
3,000+
OPEN ACCESS BOOKS

101,000+
INTERNATIONAL

AUTHORS AND EDITORS
98+ MILLION

DOWNLOADS

BOOKS
DELIVERED TO

151 COUNTRIES

AUTHORS AMONG

TOP 1%
MOST CITED SCIENTIST

12.2%
AUTHORS AND EDITORS

FROM TOP 500 UNIVERSITIES

Selection of our books indexed in the
Book Citation Index in Web of Science™

Core Collection (BKCI)

Chapter from the book Modeling Simulation and Optimization - Tolerance and Optimal
Control
Downloaded from: http://www.intechopen.com/books/modeling-s imulation-and-
optimization-tolerance-and-optimal-control

PUBLISHED BY

World's largest Science,
Technology & Medicine

Open Access book publisher

Interested in publishing with InTechOpen?
Contact us at book.department@intechopen.com

http://www.intechopen.com/books/modeling-simulation-and-optimization-tolerance-and-optimal-control
mailto:book.department@intechopen.com

The Measurement of Bandwidth: A Simulation Study 285

The Measurement of Bandwidth: A Simulation Study

Martin J. Tunnicliffe

X

The Measurement of Bandwidth:
A Simulation Study

Martin J. Tunnicliffe

Kingston University
UK

1. Introduction

Bandwidth dictates the potential speed at which a channel carries information and hence the
services it can support. Speech telephony for example requires only 4kHz bandwidth, while
high quality sound requires 15kHz and video 6MHz (Glover & Grant, 2004). When several
services share a common channel it is crucial to know the accessible bandwidth such that it
can be divided efficiently between customers. Furthermore senders may even have to
modify their behaviour in order to make best use of their bandwidth share (Yu et al., 2003).
In an IP network bandwidths can be measured directly using the SNMP protocol to
interrogate link components for their capacities and traffic loads: However since
administrative access is not typically available to customers, numerous “end-to-end”
measurement techniques have appeared whereby network traffic and infrastructure can be
inferred from “probe” transmissions (Prasad et al., 2003). However, these techniques are
only as good as their underlying assumptions and a plethora of misunderstandings and
ambiguities have arisen (Jain & Dovrolis, 2004). Some of these problems are technological;
wireless components introduce complications not experienced in wired networks (Johnsson
et al., 2005) and traffic-shaping mechanisms can make the instantaneous bandwidth
different from that experienced by sustained transmissions (Lakshminarayanan et al., 2004).
However difficulties still arise under the simplest technological assumptions due to the
complex behaviour of packet-streams within bottleneck links.

This chapter develops a simulation framework geared specifically towards bandwidth
quantisation and measurement. The simulator does not represent any specific technology,
but supports the networking of generic FIFO nodes on which the major probing
philosophies (together with their various strengths and pitfalls) can be demonstrated. The
reader is encouraged to experiment with the C++ source-code which is available online
(http://staffnet.kingston.ac.uk/~ku12881/probesim1.0/).

The chapter is not fully comprehensive and several tools and techniques have not been
covered. For more in-depth information the reader is directed to the references at the end of
the chapter.

19

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control286

2. The Definition of Bandwidth

The exact meaning of “bandwidth” depends on the context in which it is used: In the
analogue world it specifies the frequency range (in Hz) over which channel gain is
principally effective; typically the difference between the upper and lower half-power points
(though the definition used for noise calculations is slightly different). Bandwidth also has a
separate digital definition: The maximum rate at which a channel can process data in bits
per second.

Analogue and digital bandwidths are linked by the Shannon-Hartley equation which
expresses the maximum error-free transmission rate maxR (bits/s) in terms of the analogue
bandwidth B (Hz) and the signal-to-noise ratio NS (simple ratio, not decibels):
 NSBRmax 1log 2 bits per second. (1)

maxR is directly proportional to B but falls to zero as 0NS , indicating that a noisy
channel has smaller capacity than a noiseless channel of the same bandwidth. By boosting
the signal relative to the noise maxR can be increased indefinitely, though the logarithmic
function introduces a law of diminishing returns. maxR represents the maximum potential
digital bandwidth, though of course binary-coded data cannot necessarily be carried at this
rate. In practical terms digital bandwidth may refer to a number of throughput-related
concepts:

 Link Capacity. The maximum rate at which a specific link can operate. End-To-End Bandwidth. The bandwidth effective across a series of links. Available Bandwidth. The unused portion of link capacity accessible to new connections.

Figure 1 shows a hypothetical network path connecting source-node A to sink-node B. The
path consists of four “hops” and passes through intermediate nodes C, D and E. Each link
has a capacity of 100Mbit/s with the exception of DE which has only 50Mbit/s; this is the
“narrow-link” which dictates the end-to-end capacity of the path. However, two cross-traffic
flows are also present: A 70Mbit/s flow in the link CD and a 10Mbit/s flow in the DE. Thus
the available bandwidths of CD and DE are 100-70=30Mbit/s and 50-10=40Mbit/s
respectively, making CD the “tight-link” (the smallest available bandwidth) which dictates
the end-to-end available bandwidth of the path. Note that the tight- and narrow-links are
not necessarily the same.

C D E

70Mbit/s

A B

10Mbit/s

100
Mbit/s

50
Mbit/s

100
Mbit/s

100
Mbit/s

Fig. 1. A hypothetical 4-hop network path.

Often the best way to investigate a potential measurement algorithm is by computer
simulation: The measurement can be compared directly with the “truth” (specified in the
simulation parameters) and the investigator’s “omniscience” provides information not
otherwise accessible. It is easy for example to see the relative benefits of pairs and streams of
probe-packets, the limitations of techniques based on the server idle-rate, the effects of
multiple hidden infrastructural nodes and cost of bandwidth measurement in terms of
increased utilisation and reduced quality-of-service.

3. The Simulation Software

All the simulations reported in this chapter were performed using a software system
devised by the author. Readers are free to download this software, repeat the experiments
using different parameters and modify the source code for their own purposes. The tool is
not a program per se but a collection of classes which allow the user to write bespoke
simulations in C++. Results are generated as text files which users can analyse using their
preferred spreadsheet software. All the .h and .cpp files must be downloaded from
http://staffnet.kingston.ac.uk/~ku12881/probesim1.0/ and added to the project, and the
files node.h, network.h, traffic.h, user.h, probe.h, connection.h, channel.h,
simulation.h and constants.h must be linked to any user-written code. There are
eight classes in all: network, node, channel, connection, user, probe, simulation
and packet. (The packet class is only ever used internally and will not be discussed here.)
Since pseudorandom numbers are used, random seeding is required to ensure statistically
independent repetitions. (Use srand((unsigned)time(NULL)).)

*Simulation

*Network

*Node 0

*Node 1

*Node 2

Route 0

Route 1

Route 2

*Traffic

*Channel 0

*Connection 0

*Connection 1

*Channel 1

*Connection 0

*Connection 1

Fig. 2. Simulation architecture

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 287

2. The Definition of Bandwidth

The exact meaning of “bandwidth” depends on the context in which it is used: In the
analogue world it specifies the frequency range (in Hz) over which channel gain is
principally effective; typically the difference between the upper and lower half-power points
(though the definition used for noise calculations is slightly different). Bandwidth also has a
separate digital definition: The maximum rate at which a channel can process data in bits
per second.

Analogue and digital bandwidths are linked by the Shannon-Hartley equation which
expresses the maximum error-free transmission rate maxR (bits/s) in terms of the analogue
bandwidth B (Hz) and the signal-to-noise ratio NS (simple ratio, not decibels):
 NSBRmax 1log 2 bits per second. (1)

maxR is directly proportional to B but falls to zero as 0NS , indicating that a noisy
channel has smaller capacity than a noiseless channel of the same bandwidth. By boosting
the signal relative to the noise maxR can be increased indefinitely, though the logarithmic
function introduces a law of diminishing returns. maxR represents the maximum potential
digital bandwidth, though of course binary-coded data cannot necessarily be carried at this
rate. In practical terms digital bandwidth may refer to a number of throughput-related
concepts:

 Link Capacity. The maximum rate at which a specific link can operate. End-To-End Bandwidth. The bandwidth effective across a series of links. Available Bandwidth. The unused portion of link capacity accessible to new connections.

Figure 1 shows a hypothetical network path connecting source-node A to sink-node B. The
path consists of four “hops” and passes through intermediate nodes C, D and E. Each link
has a capacity of 100Mbit/s with the exception of DE which has only 50Mbit/s; this is the
“narrow-link” which dictates the end-to-end capacity of the path. However, two cross-traffic
flows are also present: A 70Mbit/s flow in the link CD and a 10Mbit/s flow in the DE. Thus
the available bandwidths of CD and DE are 100-70=30Mbit/s and 50-10=40Mbit/s
respectively, making CD the “tight-link” (the smallest available bandwidth) which dictates
the end-to-end available bandwidth of the path. Note that the tight- and narrow-links are
not necessarily the same.

