of patients per treated arm required to prove the minimal 

significant outcome. Table 3 summarizes the estimated 

direct costs of each clinical trial, assuming a standard net 

present cost per patient of $30,000. 

 

 
Trial Effect 

size 

CER est. 

patients 

per arm 

Study 

arms 

Standard 

cost per 

patient 

 

Cost of 

trial 

$ mill 

1 0.5 58 2 $30,000 $3.48 

2 0.2 269 2 $30,000 $16.14 

3 0.1 853 2 $30,000 $51.18 

 

 
Table 3. Estimated net present cost of clinical trails using the derived 

CER and a standard cost per patient of $30,000. 

 

 

The total estimated cost of clinical development for the 

new neuroprotective agent is $70.8 million.  

 How can a reliable estimate of clinical costs help 

the management of the biotech company to make a 

decision on the development of the new drug?    

The answer is assuming that the net present value 

(NPV) of an approved new treatment of diabetes 

neuropathy is estimated to be $1.5 billion, that all the 

three planned trials must be positive to get marketing 

approval, and that the trials are carried out in the order 1 2 

3, their estimated cost is c1, c2, c3, their relative success 

probability is p1, p2, p3 and they are halted as soon as one 

of them is negative, then the expected value of the project 

(V) is obtained by solving the following equation (Gittins, 

1986): 

 

V = p1p2p3v – c1 – p1c2 – p1p2c3   (2) 



 

V = (0.22 x 0.14x 0.08 x 1,500,000,000) – 3,480,000 –      

       (0.22 x 16,140,000) –  (0.22 x 0.14 x 51,180,000) 

V = 3,696,000 – 3,480,000 – 3,550,000 – 1,576,344

    

V = - 4,910,344    

       

 

Regardless of the estimated market reward for 

innovation in diabetes neuropathy ($1.5 billion), the net 

present expected value is negative, due to the small 

cumulative probability of successful clinical development 

(p1 x p2 xp3 = 0.25%), reducing the expected revenues to 

a mere $3.70, and to the high expected cost of the three 

clinical trials required to obtain regulatory approval 

(respectively $3.48, $3.56 and $1.58 million, adding up to 

a total development cost of $8.62 million). 

The biotech company should decide to halt this 

potentially innovative project due to the elevated expected 

costs of clinical development and the high risk of failure. 

7. Conclusions 

The methodological objective of this paper was to remove 

the two principal threats to validity of the existing clinical 

trial cost estimating literature (Love, 2000): the small 

number of development candidates in the sample and 

reliance upon unverifiable “average” cost data supplied by 

the industry. In order to improve the external validity 

(sample size), it is critical to look for new variables to be 

used as proxies for the information on average costs, but 

more easily accessible to the researcher. Theory 

determines the choice of variables to be observed.  

The application of parametric estimating methods to the 

pharmaceutical development process allows the estimation 

of clinical trials direct costs from a derived linear 

relationship. The derived Cost Estimating Relationship 

(CER) correlates the effect size (in other words the 

standardised minimal significant outcome, which is a 

known a priori independent variable) to the minimal 

sample-size required to confer statistical significance upon 

the outcome (independent variable). The parametric 

methodological perspective actually looks at the sample 

size theory as a linear relationship to pre-determine the 

cost of research. The possibility to estimate the cost of late 

stage clinical development with an elevated degree of 

confidence would definitely improve the quality of stop/go 

decisions and portfolio evaluation in pharmaceutical 

R&D. 

Establishing a relationship between cost and non-cost 

parameters, the parametric model moves away from the 

classical post-hoc cost-accounting analysis, full of 

assumptions and complex allocations, towards a forward 

looking estimate of future direct-research costs, derived as 

a dependent variable from a linear Cost Estimating 

Relationship (CER). The effect size, the minimal 

standardised clinical significant outcome, has been 

considered as the independent variable that drives the 

clinical trial protocol (Wooding, 1984). It is determined a 

priori by the investigators and it is included in the 

publication as a critical element to evaluate the statistical 

significance of the outcome. Shifting the cost estimating 

methodology from proprietary accounting information to 

simple and publicly available variables, the parametric 

model takes the costing research of pharmaceutical 

development to a new level of simplicity and statistical 

significance. 
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