C D E

70Mbit/s

A B

10Mbit/s

100
Mbit/s

50
Mbit/s

100
Mbit/s

100
Mbit/s

Fig. 1. A hypothetical 4-hop network path.

Often the best way to investigate a potential measurement algorithm is by computer
simulation: The measurement can be compared directly with the “truth” (specified in the
simulation parameters) and the investigator’s “omniscience” provides information not
otherwise accessible. It is easy for example to see the relative benefits of pairs and streams of
probe-packets, the limitations of techniques based on the server idle-rate, the effects of
multiple hidden infrastructural nodes and cost of bandwidth measurement in terms of
increased utilisation and reduced quality-of-service.

3. The Simulation Software

All the simulations reported in this chapter were performed using a software system
devised by the author. Readers are free to download this software, repeat the experiments
using different parameters and modify the source code for their own purposes. The tool is
not a program per se but a collection of classes which allow the user to write bespoke
simulations in C++. Results are generated as text files which users can analyse using their
preferred spreadsheet software. All the .h and .cpp files must be downloaded from
http://staffnet.kingston.ac.uk/~ku12881/probesim1.0/ and added to the project, and the
files node.h, network.h, traffic.h, user.h, probe.h, connection.h, channel.h,
simulation.h and constants.h must be linked to any user-written code. There are
eight classes in all: network, node, channel, connection, user, probe, simulation
and packet. (The packet class is only ever used internally and will not be discussed here.)
Since pseudorandom numbers are used, random seeding is required to ensure statistically
independent repetitions. (Use srand((unsigned)time(NULL)).)

*Simulation

*Network

*Node 0

*Node 1

*Node 2

Route 0

Route 1

Route 2

*Traffic

*Channel 0

*Connection 0

*Connection 1

*Channel 1

*Connection 0

*Connection 1

Fig. 2. Simulation architecture

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control288

3.1 The Simulation Class
Figure 2 shows the arrangements of objects within the simulation class, all of which are
referenced by pointers. The class has two main attributes: A network object defining the
network infrastructure and a traffic object defining the network traffic. It also has three
public methods:

simulation() creates an empty unconfigured simulation object. The new object can
perform no simulation function until its configure method has been called and returned
true.

bool configure(network *n, traffic *t) gives the simulation network
infrastructure *n and traffic *t and sets the virtual clock to zero. It returns true only if *n
and *t are consistent with each other. Once it has been successfully called, the advance
method (see below) may be used to make the simulation run.

double advance(double duration) advances the simulation’s clock for a period of
duration seconds, during which the behaviour of the network is simulated. Since a whole
number of events must always be processed, the simulation time may overshoot the
specified value, in which case the “actual” new time is returned. If the simulation fails
(because it is not correctly configured) the returned time is identical to the time at which the
method was called.

3.2 The Network Class
An object of the network class consists of nodes and routes. Nodes are objects of the node
class (see below), and are identified by integers 0,1,2… which indicate the order in which
they were added to the network. Routes (which represent allowed paths through the
network) are strings of nodes’ integer-identifiers. For example, {0,1,2,-1} passes through
nodes 0, 1 and 2 before arriving at the sink node -1 (see Figure 3). The class has the following
public methods:

network() creates an empty network with no nodes and no routes.

bool insert_node(node *n) adds a new node (identified by its pointer) to the
network. It returns false if too many nodes are added (limit is set at 200 in constants.h) or
if the method is parameterised with a NULL pointer.

bool insert_route(int route[]) adds a new route to the network. The method
returns false if too many routes are added (limit is set at 200 in constants.h), if any
nonexistent or repeated nodes appear in the route, or if the array is not terminated by a -1.

int get_no_of_nodes() and int get_no_of_routes() return the number of
nodes and routes added to the network.

{3,4,2,0,1,-1}

{0,1,2,4,-1}

node objects

3 4

0 1

2

Fig. 3. Example topology specified by a network object.

3.3 The Node Class
An object of the node class is basically a FIFO (first in first out) queuing system which
mimics the behaviour of a drop-tail router or store-and-forward switch. Its methods are as
follows:

node(int maxsize,double setspeed,double fixlatency) creates a node which
forwards data at setspeed bits/s, and adds an additional fixed delay fixlatency
seconds to each packet. maxsize specifies the maximum amount of data (in bytes) that the
node can hold before packets are dropped.

double getidletime() returns the time (in seconds) that the server has been idle since
the start of the simulation, or the last time resetidletime() was called. This is useful for
determining the server’s average utilisation and idle-rate.

void resetidletime() sets the idle time to zero. This is useful for detecting changes in
utilisation over time.

3.4 The Traffic Class
An object of the traffic class specifies the traffic applied to the network during the
simulation. It consists of a collection of channel objects identified by integers 0,1,2…,
indicating the order in which they were added. When loaded into a simulation object
along with a network object, the channels in the traffic object correspond to the routes in the
network object (channel 0 follows route 0, channel 1 follows route 1 etc, as shown in Fig.2).
The class has the following public methods:

traffic() creates an empty traffic object with no channels.

bool insert_channel(channel *new_channel) inserts a channel object into the
traffic.

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 289

3.1 The Simulation Class
Figure 2 shows the arrangements of objects within the simulation class, all of which are
referenced by pointers. The class has two main attributes: A network object defining the
network infrastructure and a traffic object defining the network traffic. It also has three
public methods:

simulation() creates an empty unconfigured simulation object. The new object can
perform no simulation function until its configure method has been called and returned
true.

bool configure(network *n, traffic *t) gives the simulation network
infrastructure *n and traffic *t and sets the virtual clock to zero. It returns true only if *n
and *t are consistent with each other. Once it has been successfully called, the advance
method (see below) may be used to make the simulation run.

double advance(double duration) advances the simulation’s clock for a period of
duration seconds, during which the behaviour of the network is simulated. Since a whole
number of events must always be processed, the simulation time may overshoot the
specified value, in which case the “actual” new time is returned. If the simulation fails
(because it is not correctly configured) the returned time is identical to the time at which the
method was called.

3.2 The Network Class
An object of the network class consists of nodes and routes. Nodes are objects of the node
class (see below), and are identified by integers 0,1,2… which indicate the order in which
they were added to the network. Routes (which represent allowed paths through the
network) are strings of nodes’ integer-identifiers. For example, {0,1,2,-1} passes through
nodes 0, 1 and 2 before arriving at the sink node -1 (see Figure 3). The class has the following
public methods:

network() creates an empty network with no nodes and no routes.

bool insert_node(node *n) adds a new node (identified by its pointer) to the
network. It returns false if too many nodes are added (limit is set at 200 in constants.h) or
if the method is parameterised with a NULL pointer.

bool insert_route(int route[]) adds a new route to the network. The method
returns false if too many routes are added (limit is set at 200 in constants.h), if any
nonexistent or repeated nodes appear in the route, or if the array is not terminated by a -1.

int get_no_of_nodes() and int get_no_of_routes() return the number of
nodes and routes added to the network.

{3,4,2,0,1,-1}

{0,1,2,4,-1}

node objects

3 4

0 1

2

Fig. 3. Example topology specified by a network object.

3.3 The Node Class
An object of the node class is basically a FIFO (first in first out) queuing system which
mimics the behaviour of a drop-tail router or store-and-forward switch. Its methods are as
follows:

node(int maxsize,double setspeed,double fixlatency) creates a node which
forwards data at setspeed bits/s, and adds an additional fixed delay fixlatency
seconds to each packet. maxsize specifies the maximum amount of data (in bytes) that the
node can hold before packets are dropped.

double getidletime() returns the time (in seconds) that the server has been idle since
the start of the simulation, or the last time resetidletime() was called. This is useful for
determining the server’s average utilisation and idle-rate.

void resetidletime() sets the idle time to zero. This is useful for detecting changes in
utilisation over time.

3.4 The Traffic Class
An object of the traffic class specifies the traffic applied to the network during the
simulation. It consists of a collection of channel objects identified by integers 0,1,2…,
indicating the order in which they were added. When loaded into a simulation object
along with a network object, the channels in the traffic object correspond to the routes in the
network object (channel 0 follows route 0, channel 1 follows route 1 etc, as shown in Fig.2).
The class has the following public methods:

traffic() creates an empty traffic object with no channels.

bool insert_channel(channel *new_channel) inserts a channel object into the
traffic.

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control290

3.5 The Channel Class
Channels specify the traffic applied to each route within the network: They are container-
objects for connections, which specify actual traffic processes or transmissions. The channel
class has two public methods:

channel() creates a new empty channel with no connections.

bool insert_connection(connection *c) places a new connection object within
the channel.

3.6 The Connection Class
Objects of this class contain one of two attributes: A user object which specifies a user-
related traffic process, or a probe object which measures the bandwidth of the path. It has
three public methods of interest:

connection() creates a new empty connection object, containing neither a user nor a
probe.

bool insert_user(user *u) and bool insert_probe(probe *p) insert a user or
probe object into the connection, thereby deleting any existing user or probe object.

3.7 The User Class
An object of the user class represents an application which generates packets. Every user
object is associated with a connection object (see above). In its default mode it generates a
single packet of specified size, a specified number of seconds after the start of the
simulation. However it can also be configured to generate a continuous stream of packets.
Its public methods are as follows:

user(int size,double start,bool trace) creates a new user process which
transmits one packet of size bytes, start seconds into the simulation. If the trace flag is
set true, the progress of the packet through the network is tracked by a series of messages
to the console window.

bool set_stream(double r,bool p,char *d,char *t ,double startrec)
tells the user process to produce a continuous stream of packets at a rate r bits/s. If the flag
p is set true then the stream will be governed by a Poisson (random memoryless) process;
otherwise the packet interarrival times will be constant. The parameters *d and *t specify
the filename/paths under which the packet delay and transmission times are to be stored.
(If this data is not to be recorded, these pointers are set to NULL.) The parameter startrec
specifies the time (from the beginning of the simulation) after which this recording is to
commence.

bool set_limits(double t1,double t2) tells the user to generate packets only
during the interval (t1, t2) seconds.

bool pareto_modulation(double mean_on,double min_on,double mean_off)
switches the packet arrival mechanism to a Pareto ON-OFF process (Pitts & Schormans,
2000). the ON periods follow a Pareto distribution while the OFF periods are exponentially

distributed. The parameters specify the mean and minimum ON times as well as the mean
OFF time.

double get_packets_sent(), double get_packets_carried() and double
get_packets_dropped() are the accessor methods for the number of packets
transmitted, carried and lost since the simulation began.

double get_latency(), double get_latency_stdv() and double
get_jitter() are the accessor methods for the mean packet latency (delay), latency
standard deviation and jitter in seconds. (Jitter is defined as the absolute difference between
successive packet latencies.)

bool closefiles() closes the files whose names are specified in set_stream.

3.8 The Probe Class
Probe objects are used to measure the bandwidths of the connections into which they are
inserted. The class has a number of methods, but these will be described later in conjunction
with the bandwidth measurement algorithms to which they apply.

3.9 Some Typical Results
Figure 4 shows a three-hop network scenario, with link bandwidths of 5, 1 and 2 Mbit/s
respectively. The 1Mbit/s link is clearly the narrow-link, though the 2Mbit/s is the tight-link
due to its 1.5Mbit/s cross-traffic stream. Figure 5 shows the program listing which generates
this infrastructure as a network object: Each network node has a maximum capacity of
100,000 bytes, and introduces zero additional delay per packet. The end-to-end route AB is
represented by the route rt0.)

A

1.5Mbit/s

1
Mbit/s

2
Mbit/s

5
Mbit/s

2Mbit/s

B

0.3Mbit/s

Fig. 4. Three hop network path

Fig. 5. Code to establish network infrastructure (routes and nodes).

network *net=new network();

net->insert_node(new node(100000,5e6,0));
net->insert_node(new node(100000,1e6,0));
net->insert_node(new node(100000,2e6,0));

int rt0[]={0,1,2,-1},rt1[]={0,-1},rt2[]={1,-1},rt3[]={2,-1};

net->insert_route(rt0);
net->insert_route(rt1);
net->insert_route(rt2);
net->insert_route(rt3);

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 291

3.5 The Channel Class
Channels specify the traffic applied to each route within the network: They are container-
objects for connections, which specify actual traffic processes or transmissions. The channel
class has two public methods:

channel() creates a new empty channel with no connections.

bool insert_connection(connection *c) places a new connection object within
the channel.

3.6 The Connection Class
Objects of this class contain one of two attributes: A user object which specifies a user-
related traffic process, or a probe object which measures the bandwidth of the path. It has
three public methods of interest:

connection() creates a new empty connection object, containing neither a user nor a
probe.

bool insert_user(user *u) and bool insert_probe(probe *p) insert a user or
probe object into the connection, thereby deleting any existing user or probe object.

3.7 The User Class
An object of the user class represents an application which generates packets. Every user
object is associated with a connection object (see above). In its default mode it generates a
single packet of specified size, a specified number of seconds after the start of the
simulation. However it can also be configured to generate a continuous stream of packets.
Its public methods are as follows:

user(int size,double start,bool trace) creates a new user process which
transmits one packet of size bytes, start seconds into the simulation. If the trace flag is
set true, the progress of the packet through the network is tracked by a series of messages
to the console window.

bool set_stream(double r,bool p,char *d,char *t ,double startrec)
tells the user process to produce a continuous stream of packets at a rate r bits/s. If the flag
p is set true then the stream will be governed by a Poisson (random memoryless) process;
otherwise the packet interarrival times will be constant. The parameters *d and *t specify
the filename/paths under which the packet delay and transmission times are to be stored.
(If this data is not to be recorded, these pointers are set to NULL.) The parameter startrec
specifies the time (from the beginning of the simulation) after which this recording is to
commence.

bool set_limits(double t1,double t2) tells the user to generate packets only
during the interval (t1, t2) seconds.

bool pareto_modulation(double mean_on,double min_on,double mean_off)
switches the packet arrival mechanism to a Pareto ON-OFF process (Pitts & Schormans,
2000). the ON periods follow a Pareto distribution while the OFF periods are exponentially

distributed. The parameters specify the mean and minimum ON times as well as the mean
OFF time.

double get_packets_sent(), double get_packets_carried() and double
get_packets_dropped() are the accessor methods for the number of packets
transmitted, carried and lost since the simulation began.

double get_latency(), double get_latency_stdv() and double
get_jitter() are the accessor methods for the mean packet latency (delay), latency
standard deviation and jitter in seconds. (Jitter is defined as the absolute difference between
successive packet latencies.)

bool closefiles() closes the files whose names are specified in set_stream.

3.8 The Probe Class
Probe objects are used to measure the bandwidths of the connections into which they are
inserted. The class has a number of methods, but these will be described later in conjunction
with the bandwidth measurement algorithms to which they apply.

3.9 Some Typical Results
Figure 4 shows a three-hop network scenario, with link bandwidths of 5, 1 and 2 Mbit/s
respectively. The 1Mbit/s link is clearly the narrow-link, though the 2Mbit/s is the tight-link
due to its 1.5Mbit/s cross-traffic stream. Figure 5 shows the program listing which generates
this infrastructure as a network object: Each network node has a maximum capacity of
100,000 bytes, and introduces zero additional delay per packet. The end-to-end route AB is
represented by the route rt0.)

A

1.5Mbit/s

1
Mbit/s

2
Mbit/s

5
Mbit/s

2Mbit/s

B

0.3Mbit/s

Fig. 4. Three hop network path

Fig. 5. Code to establish network infrastructure (routes and nodes).

network *net=new network();

net->insert_node(new node(100000,5e6,0));
net->insert_node(new node(100000,1e6,0));
net->insert_node(new node(100000,2e6,0));

int rt0[]={0,1,2,-1},rt1[]={0,-1},rt2[]={1,-1},rt3[]={2,-1};

net->insert_route(rt0);
net->insert_route(rt1);
net->insert_route(rt2);
net->insert_route(rt3);

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control292

Fig. 6. Code to establish traffic.

Fig.6 shows the code for generating the traffic processes. The process under observation is
thisuser which sends 500 byte packets at 100kbit/s at equally spaced intervals (the p flag
in set_stream is set to false) and record the packet launch-times and latencies to two .txt
files on the d: root directory. The cross traffic is composed of four different packet-sizes: 60,
148, 500 and 1500 bytes, which constitute 4.77, 2.81, 9.5 and 82.92% of the total traffic
respectively. (This profile was used by (Johnsson et al., 2005) and based on real
observations.) Note that traffic of each packet size is generated by a separate Poisson user
process. Figures 7 and 8 show the code to create the traffic object, and configure and run
the simulation for 100 seconds.

//Set cross-traffic granularity
int Sc[]={60,148,500,1500};
double alpha[]={0.0477,0.0218,0.0950,0.8292};

//Establish cross-traffic processes
user *crosstraffic1[4],*crosstraffic2[4],*crosstraffic3[4];
for (int i=0;i<4;i++) {
 crosstraffic1[i]=new user(Sc[i],0,false);
 crosstraffic1[i]->set_stream(alpha[i]*2e6,true,NULL,NULL,0);
 crosstraffic2[i]=new user(Sc[i],0,false);
 crosstraffic2[i]->set_stream(alpha[i]*0.3e6,true,NULL,NULL,0);
 crosstraffic3[i]=new user(Sc[i],0,false);
 crosstraffic3[i]->set_stream(alpha[i]*1.5e6,true,NULL,NULL,0);
}

//Establish monitored process
user *thisuser=new user(500,0,false);
thisuser->set_stream(1e3,false,"d:\\delay.txt","d:\\time.txt",0);

Fig. 7. Code to create connections and channels and create traffic object.

Fig. 8. Code to create and run the simulation.

Figure 9 shows the latencies of thisuser packets, both as time-profiles and histogram
distributions. (The histogram.h utility is available for producing these distributions.)
Notice that the performance deteriorates as the transmission rate approaches 500kbit/s, the
end-to-end available bandwidth of the path. Close to and exceeding this rate the buffer
begins to overflow and packets are dropped at the tight-link buffer. This illustrates that the
tight-link is the most important bottleneck under any specific loading conditions, though the
narrow-link capacity represents the “best case” scenario when cross traffic is at a minimum.

//Establish simulation
simulation *sim=new simulation();
sim->configure(net,traff);

//Run simulation
double endtime=sim->advance(100);
thisuser->closefiles();

//Establish cross-traffic connections
connection *crossconnect1[4],*crossconnect2[4],*crossconnect3[4];
for (i=0;i<4;i++){
 crossconnect1[i]=new connection();
 crossconnect2[i]=new connection();
 crossconnect3[i]=new connection();
}

//Associate cross-traffic processes with connections
for (i=0;i<4;i++){
 crossconnect1[i]->insert_user(crosstraffic1[i]);
 crossconnect2[i]->insert_user(crosstraffic2[i]);
 crossconnect3[i]->insert_user(crosstraffic3[i]);
}

channel *ch[4]; for (i=0;i<4;i++) ch[i]=new channel();
for (i=0;i<4;i++){
 ch[1]->insert_connection(crossconnect1[i]);
 ch[2]->insert_connection(crossconnect2[i]);
 ch[3]->insert_connection(crossconnect3[i]);
}

//Associate monitored process channel 0
connection *thisconnect=new connection();
thisconnect->insert_user(thisuser);
ch[0]->insert_connection(thisconnect);

//Establish traffic object
traffic *traff=new traffic();
for (i=0;i<4;i++) traff->insert_channel(ch[i]);

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 293

Fig. 6. Code to establish traffic.

Fig.6 shows the code for generating the traffic processes. The process under observation is
thisuser which sends 500 byte packets at 100kbit/s at equally spaced intervals (the p flag
in set_stream is set to false) and record the packet launch-times and latencies to two .txt
files on the d: root directory. The cross traffic is composed of four different packet-sizes: 60,
148, 500 and 1500 bytes, which constitute 4.77, 2.81, 9.5 and 82.92% of the total traffic
respectively. (This profile was used by (Johnsson et al., 2005) and based on real
observations.) Note that traffic of each packet size is generated by a separate Poisson user
process. Figures 7 and 8 show the code to create the traffic object, and configure and run
the simulation for 100 seconds.

//Set cross-traffic granularity
int Sc[]={60,148,500,1500};
double alpha[]={0.0477,0.0218,0.0950,0.8292};

//Establish cross-traffic processes
user *crosstraffic1[4],*crosstraffic2[4],*crosstraffic3[4];
for (int i=0;i<4;i++) {
 crosstraffic1[i]=new user(Sc[i],0,false);
 crosstraffic1[i]->set_stream(alpha[i]*2e6,true,NULL,NULL,0);
 crosstraffic2[i]=new user(Sc[i],0,false);
 crosstraffic2[i]->set_stream(alpha[i]*0.3e6,true,NULL,NULL,0);
 crosstraffic3[i]=new user(Sc[i],0,false);
 crosstraffic3[i]->set_stream(alpha[i]*1.5e6,true,NULL,NULL,0);
}

//Establish monitored process
user *thisuser=new user(500,0,false);
thisuser->set_stream(1e3,false,"d:\\delay.txt","d:\\time.txt",0);

Fig. 7. Code to create connections and channels and create traffic object.

Fig. 8. Code to create and run the simulation.

Figure 9 shows the latencies of thisuser packets, both as time-profiles and histogram
distributions. (The histogram.h utility is available for producing these distributions.)
Notice that the performance deteriorates as the transmission rate approaches 500kbit/s, the
end-to-end available bandwidth of the path. Close to and exceeding this rate the buffer
begins to overflow and packets are dropped at the tight-link buffer. This illustrates that the
tight-link is the most important bottleneck under any specific loading conditions, though the
narrow-link capacity represents the “best case” scenario when cross traffic is at a minimum.

//Establish simulation
simulation *sim=new simulation();
sim->configure(net,traff);

//Run simulation
double endtime=sim->advance(100);
thisuser->closefiles();

//Establish cross-traffic connections
connection *crossconnect1[4],*crossconnect2[4],*crossconnect3[4];
for (i=0;i<4;i++){
 crossconnect1[i]=new connection();
 crossconnect2[i]=new connection();
 crossconnect3[i]=new connection();
}

//Associate cross-traffic processes with connections
for (i=0;i<4;i++){
 crossconnect1[i]->insert_user(crosstraffic1[i]);
 crossconnect2[i]->insert_user(crosstraffic2[i]);
 crossconnect3[i]->insert_user(crosstraffic3[i]);
}

channel *ch[4]; for (i=0;i<4;i++) ch[i]=new channel();
for (i=0;i<4;i++){
 ch[1]->insert_connection(crossconnect1[i]);
 ch[2]->insert_connection(crossconnect2[i]);
 ch[3]->insert_connection(crossconnect3[i]);
}

//Associate monitored process channel 0
connection *thisconnect=new connection();
thisconnect->insert_user(thisuser);
ch[0]->insert_connection(thisconnect);

//Establish traffic object
traffic *traff=new traffic();
for (i=0;i<4;i++) traff->insert_channel(ch[i]);

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control294

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8
Simulated Time (s)

To
ta
l L
at
en

cy
 (s
)

350Mbit/s

450Mbit/s

490Mbit/s

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3

Total Packet Latency (s)

Es
ti
m
at
ed

 P
ro
ba

bi
lit
ty
 D
en

si
ty 350kbit/s

450kbit/s

490kbit/s

Fig. 9. Simulated packet delay profile and distribution for the three-hop network of Fig. 4.

4. Taxonomy of Bandwidth Measurement Algorithms

It will be recalled that bandwidth estimates may refer to the total link capacities or available
bandwidth of individual hops or of end-to-end paths. There are many specific tools
available for bandwidth measurement such as pathload (Jain et al. 2002) and pathchirp
(Ribeiro et al., 2003) these are based on a limited number of fundamental approaches. Here
we examine four such approaches: Idle-Rate, Packet Pair/Train Dispersion (PPTD), Self-
Loading Periodic Streams (SLoPS) and Trains of Packet Pairs (TOPP). (A fifth approach
Variable Packet Size (VPS) probing is also worth discussing but its reliance on IP technology
puts it somewhat outside the scope of this chapter.) The approaches may be classified
according to the quantities they aim to measure (see Table 1).

 Link Capacity Available Bandwidth
Per Link Iterative TOPP/VPS Iterative TOPP, Idle Rate

End-To-End PPTD SloPS/TOPP
Table 1. Classification of Bandwidth Measurement Algorithms

5. Narrow-Link Measurement: PPTD

The Packet Pair/Train Dispersion (PPTD) technique measures the end-to-end capacity of a
path using the “bottleneck spacing effect”. It has been studied for some years; one of the
earliest and most thorough investigations was published as early as ten years ago (Lai &
Baker, 1999). Multiple pairs (or trains) of probe packets are sent back-to-back along the
monitored route and their dispersion (the time difference between the last bit of each
packet) is measured. First consider a single network link without cross-traffic: If the input
and output dispersions are in and out seconds then
 CLinout ,max seconds (2)

where L is the packet size in bits and C is the link capacity (bits/s). We shall refer to the
condition inout as “sub-congestion” and CLout “congestion”; it is under the latter

that the link capacity can be calculated as outL bits per second. Figure 10 illustrates this
for the simple case of a packet pair.

Fig. 10. Packet pair without cross-traffic.

Fig. 11. Cross-traffic in a sub-congested link: Output dispersion may be pushed below or
above in .

Fig. 12. Cross-traffic in a congested link: Dispersion may only be forced above CL .

CLin

CLout

CLin

inout

CLin

inout

CLin

Time

CLin

CLin
Congestion Sub-Congestion

Probe
Packet

#1

Probe
Packet

#2

L L

Queue
Size
(bits)

Cross-traffic packet

CLout

inout CLout

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 295

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8
Simulated Time (s)

To
ta
l L
at
en

cy
 (s
)

350Mbit/s

450Mbit/s

490Mbit/s

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3

Total Packet Latency (s)

Es
ti
m
at
ed

 P
ro
ba

bi
lit
ty
 D
en

si
ty 350kbit/s

450kbit/s

490kbit/s

Fig. 9. Simulated packet delay profile and distribution for the three-hop network of Fig. 4.

4. Taxonomy of Bandwidth Measurement Algorithms

It will be recalled that bandwidth estimates may refer to the total link capacities or available
bandwidth of individual hops or of end-to-end paths. There are many specific tools
available for bandwidth measurement such as pathload (Jain et al. 2002) and pathchirp
(Ribeiro et al., 2003) these are based on a limited number of fundamental approaches. Here
we examine four such approaches: Idle-Rate, Packet Pair/Train Dispersion (PPTD), Self-
Loading Periodic Streams (SLoPS) and Trains of Packet Pairs (TOPP). (A fifth approach
Variable Packet Size (VPS) probing is also worth discussing but its reliance on IP technology
puts it somewhat outside the scope of this chapter.) The approaches may be classified
according to the quantities they aim to measure (see Table 1).

 Link Capacity Available Bandwidth
Per Link Iterative TOPP/VPS Iterative TOPP, Idle Rate

End-To-End PPTD SloPS/TOPP
Table 1. Classification of Bandwidth Measurement Algorithms

5. Narrow-Link Measurement: PPTD

The Packet Pair/Train Dispersion (PPTD) technique measures the end-to-end capacity of a
path using the “bottleneck spacing effect”. It has been studied for some years; one of the
earliest and most thorough investigations was published as early as ten years ago (Lai &
Baker, 1999). Multiple pairs (or trains) of probe packets are sent back-to-back along the
monitored route and their dispersion (the time difference between the last bit of each
packet) is measured. First consider a single network link without cross-traffic: If the input
and output dispersions are in and out seconds then
 CLinout ,max seconds (2)

where L is the packet size in bits and C is the link capacity (bits/s). We shall refer to the
condition inout as “sub-congestion” and CLout “congestion”; it is under the latter

that the link capacity can be calculated as outL bits per second. Figure 10 illustrates this
for the simple case of a packet pair.

Fig. 10. Packet pair without cross-traffic.

Fig. 11. Cross-traffic in a sub-congested link: Output dispersion may be pushed below or
above in .

Fig. 12. Cross-traffic in a congested link: Dispersion may only be forced above CL .

CLin

CLout

CLin

inout

CLin

inout

CLin

Time

CLin

CLin
Congestion Sub-Congestion

Probe
Packet

#1

Probe
Packet

#2

L L

Queue
Size
(bits)

Cross-traffic packet

CLout

inout CLout

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control296

Figures 11 and 12 illustrate (with some simplification) how cross-traffic interferes with
dispersion: In sub-congestion the output dispersion can be increased (“dialated”) or
decreased (“compressed”) relative to the value given by Eqn.2, depending on which of the
two packets is delayed the more. However, under congestion the output dispersion can only
be dialated by the presence of cross-traffic. Now let minC be the capacity of the narrow link
in the path: As in is decreased gradually from a large value, the effective probing rate

inLR increases until it exceeds minC at which point it pushes the narrow-link into
congestion. Now since the nodes upstream of the narrow-link are sub-congested, R may be
above or below inL when the probe-pair reaches the narrow-link. However, the node
immediately downstream of the narrow-link experiences a minimum input dispersion of

minCL which (as it is also sub-congested) it may cause to increase or decrease. The overall
process is shown in Figure 13.

To simulate a PPTD, a probe object is created using the following methods of the probe
class:

probe(double separation,int measurements,bool trace) creates a new probe.
The parameters measurements and separation specify the number of probing
measurements and the time separation between them. If the trace flag is set true, the
progress of each probe packet is traced through the network by a series of messages to the
console window.

bool set_PPTD(int L,double din,char *dout,char *b,char *d1,char *d2)
configures the probe for PPTD measurement using pairs of probe packets L bytes long with
an input dispersion din seconds. The remaining parameters specify filenames for recording
the output dispersion out (dout), the bandwidth estimation outL (b) and the end-to-end
latencies for the first (d1) and second (d2) packet of each packet pair.

bool set_streamsize(int stream_size) tells the probe to use streams of
stream_size packets. (The default stream-size is 2.)

Figure 14 shows the code modification (relative to Figures 7 and 8) required to probe the
three-node network path with 1,000 pairs of spaced 0.1 seconds apart. (The methods
openfiles() and closefiles() merely open and close the files odisp.txt, bw.txt,
del1.txt and del2.txt where the probe-packet data are stored.)

Figure 15 shows the distributions of bandwidth estimations for three different packet sizes
for a probing rate minC (R was held constant at 1.6Mbit/s). minC =1Mbit/s appears as a
local maximum within each distribution: The maxima below minC may be caused by
dispersion “dialation” at nodes upstream or downstream of the narrow-link, but the modes
above minC must be caused by dispersion “compression” in downstream nodes. The “true”
bandwidth can be identified since it maintains its position as the packet size is changed
(Pasztor & Veitch, 2002). Notice that when the packet size is small, the distribution modes
(both true and spurious) are much crisper and better defined than when the packet size
becomes larger, and the true result ceases even to be the dominant mode of the distribution.

Fig. 13. Variation of packet dispersion across path where only the narrow-link is in
congestion.

Fig. 14. Code to to create and run PPTD probing experiment.

Packet Size: 100bytes
Input Dispersion: 0.5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)

Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Packet Size: 1000bytes
Input Dispersion: 5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)

Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Packet Size: 500bytes
Input Dispersion: 2.5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)
Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Packet Size: 1500bytes
Input Dispersion: 7.5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)

Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Fig. 15. Estimated bandwidth distributions for three-node path (Fig. 4) using 1.6Mbit/s
probing rate.

Upstream
Link(s)

(Sub-Congestion)

Downstream
Link(s)

(Sub-Congestion)

Narrow Link
(Congestion)

minC

minCL Above or below

in
minin CL

out above or below

minCL

probe *thisprobe=new probe(0.1,1000,false);
thisprobe->set_PPTD(100,0.5e-4,"d:\\odisp.txt","d:\\bw.txt",

 "d:\\del1.txt","d:\\del2.txt");
connection *thisconnect=new connection();
thisconnect->insert_probe(thisprobe);
ch[0]->insert_connection(thisconnect);
traff->insert_channel(ch[0]);
simulation *sim=new simulation();
sim->configure(net,traff);

thisprobe->openfiles();
double endtime=sim->advance(100);
thisprobe->closefiles();

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 297

Figures 11 and 12 illustrate (with some simplification) how cross-traffic interferes with
dispersion: In sub-congestion the output dispersion can be increased (“dialated”) or
decreased (“compressed”) relative to the value given by Eqn.2, depending on which of the
two packets is delayed the more. However, under congestion the output dispersion can only
be dialated by the presence of cross-traffic. Now let minC be the capacity of the narrow link
in the path: As in is decreased gradually from a large value, the effective probing rate

inLR increases until it exceeds minC at which point it pushes the narrow-link into
congestion. Now since the nodes upstream of the narrow-link are sub-congested, R may be
above or below inL when the probe-pair reaches the narrow-link. However, the node
immediately downstream of the narrow-link experiences a minimum input dispersion of

minCL which (as it is also sub-congested) it may cause to increase or decrease. The overall
process is shown in Figure 13.

To simulate a PPTD, a probe object is created using the following methods of the probe
class:

probe(double separation,int measurements,bool trace) creates a new probe.
The parameters measurements and separation specify the number of probing
measurements and the time separation between them. If the trace flag is set true, the
progress of each probe packet is traced through the network by a series of messages to the
console window.

bool set_PPTD(int L,double din,char *dout,char *b,char *d1,char *d2)
configures the probe for PPTD measurement using pairs of probe packets L bytes long with
an input dispersion din seconds. The remaining parameters specify filenames for recording
the output dispersion out (dout), the bandwidth estimation outL (b) and the end-to-end
latencies for the first (d1) and second (d2) packet of each packet pair.

bool set_streamsize(int stream_size) tells the probe to use streams of
stream_size packets. (The default stream-size is 2.)

Figure 14 shows the code modification (relative to Figures 7 and 8) required to probe the
three-node network path with 1,000 pairs of spaced 0.1 seconds apart. (The methods
openfiles() and closefiles() merely open and close the files odisp.txt, bw.txt,
del1.txt and del2.txt where the probe-packet data are stored.)

Figure 15 shows the distributions of bandwidth estimations for three different packet sizes
for a probing rate minC (R was held constant at 1.6Mbit/s). minC =1Mbit/s appears as a
local maximum within each distribution: The maxima below minC may be caused by
dispersion “dialation” at nodes upstream or downstream of the narrow-link, but the modes
above minC must be caused by dispersion “compression” in downstream nodes. The “true”
bandwidth can be identified since it maintains its position as the packet size is changed
(Pasztor & Veitch, 2002). Notice that when the packet size is small, the distribution modes
(both true and spurious) are much crisper and better defined than when the packet size
becomes larger, and the true result ceases even to be the dominant mode of the distribution.

Fig. 13. Variation of packet dispersion across path where only the narrow-link is in
congestion.

Fig. 14. Code to to create and run PPTD probing experiment.

Packet Size: 100bytes
Input Dispersion: 0.5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)

Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Packet Size: 1000bytes
Input Dispersion: 5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)

Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Packet Size: 500bytes
Input Dispersion: 2.5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)

Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Packet Size: 1500bytes
Input Dispersion: 7.5ms

0.00E+00

1.00E‐06

2.00E‐06

3.00E‐06

4.00E‐06

5.00E‐06

6.00E‐06

7.00E‐06

8.00E‐06

9.00E‐06

1.00E‐05

0 500000 1000000 1500000 2000000

Bandwidth Estimate (bits/s)

Pr
ob

ab
ili
ty
 D
en

si
ty
 (E

st
.)

Fig. 15. Estimated bandwidth distributions for three-node path (Fig. 4) using 1.6Mbit/s
probing rate.

Upstream
Link(s)

(Sub-Congestion)

Downstream
Link(s)

(Sub-Congestion)

Narrow Link
(Congestion)

minC

minCL Above or below

in
minin CL

out above or below

minCL

probe *thisprobe=new probe(0.1,1000,false);
thisprobe->set_PPTD(100,0.5e-4,"d:\\odisp.txt","d:\\bw.txt",

 "d:\\del1.txt","d:\\del2.txt");
connection *thisconnect=new connection();
thisconnect->insert_probe(thisprobe);
ch[0]->insert_connection(thisconnect);
traff->insert_channel(ch[0]);
simulation *sim=new simulation();
sim->configure(net,traff);

thisprobe->openfiles();
double endtime=sim->advance(100);
thisprobe->closefiles();

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control298

6. Tight-Link Measurement: SLoPS

Like PPSD, the Self Loading Packet Stream (SLoPS) technique uses probe-packet streams,
but measures end-to-end available bandwidth minA instead of link capacity (Jain &
Dovrolis, 2003). If a short-lived stream of equal-sized packets is sent at R bits/s, variations
in one-way delays give an indication of congestion buildup. When R is greater than minA
short-term overload causes the one-way delay to increase steadily with time. If minAR
this is not the case and (once equilibrium is reached) the average delay remains
approximately constant. The sender usually uses a binary search algorithm to probe the
path at different rates, while the receiver reports the resulting delay-trends. Though the
probe class has (as yet) no dedicated methods devoted to SloPS, individual packet delay
files produced by the user object may be used to investigate certain features of SloPS.

Figure 16 shows the code used to generate streams of 63 packets over a mid-simulation
interval of 0.1 seconds and measure the end-to-end latency of each packet. Figure 17 shows
the delay trends (averaged for 5 independent simulations) for three different probing rates.
An unambiguously increasing trend is only seen when minAR .

One drawback of SloPS is that it requires accurate end-to-end delay measurement, which in
turn demands the accurate synchronised end-point clocks. PPTD does not suffer from this
difficulty as it uses relative inter-packet times rather than absolute end-to-end times.

Fig. 16. Code for SloPS demonstration. (Packet size 100bytes, stream rate 500kbit/s.)

user *thisuser=new user(100,0,false);
thisuser->set_stream(500e3,false,"d:\\delay.txt","d:\\time.txt",0);
thisuser->set_limits(50,50.1);

connection *thisconnect=new connection();
thisconnect->insert_user(thisuser);
ch[0]->insert_connection(thisconnect);
traff->insert_channel(ch[0]);

simulation *sim=new simulation();
sim->configure(net,traff);

double endtime=sim->advance(100);
thisuser->closefiles();

0.01

0.015

0.02

0.025

0.03

0.035

0.04

49.98 50 50.02 50.04 50.06 50.08 50.1 50.12

Time (s)

En
d‐
to
‐e
nd

 d
el
ay
 (s
)

300kbit/s, 60byte

500kbit/s, 100byte

700kbit/s, 140byte

Fig. 17. Packet delay trends for three-node path (Fig. 4.) loaded with 300, 500 and 700kbit/s
streams over a 100ms time-slice. Only the 700kbit/s stream shows a consistently increasing
delay-trend. (Available bandwidth is 500kbit/s.)

7. Tight-Link Measurement: Idle Rate

This technique was proposed specifically for broadband access networks where the effects
of self-induced packet congestion can yield misleading results (Lakshminarayanan et al.,
2004). For a single link in isolation, the available bandwidth A is related to tight-link
capacity C and server utilisation by the formula
 1CA bits per second. (3)

where 1 is the “idle rate”, i.e. the ratio of time during which the link is inactive. If C is
known then A can be calculated simply by multiplying by the idle rate, which can (in
principle) be inferred from the delays of periodically-transmitted probe-packets. If these are
plotted as a cumulative frequency distribution then the idle-rate should be visible as a
“knee” in the graph where the latency begins to increase.

This works quite well for isolated links: Figure 1(a) has link capacity of 1Mbit/s and an
available bandwidth of 500kbit/s. The cumulative plot in Figure 18(c) shows a knee (idle
rate) at 0.5 and A =0.5×1Mbit/s=500kbit/s. However, the technique is not always so
successful: Figure 18(b) shows the same path with a 2Mbit/s upstream link added: The
corresponding cumulative frequency curve suggests a tight-link idle-rate of 0.25, giving an
available bandwidth estimate of 0.25×1Mbit/s =250kbit/s; half its true value.

Aside from the obvious disadvantage that it requires prior knowledge of link capacity, the
idle-rate method is clearly not always usable when there are moderately utilised links other
than the tight-link. Also like SloPS it relies upon a capacity for end-to-end delay
measurement.

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 299

6. Tight-Link Measurement: SLoPS

Like PPSD, the Self Loading Packet Stream (SLoPS) technique uses probe-packet streams,
but measures end-to-end available bandwidth minA instead of link capacity (Jain &
Dovrolis, 2003). If a short-lived stream of equal-sized packets is sent at R bits/s, variations
in one-way delays give an indication of congestion buildup. When R is greater than minA
short-term overload causes the one-way delay to increase steadily with time. If minAR
this is not the case and (once equilibrium is reached) the average delay remains
approximately constant. The sender usually uses a binary search algorithm to probe the
path at different rates, while the receiver reports the resulting delay-trends. Though the
probe class has (as yet) no dedicated methods devoted to SloPS, individual packet delay
files produced by the user object may be used to investigate certain features of SloPS.

Figure 16 shows the code used to generate streams of 63 packets over a mid-simulation
interval of 0.1 seconds and measure the end-to-end latency of each packet. Figure 17 shows
the delay trends (averaged for 5 independent simulations) for three different probing rates.
An unambiguously increasing trend is only seen when minAR .

One drawback of SloPS is that it requires accurate end-to-end delay measurement, which in
turn demands the accurate synchronised end-point clocks. PPTD does not suffer from this
difficulty as it uses relative inter-packet times rather than absolute end-to-end times.

Fig. 16. Code for SloPS demonstration. (Packet size 100bytes, stream rate 500kbit/s.)

user *thisuser=new user(100,0,false);
thisuser->set_stream(500e3,false,"d:\\delay.txt","d:\\time.txt",0);
thisuser->set_limits(50,50.1);

connection *thisconnect=new connection();
thisconnect->insert_user(thisuser);
ch[0]->insert_connection(thisconnect);
traff->insert_channel(ch[0]);

simulation *sim=new simulation();
sim->configure(net,traff);

double endtime=sim->advance(100);
thisuser->closefiles();

0.01

0.015

0.02

0.025

0.03

0.035

0.04

49.98 50 50.02 50.04 50.06 50.08 50.1 50.12

Time (s)

En
d‐
to
‐e
nd

 d
el
ay
 (s
)

300kbit/s, 60byte

500kbit/s, 100byte

700kbit/s, 140byte

Fig. 17. Packet delay trends for three-node path (Fig. 4.) loaded with 300, 500 and 700kbit/s
streams over a 100ms time-slice. Only the 700kbit/s stream shows a consistently increasing
delay-trend. (Available bandwidth is 500kbit/s.)

7. Tight-Link Measurement: Idle Rate

This technique was proposed specifically for broadband access networks where the effects
of self-induced packet congestion can yield misleading results (Lakshminarayanan et al.,
2004). For a single link in isolation, the available bandwidth A is related to tight-link
capacity C and server utilisation by the formula
 1CA bits per second. (3)

where 1 is the “idle rate”, i.e. the ratio of time during which the link is inactive. If C is
known then A can be calculated simply by multiplying by the idle rate, which can (in
principle) be inferred from the delays of periodically-transmitted probe-packets. If these are
plotted as a cumulative frequency distribution then the idle-rate should be visible as a
“knee” in the graph where the latency begins to increase.

This works quite well for isolated links: Figure 1(a) has link capacity of 1Mbit/s and an
available bandwidth of 500kbit/s. The cumulative plot in Figure 18(c) shows a knee (idle
rate) at 0.5 and A =0.5×1Mbit/s=500kbit/s. However, the technique is not always so
successful: Figure 18(b) shows the same path with a 2Mbit/s upstream link added: The
corresponding cumulative frequency curve suggests a tight-link idle-rate of 0.25, giving an
available bandwidth estimate of 0.25×1Mbit/s =250kbit/s; half its true value.

Aside from the obvious disadvantage that it requires prior knowledge of link capacity, the
idle-rate method is clearly not always usable when there are moderately utilised links other
than the tight-link. Also like SloPS it relies upon a capacity for end-to-end delay
measurement.

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control300

(a) One-hop path (b) Two-hop path

(c) Cumulative frequency distributions

1Mbit/s

2
Mbit/s

1
Mbit/s

1
Mbit/s

0.5Mbit/s 0.5Mbit/s

Fig. 18. (a) One node and (b) two node network paths each with 500kbit/s available
bandwidth, (c) Cumulative frequency plots for end-to-end delays.

8. Tight-Link Measurement: TOPP

Like SloPS, the Train Of Packet Pairs algorithm (TOPP) measures end-to-end available
bandwidth. Many packet pairs (or streams) are sent with a gradually decreasing dispersion:
If in is the input dispersion and L the packet-size (bits) then the offered rate inLnR 1 . If this exceeds the end-to-end available bandwidth A then momentary
congestion causes each packet to be be delayed (on average) longer than its predecessor.
This increases the output dispersion out and decreases the measured rate outLnM 1 (see Figure 19). On the other hand if R A then the average offered and
measured rates should remain approximately equal (1MR).

If only one bottleneck is visible then the governing equation can be shown to be (Melander
et al., 2000).

C
AR

CM
R

in

out 11,1min . (4)

Rearrangement of Eqn.(4) allows the link capacity and available bandwidth to be estimated
from the slope and intercept of a regression lines fitted to the graph-segment AR :

SLOPE
C 1

SLOPE
INTERCEPTA 1

One difference between TOPP and SloPS is that the former increases the offered rate linearly
while the latter uses a binary search algorithm. Another important difference is that TOPP
can estimate the capacity of the tight link as well as the effective bandwidth.

To simulate TOPP, a further method of the probe class is called:

bool set_TOPP(int L,double r1,double r2,double dr,char *r,char *m,char *v)
configures the probe for TOPP measurement using pairs of probe packets L bytes long with
an input rate starting at r1 bits/s and increasing to r2 bits/s in intervals of dr bits/s. The
remaining parameters specify filenames for recording the probing rate (r), the mean output
dispersion ratio MRinout (m), and the variance of the latter (v).

R bit/s
R

A Slope= C1

(a) (b)

1

MR/

 M bit/s

 T bit/s

 C bit/s

Fig. 19. The TOPP algorithm. (a) The available bandwidth is the link capacity C minus the
cross traffic T . (b) A linearly increasing MR with increasing R indicates that AR .

Figure 20 shows the code for a simple TOPP experiment, and Figure 21 some results for a
single hop path. The graphs roughly resemble Figure 19(b), though there is no abrupt
transition between the two linear domains. This is due to the finite granularity of the cross-
traffic (Park et al., 2006) which also affects the measured slopes of the graphs. Regression
lines were used to obtain the estimates for C and A listed in Table 2, which show a
tendency to overestimate C and underestimate A - particularly when the stream-size is
small. This effect is is well documented and is commonly referred to as the “probing bias”
(Liu et al., 2004).

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 301

(a) One-hop path (b) Two-hop path

(c) Cumulative frequency distributions

1Mbit/s

2
Mbit/s

1
Mbit/s

1
Mbit/s

0.5Mbit/s 0.5Mbit/s

Fig. 18. (a) One node and (b) two node network paths each with 500kbit/s available
bandwidth, (c) Cumulative frequency plots for end-to-end delays.

8. Tight-Link Measurement: TOPP

Like SloPS, the Train Of Packet Pairs algorithm (TOPP) measures end-to-end available
bandwidth. Many packet pairs (or streams) are sent with a gradually decreasing dispersion:
If in is the input dispersion and L the packet-size (bits) then the offered rate inLnR 1 . If this exceeds the end-to-end available bandwidth A then momentary
congestion causes each packet to be be delayed (on average) longer than its predecessor.
This increases the output dispersion out and decreases the measured rate outLnM 1 (see Figure 19). On the other hand if R A then the average offered and
measured rates should remain approximately equal (1MR).

If only one bottleneck is visible then the governing equation can be shown to be (Melander
et al., 2000).

C
AR

CM
R

in

out 11,1min . (4)

Rearrangement of Eqn.(4) allows the link capacity and available bandwidth to be estimated
from the slope and intercept of a regression lines fitted to the graph-segment AR :

SLOPE
C 1

SLOPE
INTERCEPTA 1

One difference between TOPP and SloPS is that the former increases the offered rate linearly
while the latter uses a binary search algorithm. Another important difference is that TOPP
can estimate the capacity of the tight link as well as the effective bandwidth.

To simulate TOPP, a further method of the probe class is called:

bool set_TOPP(int L,double r1,double r2,double dr,char *r,char *m,char *v)
configures the probe for TOPP measurement using pairs of probe packets L bytes long with
an input rate starting at r1 bits/s and increasing to r2 bits/s in intervals of dr bits/s. The
remaining parameters specify filenames for recording the probing rate (r), the mean output
dispersion ratio MRinout (m), and the variance of the latter (v).

R bit/s
R

A Slope= C1

(a) (b)

1

MR/

 M bit/s

 T bit/s

 C bit/s

Fig. 19. The TOPP algorithm. (a) The available bandwidth is the link capacity C minus the
cross traffic T . (b) A linearly increasing MR with increasing R indicates that AR .

Figure 20 shows the code for a simple TOPP experiment, and Figure 21 some results for a
single hop path. The graphs roughly resemble Figure 19(b), though there is no abrupt
transition between the two linear domains. This is due to the finite granularity of the cross-
traffic (Park et al., 2006) which also affects the measured slopes of the graphs. Regression
lines were used to obtain the estimates for C and A listed in Table 2, which show a
tendency to overestimate C and underestimate A - particularly when the stream-size is
small. This effect is is well documented and is commonly referred to as the “probing bias”
(Liu et al., 2004).

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control302

Fig. 20. Code to to create and run TOPP probing experiment.

Fig. 21. Results TOPP results obtained by probing a single link with a total bandwidth of
1Mbit/s and an available bandwidth of 500kbit/s. Probe packets were 500 bytes each.

When applied to a multiple-hop network path, the graph displays multiple slope-changes
(Figure 22). An iterative approach has been explored (Melander et al., 2002) whereby the
available bandwidths of multiple bottlenecks can be inferred, using positive spikes in the
second derivative 22 RMR to indicate the slope-changes. However this technique
relies on prior assumptions about the order in which the bottlenecks appear and a policy of
Shortest Surplus First (the smallest available bandwidth is assumed to be the furthest
upstream) has been adopted as a worst-case scenario.

probe *thisprobe=new probe(0.5,100,false);
thisprobe->set_TOPP(500,0.01e6,2e6,0.01e6,"d:\\rate.txt",

"d:\\mean.txt","d:\\var.txt");
thisprobe->set_streamsize(10);

connection *thisconnect=new connection();
thisconnect->insert_probe(thisprobe);
ch[0]->insert_connection(thisconnect);
traff->insert_channel(ch[0]);

simulation *sim=new simulation();
sim->configure(net,traff);

thisprobe->openfiles();
double endtime=sim->advance(50000);
thisprobe->closefiles();

Stream Size (Packets) Link Capacity (Mbit/s) Available Bandwidth
(Mbit/s)

10 1.440 0.300
100 1.040 0.477

True Value: 1.000 0.500
Table 2. TOPP bandwidth estimates for different sized streams of 500 byte packets.

Fig. 22. Results TOPP results obtained by probing a double-hop network path with 100-byte
packet streams. Slope changes at 0.5 and 1Mbit/s indicate the available bandwidths of the
two bottlenecks.

9. Conclusions

This chapter presents a simulation framework for studying bandwidth quantisation and
measurement. It does not represent any specific technology but rather an interconnection of
generic FIFO queuing nodes which can approximate the behaviour of real networks. The
reader is invited to experiment with the C++ source-code which is available online. The four
algorithms investigated were PPTD, SLoPS, Idle Rate and TOPP. A fifth approach is
Variable Packet Size (VPS) probing: This measures round-trip-times for a series of probe
packets to each intermediate node (Prasad et al, 2003) using ICMP messages to signal back
to the sender. By varying the packet size L , the serializdation delay CL can be separated
from the independent propagation-time and the effects of queuing delay minimised by
taking the minimum of several measurements. Though this can provide quite detailed
information, it assumes Layer 3 functionality in all congestible links. The technique has
therefore not been included in this study.
The aim of this chapter is not to present any particularly significant new insights, nor to
reproduce the full complexity of past research (which would require an entire book). We

www.intechopen.com

The Measurement of Bandwidth: A Simulation Study 303

Fig. 20. Code to to create and run TOPP probing experiment.

Fig. 21. Results TOPP results obtained by probing a single link with a total bandwidth of
1Mbit/s and an available bandwidth of 500kbit/s. Probe packets were 500 bytes each.

When applied to a multiple-hop network path, the graph displays multiple slope-changes
(Figure 22). An iterative approach has been explored (Melander et al., 2002) whereby the
available bandwidths of multiple bottlenecks can be inferred, using positive spikes in the
second derivative 22 RMR to indicate the slope-changes. However this technique
relies on prior assumptions about the order in which the bottlenecks appear and a policy of
Shortest Surplus First (the smallest available bandwidth is assumed to be the furthest
upstream) has been adopted as a worst-case scenario.

probe *thisprobe=new probe(0.5,100,false);
thisprobe->set_TOPP(500,0.01e6,2e6,0.01e6,"d:\\rate.txt",

"d:\\mean.txt","d:\\var.txt");
thisprobe->set_streamsize(10);

connection *thisconnect=new connection();
thisconnect->insert_probe(thisprobe);
ch[0]->insert_connection(thisconnect);
traff->insert_channel(ch[0]);

simulation *sim=new simulation();
sim->configure(net,traff);

thisprobe->openfiles();
double endtime=sim->advance(50000);
thisprobe->closefiles();

Stream Size (Packets) Link Capacity (Mbit/s) Available Bandwidth
(Mbit/s)

10 1.440 0.300
100 1.040 0.477

True Value: 1.000 0.500
Table 2. TOPP bandwidth estimates for different sized streams of 500 byte packets.

Fig. 22. Results TOPP results obtained by probing a double-hop network path with 100-byte
packet streams. Slope changes at 0.5 and 1Mbit/s indicate the available bandwidths of the
two bottlenecks.

9. Conclusions

This chapter presents a simulation framework for studying bandwidth quantisation and
measurement. It does not represent any specific technology but rather an interconnection of
generic FIFO queuing nodes which can approximate the behaviour of real networks. The
reader is invited to experiment with the C++ source-code which is available online. The four
algorithms investigated were PPTD, SLoPS, Idle Rate and TOPP. A fifth approach is
Variable Packet Size (VPS) probing: This measures round-trip-times for a series of probe
packets to each intermediate node (Prasad et al, 2003) using ICMP messages to signal back
to the sender. By varying the packet size L , the serializdation delay CL can be separated
from the independent propagation-time and the effects of queuing delay minimised by
taking the minimum of several measurements. Though this can provide quite detailed
information, it assumes Layer 3 functionality in all congestible links. The technique has
therefore not been included in this study.
The aim of this chapter is not to present any particularly significant new insights, nor to
reproduce the full complexity of past research (which would require an entire book). We

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control304

aim rather to show how a relatively simple tool can be used to demonstrate the principles
and provide a starting-point for the reader’s own investigations.

10. References

Glover, I.A. & Grant,P.M. (2004), Digital Communications (2nd Ed.), Pearson Prentice Hall, p.3.
Jain, M.; Dovrolis, C. & Mah, B. (2002). Pathload: An Available Bandwidth Estimation Tool,

Proceedings of Passive and Active Measurement Conference.
Jain, M. & Dovrolis, C. (2003). End-to-End Available Bandwidth Measurement

Methodology, Dynamics and Relation with TCP Throughput, IEEE/ACMA
Transactions on Networking, Vol. 11, No. 4, pp. 537-49.

Jain, M. & Dovrolis, C. (2004). Ten Fallacies and Pitfalls on End-to-End Available Bandwidth
Estimation, Proceedings of 4th. ACM SIGCOMM, pp.272-7, Taormina, Sicily.

Johnsson, A.; Melander, B. & Björkman, M. (2005) Bandwidth Measurement in Wireless
Networks, Proceedings of Mediterranean Ad Hoc Networking Workshop, Porquerolles,
France, June 2005.

Lai, K. & Baker, M. (1999). Measuring Bandwidth, Proceedings of IEEE INFOCOM 1999, pp.
905-14.

Lakshminarayanan, K; Padmanabhan, V.N. & Padhye, J, Bandwidth Estimation in
Broadband Access Networks, Proceedings of 4th ACM SIGCOMM Internet
Measurement Conference (IMC’04), Taormina, Italy, October 2004, pp. 314-21.

Liu, X.; Ravindran, K.; Liu, B.; Loguinov, D. (2004). Single-Hop Probing Asymptotics in
Available Bandwidth Estimation: Sample Path Analysis, Proceedings of ACM
Internet Measurement Conference 2004.

Melander, B.; Björkman, M. & Gunningberg, P. (2000). A New End-to-End Probing and
Analysis Method for Estimating Bandwidth Bottlenecks, Proceedings of IEEE
Glogecom’00, San Francisco, CA, USA, Nov. 2000.

Melander, B.; Björkman, M. & Gunningberg, P. (2002). Regression-Based Available
Bandwidth Measurements, Proceedings of 2002 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems.

Park, K.J.; Lim, H. & Choi, C-H. (2006). Stochastic Analysis of Packet-Pair Probing for
Network Bandwidth Estimation, Computer Networks, Vol. 50, pp. 1901-15.

Pasztor, A. & Veitch, D. (2002b). The Packet Size Dependence of Packet Pair Like Methods,
Proceedings of IEEE/IFIP International Workshop on Quality of Service (IWQoS), 2002.

Pitts, J.M. & Schormans,J.A. (2000). IP and ATM Design and Performance, Wiley, pp. 287-98.
Prasad, R.S.; Murray, M; Dovrolis, C. & Claffy, K. (2003). Bandwidth Estimation: Metrics,

Measurement Techniques and Tools, IEEE Network, Vol.17, No.6, pp.27-35.
Ribeiro, V.J.; Riedi, R.G.; Baraniuk, J.; Navratil, L. & Cottrel, L. (2003). Pathchirp: Efficient

Available Bandwidth Estimation for Network Paths, Proceedings of Passive and
Active Measurement Workshop, 2003.

Yu, Y.; Cheng, I. & Basu, A. (2003). Optimal Adaptive Bandwidth Monitoring for QoS Based
Retrieval, IEEE Transactions on Multimedia, Vol. 5, No. 3, pp. 466-73.

www.intechopen.com

Modeling Simulation and Optimization - Tolerance and Optimal
Control
Edited by Shkelzen Cakaj

ISBN 978-953-307-056-8
Hard cover, 304 pages
Publisher InTech
Published online 01, April, 2010
Published in print edition April, 2010

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

Parametric representation of shapes, mechanical components modeling with 3D visualization techniques using
object oriented programming, the well known golden ratio application on vertical and horizontal displacement
investigations of the ground surface, spatial modeling and simulating of dynamic continuous fluid flow process,
simulation model for waste-water treatment, an interaction of tilt and illumination conditions at flight simulation
and errors in taxiing performance, plant layout optimal plot plan, atmospheric modeling for weather prediction,
a stochastic search method that explores the solutions for hill climbing process, cellular automata simulations,
thyristor switching characteristics simulation, and simulation framework toward bandwidth quantization and
measurement, are all topics with appropriate results from different research backgrounds focused on tolerance
analysis and optimal control provided in this book.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Martin J. Tunnicliffe (2010). The Measurement of Bandwidth: A Simulation Study, Modeling Simulation and
Optimization - Tolerance and Optimal Control, Shkelzen Cakaj (Ed.), ISBN: 978-953-307-056-8, InTech,
Available from: http://www.intechopen.com/books/modeling-simulation-and-optimization-tolerance-and-
optimal-control/the-measurement-of-bandwidth-a-simulation-study

